

Solution of structured algebraic linear systems in PDE-constrained optimization problems

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

The problem

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

- Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Image restoration
- ... Survey: Benzi, Golub and Liesen, Acta Num 2005

The problem. The setting

 $\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$

- Iterative solution by means of Krylov subspace methods
- Structural properties. Focus for this talk:
 - \star A symmetric positive (semi)definite
 - $\star B^T$ tall (possibly rank deficient) or square nonsing.
 - \star C symmetric positive (semi)definite

Spectral properties

$$\mathcal{M} = \left[\begin{array}{cc} A & B^T \\ B & -C \end{array} \right]$$

$$\begin{split} 0 &< \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 &= \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \\ \lambda_{\max}(C) &> 0, \quad BB^T + C \quad \text{full rank} \end{split}$$

$$\operatorname{spec}(\mathcal{M}) \subset [-a, -b] \cup [c, d], \quad a, b, c, d > 0$$

 \Rightarrow A large variety of results on spec($\mathcal{M})$, also for indefinite and singular A

Spectral properties

$$\mathcal{M} = \left[\begin{array}{cc} A & B^T \\ B & -C \end{array} \right]$$

$$\begin{split} 0 &< \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 &= \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \\ \lambda_{\max}(C) &> 0, \quad BB^T + C \quad \text{full rank} \end{split}$$

$$\operatorname{spec}(\mathcal{M}) \subset [-a, -b] \cup [c, d], \quad a, b, c, d > 0$$

 \Rightarrow A large variety of results on spec(\mathcal{M}), also for indefinite and singular A

 \Rightarrow CG method not applicable (in general) \Rightarrow MINRES

 \Rightarrow Search for good preconditioning strategies...

General preconditioning strategy

 $\bullet~\mbox{Find}~\mathcal{P}~\mbox{such that}$

$$\mathcal{M}\mathcal{P}^{-1}\hat{u} = b \qquad \hat{u} = \mathcal{P}u$$

is easier (faster) to solve than $\mathcal{M}u = b$

- A look at efficiency:
 - Dealing with ${\mathcal P}$ should be cheap
 - Storage requirements for $\ensuremath{\mathcal{P}}$ should be low

- Properties (algebraic/functional) should be exploited *Mesh/parameter independence*

Structure preserving preconditioners

Block diagonal Preconditioner
* A nonsing.,
$$C = 0$$
:

$$\mathcal{P}_0 = \begin{bmatrix} A & 0 \\ 0 & BA^{-1}B^T \end{bmatrix}$$

$$\Rightarrow \quad \mathcal{P}_0^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_0^{-\frac{1}{2}} = \begin{bmatrix} I & A^{-\frac{1}{2}}B^T(BA^{-1}B^T)^{-\frac{1}{2}} \\ (BA^{-1}B^T)^{-\frac{1}{2}}BA^{-\frac{1}{2}} & 0 \end{bmatrix}$$
MINRES converges in at most 3 iterations. $\operatorname{spec}(\mathcal{P}_0^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_0^{-\frac{1}{2}}) = \left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$

Block diagonal Preconditioner
* A nonsing.,
$$C = 0$$
:

$$\mathcal{P}_0 = \begin{bmatrix} A & 0 \\ 0 & BA^{-1}B^T \end{bmatrix}$$

$$\Rightarrow \quad \mathcal{P}_0^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_0^{-\frac{1}{2}} = \begin{bmatrix} I & A^{-\frac{1}{2}}B^T(BA^{-1}B^T)^{-\frac{1}{2}} \\ (BA^{-1}B^T)^{-\frac{1}{2}}BA^{-\frac{1}{2}} & 0 \end{bmatrix}$$
MINRES converges in at most 3 iterations. $\operatorname{spec}(\mathcal{P}_0^{-\frac{1}{2}}\mathcal{M} \mathcal{P}_0^{-\frac{1}{2}}) = \left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$
A more practical choice:

$$\mathcal{P} = \begin{bmatrix} \widetilde{A} & 0 \\ 0 & \widetilde{S} \end{bmatrix} \qquad \text{spd.} \quad \widetilde{A} \approx A \qquad \widetilde{S} \approx BA^{-1}B^T$$
eigs of $\mathcal{M} \mathcal{P}^{-1}$ in $[-a, -b] \cup [c, d], \qquad a, b, c, d > 0$
Still an Indefinite Problem

• Change the preconditioner: *Mimic the LU factors*

$$\mathcal{M} = \begin{bmatrix} I & O \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix} \quad \Rightarrow \mathcal{P} \approx \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix}$$

• Change the preconditioner: *Mimic the LU factors*

$$\mathcal{M} = \begin{bmatrix} I & O \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix} \quad \Rightarrow \mathcal{P} \approx \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix}$$

• Change the preconditioner: *Mimic the Structure*

$$\mathcal{M} = \left[\begin{array}{cc} A & B^T \\ B & -C \end{array} \right] \quad \Rightarrow \mathcal{P} \approx \mathcal{M}$$

• Change the preconditioner: *Mimic the LU factors*

$$\mathcal{M} = \begin{bmatrix} I & O \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix} \quad \Rightarrow \mathcal{P} \approx \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix}$$

• Change the preconditioner: *Mimic the Structure*

$$\mathcal{M} = \left[\begin{array}{cc} A & B^T \\ B & -C \end{array} \right] \quad \Rightarrow \mathcal{P} \approx \mathcal{M}$$

• Change the matrix: *Eliminate indef.*

$$\mathcal{M}_{-} = \begin{bmatrix} A & B^T \\ -B & C \end{bmatrix}$$

• Change the preconditioner: *Mimic the LU factors*

$$\mathcal{M} = \begin{bmatrix} I & O \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix} \quad \Rightarrow \mathcal{P} \approx \begin{bmatrix} A & B^T \\ O & BA^{-1}B^T + C \end{bmatrix}$$

• Change the preconditioner: *Mimic the Structure*

$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \quad \Rightarrow \mathcal{P} \approx \mathcal{M}$$

- Change the matrix: *Eliminate indef.* $\mathcal{M}_{-} = \begin{bmatrix} A & B^T \\ -B & C \end{bmatrix}$
- Change the matrix: Regularize (C = 0)

$$\mathcal{M} \Rightarrow \mathcal{M}_{\gamma} = \begin{bmatrix} A & B^T \\ B & -\gamma W \end{bmatrix} \text{ or } \mathcal{M}_{\gamma} = \begin{bmatrix} A + \frac{1}{\gamma} B^T W^{-1} B & B^T \\ B & O \end{bmatrix}$$

... But recovering symmetry in disguise

Nonstandard inner product:

Let ${\mathcal W}$ be any of ${\mathcal M}{\mathcal P}^{-1}, {\mathcal M}_-$

For spec(\mathcal{W}) in \mathbb{R}^+ , find symmetric matrix H such that

 $\mathcal{W}H = H\mathcal{W}^T$

(that is, \mathcal{W} is *H*-symmetric)

... But recovering symmetry in disguise

Nonstandard inner product:

Let ${\mathcal W}$ be any of ${\mathcal M}{\mathcal P}^{-1}, {\mathcal M}_-$

For spec(\mathcal{W}) in \mathbb{R}^+ , find symmetric matrix H such that

 $\mathcal{W}H = H\mathcal{W}^T$

(that is, \mathcal{W} is *H*-symmetric)

If H is spd then

- \mathcal{W} is diagonalizable
- Use PCG on \mathcal{W} with H-inner product

Constraint (Indefinite) Preconditioner

$$\mathcal{P} = \begin{bmatrix} \widetilde{A} & B^T \\ B & -C \end{bmatrix} \quad \mathcal{M}\mathcal{P}^{-1} = \begin{bmatrix} A\widetilde{A}^{-1}(I-\Pi) + \Pi & \star \\ O & I \end{bmatrix}$$

with $\Pi = B(B\widetilde{A}^{-1}B^T + C)^{-1}B\widetilde{A}^{-1}$

- Constraint equation satisfied at each iteration
- If C nonsing \Rightarrow all eigs real and positive
- If $B^T C = 0$ and $BB^T + C > 0 \Rightarrow$ all eigs real and positive

 \Rightarrow More general cases, $\widetilde{B}\approx B$, $\widetilde{C}\approx C$

The Stokes problem

Minimize

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f \cdot u \, dx$$

subject to $\nabla\cdot u=0$ in Ω

Lagrangian:
$$\mathcal{L}(u, p) = J(u) + \int_{\Omega} p \nabla \cdot u \, dx$$

Optimality condition on discretized Lagrangian leads to:

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$

A second-order operator, B first-order operator, C zero-order operator

A standard choice: block diagonal preconditioning

$$\mathcal{P} = \begin{bmatrix} \widetilde{A} & 0 \\ 0 & \widetilde{S} \end{bmatrix} \quad \text{spd.} \quad \widetilde{A} \approx A \quad \widetilde{S} \approx BA^{-1}B^T$$

 \Rightarrow if \widetilde{A}, A and $\widetilde{S}, BA^{-1}B^T$ spectrally equivalent, e.g.,

 $\exists \alpha_1, \alpha_2 > 0 \quad : \quad \forall x \neq 0, \ \alpha_1 x^T \widetilde{A} x \le x^T A x \le \alpha_2 x^T \widetilde{A} x,$

then interval containing spec(\mathcal{MP}^{-1}) is independent of mesh parameter

 \Rightarrow Krylov subspace solver MINRES will converge in a number of iterations bounded independently of mesh parameter

An example. Stokes problem

IFISS 3.1 (Elman, Ramage, Silvester): Lid driven cavity; Q2-Q1 approximation

$$\begin{bmatrix} -\Delta & -\text{grad} \\ \text{div} & \end{bmatrix} \approx \begin{bmatrix} -\widetilde{\Delta} & \\ & I \end{bmatrix}$$

In algebraic terms:

 $I \rightarrow \text{mass matrix}$ $-\widetilde{\Delta} \rightarrow \text{Algebraic MG}$ (spectrally equivalent matrix)

```
(cf. K.-A. Mardal & R. Winther JNLAA 2011)
```

An example. Stokes problem

IFISS 3.1 (Elman, Ramage, Silvester): Lid driven cavity; Q2-Q1 approximation

$$\begin{bmatrix} -\Delta & -\text{grad} \\ \text{div} & \end{bmatrix} \approx \begin{bmatrix} -\widetilde{\Delta} & I \\ & I \end{bmatrix}$$

In algebraic terms:

 $I \rightarrow \text{mass matrix}$ $-\widetilde{\Delta} \rightarrow \text{Algebraic MG}$ (spectrally equivalent matrix)

```
(cf. K.-A. Mardal & R. Winther JNLAA 2011)
```

2D. Final residual norm $< 10^{-6}$

$size(\mathcal{M})$	its	Time (secs)
578	26	0.04
2178	26	0.14
8450	26	0.50
132098	26	11.17

The Stokes problem. Contraint preconditioning $\mathcal{P} = \begin{bmatrix} \widetilde{A} & B^T \\ B & B\widetilde{A}^{-1}B^T - S \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ B\widetilde{A}^{-1} & I_m \end{bmatrix} \begin{bmatrix} \widetilde{A} & 0 \\ 0 & -S \end{bmatrix} \begin{bmatrix} I_n & \widetilde{A}^{-1}B^T \\ 0 & I_m \end{bmatrix}$ with $S \approx B\widetilde{A}^{-1}B^T + C spd$ The Stokes problem. Contraint preconditioning

$$\mathcal{P} = \begin{bmatrix} \tilde{A} & B^T \\ B & B\tilde{A}^{-1}B^T - S \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ B\tilde{A}^{-1} & I_m \end{bmatrix} \begin{bmatrix} \tilde{A} & 0 \\ 0 & -S \end{bmatrix} \begin{bmatrix} I_n & \tilde{A}^{-1}B^T \\ 0 & I_m \end{bmatrix}$$
 with $S \approx B\tilde{A}^{-1}B^T + C spd$

Selection of \widetilde{A} , S: $\widetilde{A} = AMG(A)$, S = Q (pressure mass matrix)

IFISS 3.1 (Elman, Ramage, Silvester): Flow over a backward facing step Stable Q2-Q1 approximation $(C = 0, B \in \mathbb{R}^{m \times n})$ stopping tolerance: 10^{-6} non-symmetric solver

n	m	# it.
1538	209	18
5890	769	18
23042	2945	18
91138	11521	17
362498	45569	17

Distributed optimal control for time-periodic parabolic equations

Joint work with W. Zulehner and W. Krendl

Problem: Find the state y(x,t) and the control u(x,t) that minimize the cost functional

$$J(y,u) = \frac{1}{2} \int_0^T \int_\Omega |y(x,t) - y_d(x,t)|^2 \, dx \, dt + \frac{\nu}{2} \int_0^T \int_\Omega |u(x,t)|^2 \, dx \, dt$$

subject to the time-periodic parabolic problem

$$\begin{aligned} \frac{\partial}{\partial t}y(x,t) - \Delta y(x,t) &= u(x,t) & \text{in } \Omega \times (0,T), \\ y(x,t) &= 0 & \text{on } \partial \Omega \times (0,T), \\ y(x,0) &= y(x,T) & \text{in } \Omega, \\ u(x,0) &= u(x,T) & \text{in } \Omega. \end{aligned}$$

Here $y_d(x,t)$ is a given target (or desired) state and $\nu > 0$ is a cost or regularization parameter.

Time-harmonic solution

Assume that y_d is time-harmonic: $y_d(x,t) = y_d(x)e^{i\omega t}$, $\omega = \frac{2\pi k}{T}$ Then there exists a time-periodic solution $y(x,t) = y(x)e^{i\omega t}$, $u(x,t) = u(x)e^{i\omega t}$, where y(x), u(x) solve: Minimize

$$\frac{1}{2} \int_{\Omega} |y(x) - y_d(x)|^2 \, dx + \frac{\nu}{2} \int_{\Omega} |u(x)|^2 \, dx$$

subject to

$$i\omega y(x) - \Delta y(x) = u(x)$$
 in Ω ,
 $y(x) = 0$ on $\partial \Omega$

Discrete version:

$$\frac{1}{2}(y-y_d)^*M(y-y_d) + \frac{\nu}{2}u^*Mu, \text{ subject to } i\omega My + Ky = Mu$$

M, K real mass and stiffness matrices.

Solution of the discrete problem

Solution using Lagrange multipliers gives

$$\begin{bmatrix} M & 0 & K - i\omega M \\ 0 & \nu M & -M \\ K + i\omega M & -M & 0 \end{bmatrix} \begin{bmatrix} y \\ u \\ p \end{bmatrix} = \begin{bmatrix} My_d \\ 0 \\ 0 \end{bmatrix}$$

Elimination of the control $(\nu Mu = Mp)$ yields:

$$\begin{bmatrix} M & K - i\omega M \\ K + i\omega M & -\frac{1}{\nu}M \end{bmatrix} \begin{bmatrix} y \\ p \end{bmatrix} = \begin{bmatrix} My_d \\ 0 \end{bmatrix}$$

Zulehner, 2011 (for $\omega = 0$); Kolmbauer and Kollmann, tr2011

Solving the saddle point linear system

After simple scaling,

$$\begin{bmatrix} M & \sqrt{\nu} (K - i\omega M) \\ \sqrt{\nu} (K + i\omega M) & -M \end{bmatrix} \begin{bmatrix} y \\ \frac{1}{\sqrt{\nu}} p \end{bmatrix} = \begin{bmatrix} My_d \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \mathcal{A}x = b$$

Ideal (Real) Block diagonal Preconditioner:

$$\mathcal{P} = \begin{bmatrix} M + \sqrt{\nu} \left(K + \omega M \right) & 0 \\ 0 & M + \sqrt{\nu} \left(K + \omega M \right) \end{bmatrix}$$

• Performance. Accurate estimates for the spectral intervals:

$$\operatorname{spec}(\mathcal{P}^{-1}\mathcal{A}) \subseteq \left[-1, -\frac{1}{\sqrt{3}}\right] \cup \left[\frac{1}{\sqrt{3}}, 1\right]$$

• Robustness. Convergence of MINRES bounded independently of the mesh, frequency and regularization parameters (h, ω, ν)

Distributed optimal control for the time-periodic Stokes equations. I

The problem.

Find the velocity u(x,t), the pressure p(x,t), and the force f(x,t) that minimize the cost functional

$$J(u,f) = \frac{1}{2} \int_0^T \int_\Omega |u(x,t) - u_d(x,t)|^2 \, dx \, dt + \frac{\nu}{2} \int_0^T \int_\Omega |f(x,t)|^2 \, dx \, dt$$

subject to the time-periodic Stokes problem

$$\begin{aligned} \frac{\partial}{\partial t} \mathbf{u}(x,t) - \Delta \mathbf{u}(x,t) + \nabla p(x,t) &= \mathbf{f}(x,t) & in \ \Omega \times (0,T), \\ \nabla \cdot \mathbf{u}(x,t) &= 0 & in \ \Omega \times (0,T), \\ \mathbf{u}(x,t) &= 0 & on \ \partial \Omega \times (0,T), \\ \mathbf{u}(x,0) &= \mathbf{u}(x,T) & in \ \Omega, \\ p(x,0) &= p(x,T) & in \ \Omega, \\ \mathbf{f}(x,0) &= \mathbf{f}(x,T) & in \ \Omega. \end{aligned}$$

Distributed optimal control for the time-periodic Stokes equations. II

Similar solution strategy (time-harmonic solution, Lagrange multipliers, scaling) leads to a familiar structure:

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} & \sqrt{\nu}(\mathbf{K} - i\omega \,\mathbf{M}) & -\sqrt{\nu} \mathbf{D}^T \\ \mathbf{0} & \mathbf{0} & -\sqrt{\nu} \mathbf{D} & \mathbf{0} \\ \hline \sqrt{\nu}(\mathbf{K} + i\omega \,\mathbf{M}) & -\sqrt{\nu} \mathbf{D}^T & -\mathbf{M} & \mathbf{0} \\ -\sqrt{\nu} \mathbf{D} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \\ \frac{1}{\sqrt{\nu}} \mathbf{w} \\ \frac{1}{\sqrt{\nu}} r \end{bmatrix} = \begin{bmatrix} \mathbf{M} \mathbf{u}_d \\ \mathbf{0} \\ \mathbf{0} \\ \frac{1}{\sqrt{\nu}} r \end{bmatrix}$$

(new setting for $\omega \neq 0$)

Optimal preconditioning technique

M	0	$\sqrt{ u}(\mathbf{K} - i\omega \mathbf{M})$	$-\sqrt{\nu}\mathbf{D}^T$] [<u>u</u>]]	$\left[\mathbf{M}\underline{\mathbf{u}}_{d}\right]$
0	0	$-\sqrt{ u}\mathbf{D}$	0	\underline{p}		0
$\boxed{\sqrt{\nu}(\mathbf{K} + i\omega \mathbf{M})}$	$-\sqrt{\nu}\mathbf{D}^T$	$-\mathbf{M}$	0	$\left \frac{1}{\sqrt{\nu}} \mathbf{w} \right $		0
$-\sqrt{\nu}\mathbf{D}$	0	0	0	$\left\lfloor \frac{1}{\sqrt{\nu}} \underline{r} \right\rfloor$		

Ideal real Block diagonal preconditioner:

$$\mathcal{P} = \begin{bmatrix} P & & \\ & S & \\ & & P \\ & & & S \end{bmatrix}, \qquad \begin{array}{c} P = M + \sqrt{\nu}(K + \omega M), \\ & S = \nu D(M + \sqrt{\nu}(K + \omega M))^{-1} D^T \end{array}$$

• Performance. Accurate estimates for the spectral intervals:

$$\operatorname{spec}(\mathcal{P}^{-1}\mathcal{A}) \subseteq \left[-\frac{1}{2}(1+\sqrt{5}), -\phi\right] \cup \left[\phi, \frac{1}{2}(1+\sqrt{5})\right], \quad \phi = 0.306...$$

• Robustness. Convergence of MINRES bounded independently of the mesh, frequency and regularization parameters (h, ω, ν)

An example for the time-periodic Stokes constraint

$\omega \setminus \nu$	10^{-8}	10^{-6}	10^{-4}	10^{-2}	10^{0}	10^{2}	10^{4}	10^{6}
10^{-2}	58	58	61	48	32	22	20	20
10^{0}	58	58	61	48	36	32	32	32
10^{2}	58	57	66	62	62	62	62	62
10^{4}	48	56	60	60	60	60	60	60
10^{6}	30	30	30	30	30	30	30	30
10^{8}	16	16	16	16	16	16	16	16

(Taylor-Hood pair of FE spaces (P2-P1))

final tolerance: $tol=10^{-12}$

Practical block diagonal preconditioning

Ideal real Block diagonal preconditioner:

П

$$\mathcal{P} = \begin{bmatrix} P & & \\ & S & \\ & & P & \\ & & & S \end{bmatrix}, \qquad \begin{array}{c} P = M + \sqrt{\nu}(K + \omega M), \\ & S = \nu D(M + \sqrt{\nu}(K + \omega M))^{-1}D^T \end{array}$$

Practical case:

Г

$$S^{-1} \approx (1 + \omega \sqrt{\nu}) M_p^{-1} + \omega \sqrt{\nu} K_p^{-1}$$

(Cahout-Charbard preconditioner)

with M_p , K_p the mass matrix and the discretized negative Laplacian in the finite element space for the pressure

 $\Rightarrow M_p$, K_p also replaced by, e.g., Multigrid versions

(Mardal, Winther, Bramble, Pasciak, Olshanskii, Peters, Reusken, ...)

Explanation of the Staircase behavior

Both matrices have the form:

$$\mathcal{A} = \begin{bmatrix} A & B^* \\ B & -A \end{bmatrix} \in \mathbb{C}^{2n \times 2n},$$

with:

 $A \in \mathbb{R}^{n \times n}$ symmetric and semidefinite $B \in \mathbb{C}^{n \times n}$ complex symmetric (i.e., $B = B^T$)

THEOREM: Assume that B is nonsingular. Then the eigenvalues μ of \mathcal{A} come in pairs, $(\mu, -\mu)$, with $\mu \in \mathbb{R}$.

(cf. Hamiltonian matrices)

Symmetric spectrum. Consequences.

A classical result (e.g., Greenbaum 1997): Consider the linear system $Ax = r_0$

Let \mathcal{A} be a Hermitian matrix, with spectrum in $[-a, -b] \cup [c, d]$, a, b, c, d > 0. Assume that |b - a| = |d - c|.

Then after m iterations, the MINRES residual r_m satisfies

$$\frac{\|r_m\|}{\|r_0\|} \le 2\left(\frac{\sqrt{|ad|} - \sqrt{|bc|}}{\sqrt{|ad|} + \sqrt{|bc|}}\right)^{[m/2]}$$

For equal intervals (our case):

$$\frac{\|r_m\|}{\|r_0\|} \le 2\left(\frac{d/c-1}{d/c+1}\right)^{[m/2]}$$

⇒ MINRES roughly behaves like CG on a matrix having only the squared (!) positive eigenvalues

Attempts to bypass quasi-stagnation. The time-periodic parabolic case

$$\mathcal{A} = \begin{bmatrix} M & \sqrt{\nu}(K - i\omega M) \\ \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$

An alternative (indefinite) preconditioner - work in progress:

$$\mathcal{P} = \begin{bmatrix} M + \sqrt{\nu}(K - i\omega M) \\ M + \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$

Attempts to bypass quasi-stagnation. The time-periodic parabolic case

$$\mathcal{A} = \begin{bmatrix} M & \sqrt{\nu}(K - i\omega M) \\ \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$

An alternative (indefinite) preconditioner - work in progress:

$$\mathcal{P} = \begin{bmatrix} M + \sqrt{\nu}(K - i\omega M) \\ M + \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$

Spectral independence wrto parameters: It holds that

$$\operatorname{spec}(\mathcal{AP}^{-1}) \subset [\frac{1}{2},1) \times [-1,1] \in \mathbb{C}^+$$

The actual rectangle may be much smaller, depending on u, ω, h

Attempts to bypass quasi-stagnation. The time-periodic parabolic case

$$\mathcal{A} = \begin{bmatrix} M & \sqrt{\nu}(K - i\omega M) \\ \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$

An alternative (indefinite) preconditioner - work in progress:

$$\mathcal{P} = \begin{bmatrix} M + \sqrt{\nu}(K - i\omega M) \\ M + \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$

Spectral independence wrto parameters: It holds that

$$\operatorname{spec}(\mathcal{AP}^{-1}) \subset [\frac{1}{2},1) \times [-1,1] \in \mathbb{C}^+$$

The actual rectangle may be much smaller, depending on ν, ω, h

- \bullet Preconditioner not sensitive to $K\pm i\omega M$
- No results on eigenvectors

(Very) Preliminary numerical evidence. Time-periodic parabolic pb. Block diagonal preconditioner: MINRES # its

$\omega \setminus \nu$	10^{-8}	10^{-6}	10^{-4}	10^{-2}	10^{0}	10^{2}	10^{4}	10^{6}
10^{-2}	29	30	26	16	10	8	8	8
10^{-0}	29	30	26	18	14	14	14	14
10^{2}	29	38	34	30	30	30	30	30
10^{6}	26	30	30	30	30	30	30	30
10^{8}	10	10	10	10	10	10	10	10

(Very) Preliminary numerical evidence. Time-periodic parabolic pb. Block diagonal preconditioner: MINRES # its

6	$\omega ackslash u$	10^{-8}	10^{-6}	10^{-4}	10^{-2}	10^{0}	10^{2}	10^{4}	10^{6}
1	10^{-2}	29	30	26	16	10	8	8	8
1	10^{-0}	29	30	26	18	14	14	14	14
	10^{2}	29	38	34	30	30	30	30	30
	10^{6}	26	30	30	30	30	30	30	30
	10^{8}	10	10	10	10	10	10	10	10

Block indefinite preconditioner: GMRES # its

$\omega \setminus \nu$	10^{-8}	10^{-6}	10^{-4}	10^{-2}	10^{0}	10^{2}	10^{4}	10^{6}
10^{-2}	42	32	15	8	5	4	3	3
10^{0}	42	32	15	8	5	4	3	3
10^{2}	42	29	11	6	4	3	3	2
10^{4}	11	5	4	3	2	2	2	2
10^{6}	3	3	2	2	2	1	1	1

Similar results with $CGSTAB(\ell)$

A side consideration

Is the complex matrix formulation needed?

$$\mathcal{A} = \begin{bmatrix} M & \sqrt{\nu}(K - i\omega M) \\ \sqrt{\nu}(K + i\omega M) & -M \end{bmatrix}$$
$$= \begin{bmatrix} I & 0 \\ i\omega\sqrt{\nu}I & I \end{bmatrix} \begin{bmatrix} M & \sqrt{\nu}K \\ \sqrt{\nu}K & -(1 + \nu\omega^2)M \end{bmatrix} \begin{bmatrix} I & -i\omega\sqrt{\nu}I \\ 0 & I \end{bmatrix} \equiv R\mathcal{A}_r R^*$$

(similar transformation in the Stokes case)

$$\mathcal{A}x = b \quad \Leftrightarrow \quad \mathcal{A}_r \hat{x} = \hat{b}$$

 \Rightarrow Convergence estimates (and expected performance) for real matrices

Final remarks

- Much is known about the behavior of structured preconditioners for well established problems and formulations
- New problems provide new challenges
- Understanding the underlying Linear Algebra may be key

References for this talk

W. Krendl, V. Simoncini and W. Zulehner, *Stability Estimates and Structural Spectral Properties of Saddle Point Problems*, submitted, 2012.

M. Benzi, G.H. Golub and J. Liesen, Numerical Solution of Saddle Point Problems, Acta Numerica, 14, 1-137 (2005)

K.A. Mardal and R. Winther, *Preconditioning discretizations of systems of partial differential equations*, Numer. Linear Algebra with Appl., 18, 1-40 (2011)