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We discuss the design and implementation of a suite of functions for solving symmetric indefi-
nite linear systems associated with mixed approximation of systems of PDEs. The novel feature
of our iterative solver is the incorporation of error control in the natural “energy” norm in com-
bination with an a posteriori estimator for the PDE approximation error. This leads to a robust
and optimally efficient stopping criterion: the iteration is terminated as soon as the algebraic
error is insignificant compared to the approximation error. We describe a “proof of concept”
MATLAB implementation of this algorithm and we illustrate its effectiveness when integrated
into the Incompressible Flow Iterative Solution Software (IFISS) package (cf. ACM Transactions
on Mathematical Software 33, Article 14, 2007).
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1. INTRODUCTION

This paper describes a novel algorithm for solving symmetric linear systems as-
sociated with mixed approximation of systems of PDEs. Our approach has three
key ingredients: first, a block preconditioning strategy that engenders convergence
with a rate that is independent of the problem parameters; second, an effective
adaptation of the MINRES algorithm of Paige and Saunders [1975] which enables
convergence in a computable monotonically decreasing norm that is equivalent to
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2 · D.J. Silvester and V. Simoncini

the natural norm for error estimation of the discrete solution; and third, the incor-
poration of a posteriori error estimation functionality which enables us to formulate
a precise stopping criterion for the linear solver so as to balance the algebraic error
with the PDE approximation error. In this sense our iterative method is optimal.

To put this work into context, significant efforts have been put into the derivation
of estimates for the error norm for Krylov subspace solvers applied to symmetric
and positive definite matrices, see, e.g., Strakoš and Tichý [2002], Meurant [2005],
Golub and Meurant [1997], which have in turn led to the development of stopping
criteria in the Conjugate Gradient method (CG) based on the algebraic error norm.
We note, however, that in these works there is the necessity of estimating the
unobservable quantity—the energy error—that is actually minimized by the CG
method. In the case of MINRES, the quantity that is minimized is the residual
Euclidean norm—which is readily available. Thus from an algebraic point of view
no further estimates need to be determined. As we will see later, it is only when we
look into the origin of the algebraic system that the relevance of a “natural” norm
becomes apparent. Further motivation for this philosophy can be found in the work
of Wathen [2007] and, specifically for the class of problems considered here, in the
work of Mardal and Winther [2010]. The prominent role of the discretization error
in the determination of the algebraic stopping tolerance has also been recognised by
other researchers; see, e.g., Arioli et al. [2005], Arioli and Loghin [2008], and Jiránek
et al. [2010].

The remainder of the paper is organised as follows. Section 2 sets up the gov-
erning PDE framework. Two representative saddle point problems are identified,
and approximation and error estimation are discussed. The block diagonal pre-
conditioning framework that is at the heart of the solver methodology is reviewed
in Section 3. The design of the stopping criterion is described in Section 4, and
practical implementation issues are discussed in Section 5.

2. SADDLE POINT PROBLEMS

Our aim is to design an optimal solver for discretized saddle point problems. These
are symmetric indefinite linear algebra systems
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, (1)

that are associated with the finite-dimensional approximation of the following vari-
ational problem: find (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V, (2)

b(u, q) = g(q) ∀q ∈ Q. (3)

Here, V and Q represent Hilbert spaces; a : V × V → R is a symmetric bounded
bilinear form, b : V × Q → R is also a bounded bilinear form and f : V → R,
q : Q → R are linear functionals. Note that the fact that the two spaces V and Q
are approximated independently leads to the nomenclature mixed approximation.

In section 3 we will follow the philosophy of Mardal and Winther [2010] for
constructing a generic preconditioner for the saddle point system (1). To this end,
we define the dual spaces V ∗ and Q∗ respectively, and introduce the duality pairing
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〈·, ·〉. Then, if we associate the bilinear forms a and b with operators A : V → V ∗

and B : V → Q∗ so that

〈Au, v〉 = a(u, v) = 〈u,Av〉 and 〈Bu, q〉 = b(u, q) = 〈u,B∗q〉,

the problem (2)–(3) can be expressed in the “saddle point” form

(

A B∗

B 0

) (

u
p

)

=

(

f
g

)

. (4)

A suitable preconditioner for (1) can then be defined by first identifying a precon-
ditioner for the associated continuous problem, and second, by ensuring that the
discretization of the continuous problem is stable. Details are given later.

Systems of the form (2)–(3) arise when modelling elliptic or parabolic PDE
problems that are associated with constraints. Examples include linear elastic-
ity (Navier-Lamé equations), steady fluid flow (Stokes equations) and electromag-
netism (Maxwell equations). See Brezzi and Fortin [1991] for a thorough overview of
the approximation aspects and Benzi et al. [2005, pp. 9–20] for a detailed discussion
of the properties of the discretized system (1). The two PDE problems considered
below are naturally self-adjoint, and so give rise to symmetric linear systems if
appropriately discretized. More generally, saddle point problems can also be found
in optimal control when minimizing a cost functional with a non-selfadjoint PDE
problem (e.g., the Navier-Stokes equations) as a constraint. This is a frontier topic
of numerical analysis and we hope that our “optimal solver” strategy will help
stimulate research in this rapidly developing field.

2.1 The Stokes equations

The Stokes equations, given by

−∇2~u + ∇p = ~0, (5)

∇ · ~u = 0, (6)

on some domain Ω ⊂ R
n, together with boundary conditions

~u = ~w on ∂ΩD,
∂~u

∂n
− ~np = ~0 on ∂ΩN , (7)

are a fundamental model for steady-state viscous flow. The variable ~u is a vector-
valued function representing the velocity of the fluid, and the scalar function p
represents the pressure. The equation (5) represents conservation of the momentum
of the fluid and equation (6) enforces conservation of mass. The crucial modelling
assumption is that the flow is low speed, so that convection effects can be neglected.
Introducing vector-valued velocity functions ~v ∈ V := (H1

0 (Ω))d and scalar pressure
functions q ∈ Q := L2(Ω) a variational formulation of (5)–(7) is given by

(∇~u,∇~v) − (p,∇ · ~v) = f(~v) ∀~v ∈ V, (8)

(q,∇ · ~v) = g(q) ∀q ∈ Q, (9)
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4 · D.J. Silvester and V. Simoncini

where f , g incorporate the nonhomogeneous boundary data ~w on ∂ΩD, and (·, ·)
represents the standard (either scalar or vector-valued) L2–inner product.1

To get to the representation (4), we identify the dual spaces V ∗ := (H−1(Ω))d

and Q∗ := L2(Ω) respectively, and define operators A : V → V ∗ and B : V → Q∗

so that

〈A~u, ~v〉 = (∇~u,∇~v) and 〈B~u, q〉 = −(∇ · ~u, q).

With these definitions the problem (5)–(7) can be expressed in the form (4). More-
over the coefficient matrix in (4),

(

A B∗

B 0

)

=

(

−∇2 −∇
∇· 0

)

represents a mapping from V × Q onto V ∗ × Q∗.
The discrete version of the Stokes problem (8)–(9) is immediate: given approx-

imation spaces Vh ⊂ V and Qh ⊂ Q our aim is to compute (~uh, ph) ∈ Vh × Qh

satisfying
(

A B∗

B 0

) (

~uh

ph

)

=

(

fh

gh

)

. (10)

Mixed finite element approximation entails defining appropriate bases for the
velocity and pressure finite element spaces Vh and Qh respectively, and constructing
the associated linear algebra system (1) for the coefficients in the basis expansion.
This system will have dimension nu+np where nu and np are the numbers of velocity
and pressure basis functions, respectively. We also note that in the linear algebra
system (1) the matrix A is a d × d block diagonal matrix with scalar Laplacian
matrices defining the diagonal blocks; the matrix B is an np × nu rectangular
matrix that represents a discrete (negative–)divergence operator.

If the discretized problem (10), or equivalently (1), is to properly represent a
continuous Stokes problem, then the component approximation spaces Vh and Qh

need to be compatible. For example, if there are more pressure basis functions than
velocity basis functions then the associated linear algebra problem is necessarily
singular! It is well known that once the velocity approximation is fixed, then the
validity of a corresponding set of pressure basis functions is determined by whether
or not an inf-sup stability condition can be established.2 Low order approximation
schemes are generally unstable. The stable methods that are built into ifiss are
Q2–P−1 approximation which has local degrees of freedom shown in Fig. 1 and
the Taylor-Hood Q2–Q1 approximation which is shown in Fig. 2. The Q2–P−1

approximation combines continuous biquadratic approximation (Q2) for velocity
together with a discontinuous linear (P−1) pressure, and is widely regarded as
being the most cost-effective discretization approach for solving (Navier–)Stokes
problems in R

2. The Q2–Q1 method is stable but is less accurate than Q2–P−1 :
local mass conservation is compromised because of the C0 pressure approximation.

An important ingredient in our optimal solution algorithm is the need to compute
an a posteriori error estimate for discrete solutions in the natural (energy–)norm.

1In our notation the space H1
0 (Ω) consists of functions whose trace is zero on ∂ΩD . We implicitly

assume that
R

∂ΩN
ds > 0 so that p satisfying (5)–(7) is uniquely defined.

2For an accessible discussion of inf-sup stability see Elman et al. [2005, Section 5.3.1].
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Fig. 1. Q2–P−1 element (• velocity node; ◦ pressure;
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Fig. 2. Q2–Q1 element (• two velocity components; ◦ pressure).

That is, given a candidate solution (uh, ph) ∈ Vh × Qh we want to compute an
estimate η which is equivalent to the exact error in the sense that

c η ≤ ‖∇(~u − ~uh)‖ + ‖p − ph‖ ≤ C η, (11)

with C/c ∼ O(1). There are a number of possible approaches. The specific strategy
that is built into the ifiss package is based on solving local Poisson problems
for each velocity component over a suitably enlarged approximation space ~QT .
The approach is discussed in detail in Elman et al. [2005, Section 5.4.2]. Having

computed element interior residuals ~RT := {∇2~uh−∇ph}|T and RT := {∇·~uh}|T ,

and edge residuals (equidistributed stress jumps) ~RE := 1
2 [[∇~uh − ph

~I ]], a velocity

error estimate ~eT ∈ ~QT is computed satisfying

(∇~eT ,∇~v)T = (~RT , ~v)T −
∑

E∈E(T )

〈~RE , ~v〉E ∀~v ∈ ~QT , (12)

for every element in the grid. A local error estimator is then given by the combi-
nation of the ‘energy norm’ of the velocity error and the L2 norm of the element
divergence error, that is,

η2
T := ‖∇~eT ‖2

T + ‖RT ‖2
T . (13)

The global error estimator is η :=
(
∑

T∈Th
η2

T

)1/2
. This style of error estimation

was introduced for the lowest order stabilized P1–P0 approximation by Kay and
Silvester [1999] and is a refinement of the methodology introduced by Ainsworth
and Oden [1997]. Regarding the effectiveness of the estimator in the sense of (11),
numerical results obtained using Q2–P−1 approximation in Liao and Silvester [2010]
suggest that the equivalence is tight. We will come back to this issue in Section 4.2.

2.2 Potential Flow equations

Our second example is an idealized model of incompressible flow:

−~u + ∇p = ~0, (14)
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6 · D.J. Silvester and V. Simoncini

∇ · ~u = 0, (15)

on some domain Ω ⊂ R
n, together with boundary conditions

~u · ~n = 0 on ∂ΩN , p = s on ∂ΩD. (16)

The additional modelling assumption in this case is that the flow is irrotational
∇ × ~u = ~0, so that viscous effects can be neglected. Introducing vector-valued
velocity functions ~v ∈ V := H0(div, Ω) and scalar pressure functions q ∈ Q :=
L2(Ω) a standard variational formulation of (14)–(16) is given by

(~u, ~v) + (p,∇ · ~v) = f(~v) ∀~v ∈ V, (17)

(q,∇ · ~v) = 0 ∀q ∈ Q, (18)

where f incorporates the nonhomogeneous boundary data on ∂ΩD. The space
H0(div, Ω) consists of all vector fields in (L2(Ω))d with divergence in L2(Ω) and
which have vanishing normal component on ∂ΩN .

To get to the representation (4), we identify the dual spaces V ∗ := H0(div, Ω)∗

and Q∗ := L2(Ω) respectively, and define operators A : V → V ∗ and B : V → Q∗

so that

〈A~u, ~v〉 = (~u, ~v) and 〈B~u, q〉 = (∇ · ~u, q).

In this case V × Q is mapped onto V ∗ × Q∗ by the matrix operator
(

A B∗

B 0

)

=

(

I −∇
∇· 0

)

. (19)

A different representation of the original problem can be obtained by integrating
the pressure terms in (17)–(18) by parts. Appropriate solution spaces are then
~v ∈ V := (L2(Ω))d and Q := H1

0 (Ω) and the variational formulation of (14)–(16)
is given by

(~u, ~v) − (∇p, ~v) = f(~v) ∀~v ∈ V, (20)

(∇q, ~v) = 0 ∀q ∈ Q, (21)

where f again incorporates the nonhomogeneous boundary data on ∂ΩD. In this
case we can define operators A : V → V ∗ and B : V → Q∗ so that

〈A~u, ~v〉 = (~u, ~v) and 〈B∗p, ~v〉 = −(∇p, ~v) = 〈p,B~v〉,
and we see that the alternatively defined space V ×Q is also mapped onto its dual
V ∗ × Q∗ by the very same matrix operator as in (19).

As in the Stokes case, mixed finite element approximation entails defining ap-
propriate bases for the velocity and pressure finite element spaces Vh and Qh re-
spectively, and then constructing the system (1) for the coefficients in the basis
expansion. The simplest choice of basis functions which leads to a stable approxi-
mation is the Raviart-Thomas flux approximation (normal components of velocity
defined on the edges of triangles or rectangles in R

2) together with a piecewise
constant pressure. The local degrees of freedom for a triangular RT0 element are
shown in Fig. 3.

Using this mixed approximation the linear algebra system (1) will have dimen-
sion nu + np, where nu is the number of element edges (excluding ∂ΩN) and np
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Fig. 3. RT0 element (• normal velocity component; ◦ pressure).

is the number of elements. Morever the matrix A is just a Grammian matrix (ap-
proximating the identity) and the matrix B is an np × nu rectangular matrix that
represents a discrete (positive–)divergence operator.

3. PRECONDITIONING FRAMEWORK

Working in the framework of Mardal and Winther [2010] generic preconditioners for
(1) naturally arise if we have a suitable preconditioner for the associated continuous
problem (4). Specifically, having identified a suitable function space setting, then a
canonical preconditioner for the saddle point problem (4) is the 2×2 block diagonal
matrix operator that maps the dual space V ∗×Q∗ back into the original space V ×Q.
Running through our examples:

—Stokes preconditioning. In this case we require a block matrix operator taking
(H−1(Ω))d to (H1

0 (Ω))d and a scalar operator that takes L2(Ω) to itself. The
canonical preconditioning operator is thus

M =

(

(−∇2)−1 0
0 I−1

)

. (22)

This approach was originally suggested by Rusten and Winther [1992] and de-
veloped by Silvester and Wathen [1994]. An alternative justification is given
in Elman et al. [2005, Section 6.2].

—Potential flow preconditioning. In this case the matrix coefficient operator maps
H0(div, Ω) × L2(Ω) onto its dual space. The canonical preconditioning operator
turns out to be

M =

(

(I − grad div)−1 0
0 I−1

)

. (23)

This approach was introduced by Arnold et al. [1997].

—Alternative potential flow preconditioning. As discussed above, the matrix coef-
ficient operator also maps V := (L2(Ω))d and Q := H1

0 (Ω) onto its dual space.
The generic preconditioning operator is thus

M =

(

I−1 0
0 (−∇2)−1

)

. (24)

For a practical solution algorithm, if the linear algebra system (1) to be solved
has dimension n, then the action of a discrete version of M needs to be effected in
O(n) work. That is the component blocks appearing in (22)–(24) must be replaced
by cost effective operators with equivalent mapping properties:
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8 · D.J. Silvester and V. Simoncini

—Mass matrix preconditioning (I−1 operator);

—Negative Laplacian preconditioning ((−∇2)−1 operator);

—H(div) preconditioning ((I − grad div)−1 operator).

Implementation of the first two of these operators is (essentially) independent of
the spatial discretization. We discuss these components in more detail below.
The H(div) operator is more difficult to implement in a “black-box” setting since
standard (elliptic–) multigrid algorithms are not applicable. Typically, special
smoothers are needed; possibly in combination with a geometric grid hierarchy.
Efficient algorithms are given by Arnold et al. [2000] and Hiptmair and Xu [2007].

3.1 Mass matrix preconditioning

Using a discontinuous finite element approximation space, e.g. Q2–P−1 approxi-
mation for Stokes flow, so that Qh = span{φk}np

k=1 the associated grammian matrix
Iij := (φj , φi) is diagonal. In such cases the action of I

−1 can be explicitly computed
with np division operations. If the approximation is C0 however, e.g. using Q2–Q1

approximation for Stokes flow (or RT0 velocity approximation) then the best strat-
egy is to perform a fixed (and small) number of Jacobi iterations with Chebyshev
acceleration, see Wathen and Rees [2008].3 The quality of the approximation is
determined by its, the number of Chebyshev iterations performed. This is shown
by the spectral bounds in Table I. Here θ and Θ are the extremal eigenvalues
satisfying

θ ≤ pT
Ip

pT I∗ p
≤ Θ, (25)

where I is the Q1 mass matrix and I∗ is the inverse of the matrix operator com-
puted by applying our Chebyshev semi-iteration successively to the canonical vec-
tors e1, . . . , enp

. In all cases the domain Ω is (0, 1) × (0, 1). The 64 × 64 stretched
grid is refined next to the sides of the square and the element aspect ratios vary from
1:1 at the corners to 18:1 at the mid-sides. Looking at these results, it is evident
that the action of I

−1 is efficiently computed by our preconditioner, independently
of the grid resolution and the stretching of the grid.

its 5 10 20

grid θ Θ θ Θ θ Θ

uniform 16 × 16 0.883 1.234 0.986 1.003 1.000 1.000
uniform 64 × 64 0.883 1.234 0.986 1.003 1.000 1.000

stretched 64 × 64 0.883 1.234 0.986 1.003 1.000 1.000

Table I. Spectral bounds for Q1 mass matrix preconditioner

Similarly encouraging results for RT0 approximation are given in Table II. Here
θ and Θ are the extremal eigenvalues satisfying (25) where I is the RT0 velocity ap-
proximation mass matrix. Results are given for two nonuniform triangular meshes.
These are associated with discretization of problems P1 and P3 from the PIFISS
toolbox, and are described in Silvester and Powell [2007].

3Our implementation of this algorithm is the function m masscheb.m in release 3.1 of ifiss.
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its 3 5 10

# elments θ Θ θ Θ θ Θ

585 triangles 0.852 1.118 0.971 1.034 0.999 1.001
980 triangles 0.852 1.118 0.971 1.034 0.999 1.000

Table II. Spectral bounds for RT0 mass matrix preconditioner

3.2 Negative Laplacian preconditioning

A standard “black-box” approach is to approximate the inverse Laplacian by a fixed
number of algebraic multigrid (AMG) V–cycles.4 The quality of the approximation
is typically determined by nv, the number of V-cycles performed. This is shown
by the spectral bounds in Table III. Here λ and Λ are the extremal eigenvalues
satisfying the Rayleigh quotient bounds

λ ≤ uT
Au

uT A∗u
≤ Λ, (26)

where A is the scalar Q2 stiffness matrix and A∗ is the AMG approximation to
the inverse of the matrix operator. For comparison, the Q2 grids have the same
number of degrees of freedom as the Q1 grids in Table I. For the 64× 64 stretched
grid the element aspect ratios vary from 1:1 at the corners to 16:1 at the mid-sides.
Athough the AMG effectiveness does deteriorate with increasing aspect ratio, we
are happy to see that the spectral bounds remain independent of the grid dimension
if the aspect ratio is kept fixed under refinement.

nv 1 2 4

grid λ Λ λ Λ λ Λ

uniform 8 × 8 0.864 1.000 0.981 1.000 1.000 1.000
uniform 32 × 32 0.831 1.000 0.971 1.000 0.999 1.000

stretched 32 × 32 0.447 1.000 0.694 1.000 0.906 1.000

Table III. Spectral bounds for negative Laplacian matrix preconditioner

4. OPTIMAL STOPPING CRITERIA

Our target saddle point system (1) is to be solved using EST MINRES, a specially
tailored version of MINRES.5 There are two novel features in the algorithm: the es-
timation of the algebraic error, and the inclusion of an estimate of the discretization
error. These two features are discussed in turn.

4.1 Algebraic error estimation

Expressing the target system (1) in the standard form Kx = b and given a zero
initial vector x(0) = 0, MINRES computes a sequence of iterates x(1),x(2),x(3), . . .
with the property that the ℓ2-norm of the mth residual

‖r(m)‖ = ‖b− Kx(m)‖ = ‖K(x− x(m))‖

4Our implementation of this algorithm is the function m amgzz.m in release 3.1 of ifiss.
5Our implementation is encoded in the function est minres.m in release 3.1 of ifiss.
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10 · D.J. Silvester and V. Simoncini

is minimised over the Krylov space

Km(K,b) = span {b, Kb, . . . , Km−1b}.
If the iteration is preconditioned by a positive definite and symmetric matrix op-
erator M = HT H (corresponding to a discrete version of M above) then the
preconditioned residual norm

‖Hr(m)‖ = ‖r(m)‖M (27)

is correspondingly minimized over the Krylov space H Km(KM,b). This means
that the reduction of the residual error in the EST MINRES algorithm is with
respect to a discrete norm that explicitly involves the preconditioner M . This
reinforces the point that the choice of preconditioner is crucially important.

If the mininimization process (27) is interpreted in the underlying function space
setting, then the motive for choosing M to be a discrete version of the operator
M in Section 3 is clear. Since residuals from the dual space V ∗ × Q∗ are mapped
by M into approximations in the original space, we anticipate that a monotonic
reduction of residual errors in the range of the preconditioner will lead to monotonic
convergence in the natural error norm associated with V × Q. In terms of linear
algebra, a more precise characterization is the following: given an error vector
e(m) = x − x(m) with an associated residual vector r(m) = Ke(m), we hope to find
constants c and C (independent of the dimension of the linear algebra system) such
that

c ‖e(m)‖E ≤ ‖r(m)‖M ≤ C ‖e(m)‖E, (28)

where M = E−1, with E representing the natural norms associated with the under-
lying space V ×Q. This characterization will inevitably be application specific—for
example, the upper bound C is inherited from the boundedness of the bilinear forms
a and b appearing in the underlying variational formulation. The lower bound c
in (28) is even harder to pin down since it typically depends on the inf-sup stabil-
ity constant(s) associated with the discretization of V and Q. Estimation of such
stability constants is discussed by Elman et al. [2005, Chapter 6] and Powell and
Silvester [2004] for Stokes flow and potential flow, respectively. We summarise the
key results below.

We discuss Stokes flow first. To connect with the notation in Elman et al. [2005]
we let A represent the d × d discrete vector Laplacian with diagonal block A, and
let Q represent the pressure mass matrix I. Thus our matrix operators take the
form

K =

[

A BT

B 0

]

, E =

[

A 0
0 Q

]

and M =

[

A−1 0
0 Q−1

]

. (29)

The inf-sup stability of the Stokes mixed approximation is associated with the
pressure Schur complement equivalence

γ2 ≤ qT BA−1BT q

qT Qq
≤ Γ2 ≤ d, (30)

where γ is the inf-sup constant and d is the spatial dimension. If we assume that
the discretization is stable in the sense of (30), then bounds (28) can be readily
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established (Elman et al. [2005, Theorem6.9] with δ = ∆ = 1 and θ = Θ = 1) with
constants given by

c2 = γ2
(

1 + 1/2 γ2 −
√

1 + 1/4 γ4
)

and C2 = max
{

2 + Γ2, 2Γ2
}

.

Making the asymptotic simplification (1 + x)1/2 = 1 + 1/2 x gives c2 ∼ 1/2γ4, and
inverting (28) then leads to the heuristic

‖e(m)‖E ≤
√

2

γ2
‖r(m)‖M , (31)

that gives us a criterion for stopping the EST MINRES iteration, see later. To
illustrate the utility of the heuristic (31), Fig. 4 shows the evolution of the errors
‖r‖M and ‖e‖E when ideally preconditioned MINRES is applied to a representative
flow problem6 discretized using Q2–P−1 mixed approximation on a uniform square
grid. The upper bound in (31) is also tracked (γ2 ≈ 0.0247 is found by computing
the minimum eigenvalue of the pressure Schur complement problem associated with
(30)) and can be seen to provide a reliable bound for the algebraic error ‖x−x(m)‖E .
We note that the energy error is sandwiched between the preconditioned residual
error and the upper bound estimate throughout the iteration process.
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Fig. 4. Optimally preconditioned MINRES for Stokes flow: errors vs. iteration number.

There are two issues that need to be addressed if a practical implementation
is to be developed. The first issue is that in practice, as discussed in Section 3,
the ideal preconditioner M = E−1 is replaced by a spectrally equivalent operator
M∗ which leads to convergence of the residual in the M∗ norm rather than the M
norm. Whilst we could take account of this by estimating the equivalence constants
associated with the approximation M∗ ∼ M , we prefer to keep things simple. (Our

6IFISS problem S2: flow over a step—the convergence curves in Fig. 4 are for ℓ = 4, but visually
identical convergence curves are obtained if the grid resolution parameter is increased.
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implementation provides a built-in estimate for λ in (26), but we defer discussion
until later.) Thus, for a given accuracy tolerance tol we stop the EST MINRES
iteration at the first iteration k that satisfies the simple stopping test:

√
2

γ2
‖r(k)‖M∗

≤ tol, with ‖e(k)‖E ∼
√

2

γ2
‖r(k)‖M∗

. (32)

Taking this approach it is important that the approximation of M by M∗ be suffi-
ciently accurate. For the discretized flow problem in Fig. 4, the results in Section 3.2
suggest that if sufficiently many AMG V-cycles are taken then the impact on con-
vergence will be minimal.7 Comparing the convergence curves shown in Fig. 5 with
the exact case analogues in Fig. 4 we see that there is very close agreement, es-
pecially in the right-hand plot. Moreover, independent of the number of V-cycles
that are performed, the energy error remains sandwiched between the precondi-
tioned residual error and the quantity that is used to stop the iteration in (32).
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Fig. 5. Preconditioned MINRES for Stokes flow: Negative Laplacian preconditioning with one
V-cycle (left) and four V-cycles (right).

The second practical issue associated with (32) is the need to explicitly com-
pute the inf-sup constant. Finding the minimum eigenvalue of the pressure Schur
complement problem (30) is not viable in general. We note that if a flow problem
is solved on a nested mesh sequence then a more cost effective strategy is to pre-
compute γ2 by simply extrapolating estimates obtained by solving the eigenvalue
problem associated with (30) on coarse meshes. Herein we propose an alternative
approach that does not require coarse mesh estimates. Our idea is to compute esti-
mates for γ2 on the fly by exploiting the connection between the MINRES iteration
and the Lanczos estimates of the eigenvalues of the preconditioned matrix. The key

7Looking at Table III, we see that taking just one or two V-cycles will suffice, especially in the
case of uniform grids.
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ingredient is the spectral analysis in Elman et al. [2005, Theorem6.6] which gives
bounds for the largest negative eigenvalue λ− and the smallest positive eigenvalue
λ+ of the matrix M∗K:

λ− ≤ 1/2
(

δ −
√

δ2 + 4δγ2
)

and δ < λ+. (33)

If we assume that these two bounds are tight and invert (33) then we get the
estimate

γ2
k =

(

λ2
− − λ−λ+

)

/λ+, (34)

which can be computed at every step of EST MINRES from the associated Lanczos
estimates for λ− and λ+ at that iteration. The details are given in Section 5. Results
obtained when γ2 is replaced by γ2

k in the upper bound estimate for our test problem
are shown in Fig. 6. Comparing the upper bounds with those in Fig. 5 we see very
close agreement as the iteration proceeds (the red lines are indistinguishable for
k > 20). This suggests that the bounds in (33) are tight. It also shows that
the Lanczos convergence to the eigenvalues closest to zero is rapid enough for this
strategy to be of practical use. There is another bonus—the computed estimates
of λ+ converge to the lower bound λ in (26). This means that we are given a
free estimate of the accuracy of the approximation M∗ ∼ M as the EST MINRES
iteration proceeds.
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Fig. 6. Preconditioned MINRES for Stokes flow with dynamic estimation of γ2: Negative Lapla-
cian preconditioning with one V-cycle (left) and four V-cycles (right).

Turning to potential flow, we will see that analogous issues arise. We restrict our
attention to ideal H(div) preconditioning herein—a more complete discussion of
MINRES preconditioning using discrete versions of (23) and (24) is given by Powell
and Silvester [2004]. Thus, if we let I represent the RT0 mass matrix, and let
Q represent the diagonal pressure mass matrix then the analogue of the stability
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14 · D.J. Silvester and V. Simoncini

bound (30) is the pressure Schur complement equivalence (cf. (30)) :

β2 ≤ qT B(I + D)−1BTq

qT Qq
≤ 1, (35)

where β plays the role of the inf-sup constant and the nu×nu matrix D = BT Q−1B
is a representation of the L2-norm of the divergence operator. Our stopping crite-
rion in this case is based on the heuristic:

‖e(m)‖E ≤ 1

β2
‖r(m)‖M . (36)

Next, from Powell and Silvester [2004, Corollary2.4] we quote some simple eigen-
value bounds for the matrix M∗K :

λ− ≤ −β2 and 1 = λ+. (37)

So we see that, mirroring the Stokes case, the lower bound λ− gives a mechanism
for estimating β2 on the fly as

βk =
√

−λ−, (38)

where λ− is an estimate of the largest (closest to zero) negative eigenvalue of the
coefficient matrix by the Lanczos recurrence.
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Fig. 7. H(div) preconditioned MINRES for potential flow: dynamic estimation of β2.

Fig. 7 shows the evolution of the errors ‖r‖M and ‖e‖E when ideally precon-
ditioned MINRES is applied to a representative flow problem from Silvester and
Powell [2007]8 discretised using RT0 mixed approximation on a mesh of 9360 tri-
angles. The upper bound in (36) is also tracked with β2

k estimated at every step

8PIFISS problem P3: flow around a cylinder—the convergence curves in Fig. 7 do not change if
the grid resolution is increased.
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via (37). Note that β2 ≈ 0.664. MINRES convergence is rapid—much faster than
for Stokes flow—and the three curves plotted are not easily distinguished. Looking
closely we see that the energy error stays below the upper bound after the third
iteration. Refined eigenvalue bounds in the case of inexact H(div) preconditioning
are developed by Powell [2005].

4.2 Discretization error estimation

If our algorithm is to be run in a “black-box” fashion, then we need to connect
the absolute tolerance in the stopping test (32) with the PDE discretization error
‖~u − ~uh‖V + ‖p − ph‖M . If we have an a posteriori estimator for the error, and if
it is applicable to any function (vh, qh) ∈ Vh × Qh as in (13), then one possibility
is to estimate the error at every iteration (the iterates x(1),x(2),x(3), . . . can be
associated with a sequence of functions from Vh × Qh). For example, for Stokes
flow, we know from (11) that

c η(m) ≤ ‖∇(~u − ~u
(m)
h )‖ + ‖p − p

(m)
h ‖ ≤ C η(m), m = 1, 2, 3 . . . ,

so a simple strategy is to stop the EST MINRES iteration when the algebraic error
is comparable with the estimate of the discretization error η(m), that is, as soon as

√
2

γ2
‖r(k)‖M∗

≤ η(k), (39)

with ‖e(k)‖E ∼
√

2

γ2
‖r(k)‖M∗

and η(k) ∼ ‖~u − ~u
(k)
h ‖V + ‖p− p

(k)
h ‖M . (40)

A rigorous justification for this choice is given by Jiránek et al. [2010, Theorem6.3].
Looking at the specific Stokes flow test problem (flow over a step) used in Sec-
tion 4.1, the results in Fig. 8 illustrate why we might consider adopting the dynamic
stopping test (39). The evolution of errors shown in Fig. 8 are directly compara-
ble with those in Fig. 6; for clarity we have simply removed the algebraic errors
‖x − x(m)‖E and plotted the evolution of the approximation error estimate η(m)

instead. Note that as the iteration proceeds the algebraic error becomes insignif-
icant relative to the approximation error. The termination point associated with
the refined stopping test (39) is marked with a “∗”. Thus, if the stopping test (39)
is “hard-wired” into EST MINRES then the iteration is terminated after only 28
steps if we take one V-cycle of AMG. If the four V-cycle AMG preconditioner is
used instead, then EST MINRES stops after 26 steps.

In the example above the value of η (that is, the discretization error estimate
achieved when the MINRES iteration converges) is relatively large η ≈ 0.269. This
is bigger than might be anticipated because the flow over step problem solved in
Fig. 8 is singular at the re-entrant corner—severely impinging on the attainable
solution accuracy. Thus, as the grid is refined, the convergence in energy is slow:
behaving like O(h2/3) independent of the order of the mixed approximation.

Analogous results obtained for a more regular (enclosed–) flow problem9 are
shown in Fig. 9. In this case the spatial convergence is much more rapid, which
explains the very different position of “∗” in the left and right plots. For the

9IFISS problem S4: smooth colliding flow with a quartic polynomial velocity solution.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



16 · D.J. Silvester and V. Simoncini

0 10 20 30 40

10
−6

10
−4

10
−2

10
0

10
2

iteration number  k

nv=1

 

 

√
2/γ 2

k | |rk| |M∗

ηk ∼ | |er rk| |V ×Q

| |rk| |M∗

0 10 20 30 40

10
−6

10
−4

10
−2

10
0

10
2

iteration number  k

nv=4

 

 

√
2/γ 2

k | |rk| |M∗

ηk

| |rk| |M∗

Fig. 8. Preconditioned MINRES for Stokes flow over a step with dynamic estimation of η: Negative
Laplacian preconditioning with one V-cycle (left) and four V-cycles (right).
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Fig. 9. Preconditioned MINRES for Stokes flow in a square domain with dynamic estimation of
η: Negative Laplacian preconditioning with one V-cycle: 8× 8 grid (left) and 32× 32 grid (right).

coarse grid computation the automatic stopping test leads to termination after 10
iterations. The spatial approximation is sixteen times smaller for the fine grid
computation—thus more MINRES iterations must be taken to reduce the algebraic
error to a level that is commensurate with the approximation error. The stopping
test suggests that 21 iterations would suffice in this case.

Results reported in Table IV show the variation in “optimal” iteration count
k∗ when this flow problem is approximated with increasing spatial resolution. We
know from a priori error analysis, see for example Elman et al. [2005, Section 5.4.1],
that the spatial accuracy of Q2–P−1 approximation is O(h2) in the energy norm
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grid k∗ η ‖∇ · ~uh‖
uniform 8 × 8 10 9.71 × 10−1 2.97 × 10−2

uniform 16 × 16 17 2.54 × 10−1 3.66 × 10−3

uniform 32 × 32 21 6.51 × 10−2 4.56 × 10−4

uniform 64 × 64 24 1.64 × 10−2 5.69 × 10−5

Table IV. Variation of estimated spatial accuracy with increased grid refinement for a smooth
solution

if the flow solution is sufficiently smooth. This behaviour is clearly evident in the
tabulated values of η. We also note that the divergence residual error is converging
at a faster rate (O(h3)) which means that the estimated error η is increasingly
dominated by the velocity error component in (13) as h is reduced.

5. SOFTWARE DESIGN AND IMPLEMENTATION ASPECTS

To set up notation for this section, consider solving the linear system K̂x̂ = b̂ with
K̂ representing the symmetric and indefinite preconditioned matrix. As already
mentioned, MINRES generates a sequence of approximations x̂(m), m = 1, 2, . . .,
with x̂(m) ∈ Km(K̂, b̂), such that the residual r̂(m) = b̂ − K̂x̂(m) is minimized.

Let {w(1), . . . ,w(m)} be a set of orthonormal vectors spanning Km(K̂, b̂), with

w(1) = b̂/‖b̂‖, and let Wm = [w(1), . . . ,w(m)]. These vectors can be generated
iteratively by means of the following well-known recurrence:

K̂Wm = WmTm + tm+1,mw(m+1)eT
m =: Wm+1Tm, (41)

where em is the mth vector of the canonical basis and Tm is a tridiagonal symmetric
matrix containing the orthogonalization coefficients; see Greenbaum [1997, Section
2.5] or Saad [2003, Section 6.6] for full details. Using (41) we readily obtain the
following relationship for the approximation x̂(m) = Wmy(m):

r̂(m) = b̂ − K̂x̂(m) = Vm+1

(

e1‖b̂‖ − Tmy(m)
)

.

The minimizing solution x̂(m) is thus obtained by solving the least squares prob-
lem miny ‖e1‖b̂‖ − Tmy‖. Thanks to the tridiagonal form of Tm the least squares
solution can be updated without explicitly solving the (m + 1) × m problem at
each iteration. This can be efficiently done on the fly by means of Givens rota-
tions; see Greenbaum [1997, Algorithm 4] and the actual implementation shown in
Figure 10.

The Lanczos relation in (41) can be used to show that Tm = WT
mK̂Wm, so that

the eigenvalues of Tm, also referred to as Ritz values, provide approximations for
the eigenvalues of K̂. For a moderate space dimension m, the work of Parlett [1998,
Chapter 13] shows that the extreme eigenvalues can give very accurate estimates
for the corresponding eigenvalues of K̂. In our context, K̂ is indefinite, and we are
interested in good approximations to the interior (closest to zero) eigenvalues, so as
to obtain estimates such as (34) for γk and (38) for βk. Unfortunately, Ritz values
do not, in general, approximate interior eigenvalues accurately. Fortunately, the
matrices generated within the Lanczos process also allow us to compute so-called
harmonic Ritz values: θ1, . . . , θm, which are the m roots of the residual polynomial
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φm, defined as r(m) = φm(K̂)b̂, with

φm(θ) =
1

φ̂m(0)
φ̂(θ), and φ̂(θ) =

m
∏

j=1

(θ − θj).

Using the Lanczos relation in (41) and its connection to polynomial recurrences,
the harmonic Ritz values can be computed by solving the following generalized
eigenvalue problem (see Morgan [1991] for an early implementation)

T T
m Tmu = θ Tmu.

We refer to Freund [1992], and to Paige et al. [1995] for a proof that these eigenvalues
are indeed the roots of the residual polynomial. Morgan [1991] observed that the
harmonic Ritz values tend to approximate first the interior eigenvalues, and he used
these values to minimize the Rayleigh quotient for K̂−1. Paige et al. [1995] showed
that the inverses of the harmonic Ritz values are weighted means of the inverses
of the eigenvalues of K̂−1. Both arguments suggest that harmonic Ritz values are
tightly related to a spectral approximation procedure for K̂−1, which is exactly
what we want in our algorithm.

Another useful feature of harmonic Ritz values is that the smallest positive such
value approximates the smallest positive eigenvalue of K̂ from above, whilst the
largest negative harmonic Ritz value approximates the largest negative eigenvalue
of K̂ from below. Therefore, any interval containing zero that is free of K̂’s eigen-
values is also free of harmonic Ritz values. It was also experimentally observed
by Paige et al. [1995] that “the minimum residual process converges much faster
after the smallest positive eigenvalue and the largest negative one have been ap-
proximated sufficiently well” by the harmonic Ritz values. This behaviour can be
observed in Fig. 6, where the convergence markedly improves at the point where
the approximation of γ by the interior harmonic Ritz estimation process settles
down. This phenomenon is more generally associated with the convergence of
the extremal eigenvalues of positive definite matrices. In the indefinite case, how-
ever, the convergence behaviour is strongly influenced by the eigenvalues closest
to zero, see Greenbaum [1997, Section 3.1] and thus it is not surprising that ac-
curate approximations to these eigenvalues speed up convergence. In our context,
such behaviour implies that an accurate computation of the error estimate is to be
expected as soon as the underlying MINRES iteration starts converging.

A template of the MINRES algorithm which has our built-in stopping test is
given in Fig. 10. The two preconditioner constructions in Section 4.1 are differen-
tiated by the value assigned to the switch prob type. The algorithm calls three
external functions. The first of these is the preconditioning function prec which
returns a vector z which effects the result of multiplying the input vector by the
preconditioning matrix M∗ as discussed in Section 3. The second external func-
tion param est is described in Fig. 11. It returns the parameter that is used to
scale the residual norm in the stopping criteria (34) and (38). The third external
function is error est. If an energy error estimator is available as discussed in
Section 4.2 then this function generates the error estimate η(m) that is associated
with the current MINRES solution iterate. If a discretization error estimator is not
available, as in Section 4.2, then the value of η(m) that is returned by error est
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can simply be set to a fixed algebraic tolerance tol that is less than the anticipated
discretization error.

Algorithm : EST MINRES.
Given b, K,x(0) and prob type

Set r(0) = b − Kx(0), r̂(0) = prec(r(0)), ρ0 =
q

(r(0))T r̂(0)

Initialize basis vectors: w = r̂(0)/ρ0, p(−1) = 0, p(0) = r(0)/ρ0

Initialize auxiliary vectors: d(−1) = 0, d(0) = 0

Initialize projected right-hand side: f = ρ0

for m = 1, 2, . . . until convergence do

Generate new basis and auxiliary vectors: p(m) = Kw, d(m) = w

if m>1,
tm−1,m = tm,m−1

p(m) = p(m) − p(m−1)tm−1,m

tm,m = wT p(m)

p(m) = p(m) − p(m−1)tm,m

Compute preconditioned basis vector: w = prec(p(m))

tm+1,m =
p

wT p(m)

p(m) = p(m)/tm+1,m , w = w/tm+1,m

Compute parameter for stopping test: coef = param est (T m, prob type)
Apply previous rotations:

if m>2, ρ1:2 = Gm−2tm−2:m−1,m, ρ2:3 = Gm−1[ρ2; tm,m]
elseif m=2, ρ2:3 = Gm−1t1:2,2

elseif m=1, ρ3 = t1,1

Compute new rotations:

δ =
q

ρ2
3 + t2m+1,m, c = |ρ3|/δ, s = sign(ρ3)tm+1,m/δ

Apply new rotations: ρ3 = cρ3 + stm+1,m, f̂ = −sf , f = cf , Gm = [c s;−s c]
Update auxiliary vector: d(m) = (d(m) − d(m−1)ρ1 − d(m−2)ρ2)/ρ3

Update solution: x(m) = x(m−1) + d(m)f̂
Compute discretization error estimate : η(m) = error est (x(m))
Stopping test: if coef·|f̂ | ≤ η(m), convergence

Update residual norm: f = f̂
enddo

Fig. 10. The EST MINRES algorithm

function coef = param est (T m, prob type)
Compute the eigenvalues θ1 ≤ · · · ≤ θm of (T T

mT m, Tm)
Compute λ− = maxθj<0 θj , λ+ = minθj>0 θj

if λ− = ∅, set λ− = −λ+

if λ+ = ∅, set λ+ = −λ−

if prob type = ‘Stokes flow’, Compute γ2
k

as in (34); set coef =
√

2/γ2
k

if prob type = ‘Potential flow’, Compute βk as in (38); set coef = 1/β2
k

endfunction

Fig. 11. Specification of associated function param est

A more efficient procedure to determine the harmonic Ritz values consists in
recasting the generalized eigenvalue problem as a standard eigenvalue problem with
a rank-one modification of Tm; see Paige et al. [1995]. The use of an effective
preconditioner generally guarantees that a large number of iterations will not be
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performed. Nonetheless, if this did happen, then one could consider computing
only the required interior harmonic Ritz values.

To conclude this discussion, we reproduce a matlab session below that shows the
utility of the EST MINRES implementation within the IFISS software package, a
full description of which can be found in the algorithm paper of Elman et al. [2007].
The specific Stokes flow problem under consideration is the analytic problem (S4)
that features in the right-hand plot in Fig. 9. The discrete saddle point problem is
assembled at the start of the session by calling the driver stokes testproblem. For
the chosen mixed approximation and grid parameter the saddle point system is of
the form (10) with nu = 8, 450 and np = 3, 072. The “exact” discrete solution xst is
computed via the built-in (“backslash”) sparse solver. Note that the ill-conditioning
warning is generated because the discrete Stokes system has a one-dimensional null
space in exact arithmetic; see Elman et al. [2005, pp. 224–229] for a full discussion.
The call to the error estimator function stokespost postprocesses the solution
vector xst and outputs the computed values of η and ‖∇ · ~uh‖ given in Table IV.

>> stokes_testproblem, stokespost

specification of reference Stokes problem.

choose specific example (default is cavity)

1 Channel domain

2 Flow over a backward facing step

3 Lid driven cavity

4 Colliding flow

: 4

Grid generation for cavity domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 6

uniform/stretched grid (1/2) (default is uniform) : 1

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 4

setting up Q2-P1 matrices... done

system matrices saved in square_stokes_nobc.mat ...

imposing boundary conditions and solving system ...

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.834113e-17.

This should not cause difficulty for enclosed flow problems.

...

Aposteriori error estimation

computing local error estimator... done.

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 4.558566e-04

Estimated energy error is 6.5133e-02

The driver itsolve stokes provides the interface to the est minres function,
which is called after the preconditioning strategy (one V-cycle in this instance)

has been determined. The computed values of η(m),
√

2
γ2 ‖r(m)‖M∗

and ‖r(m)‖M∗

are output at each iteration. These are the values that are plotted in Fig. 9. The
MINRES solution xmr is returned as soon as the stopping criterion coef · |f̂ | ≤ η(m)

is satisfied, namely after 21 iterations—corresponding to the asterisk in the plot.
The evolution of the successive estimates of γk and λ+ is reported before exiting.
Note that the “Final estimated error” that is also displayed agrees to four decimal
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places with the exact error estimate η computed earlier. The final calculation that
is made shows that the two velocity solution vectors agree to four decimal places
in all components. As might be expected, the plots of the flow solution generated
from xst and xmr cannot be distinguished from each other.

>> itsolve_stokes

Inexact AMG block preconditioning ..

number of V-Cycles? (default 1) : 1

AMG grid coarsening ... 8 grid levels constructed.

AMG with point damped Gauss-Seidel smoothing ..

Call to EST_MINRES with built in error control ..

k Estimated-Error Algebraic-Bound Residual-Error

1 1.2035e+02 6.6773e+01

2 7.7520e+01 5.6539e+01

3 2.3430e+01 1.6600e+01

4 9.2256e+00 9.2119e+00

5 7.2940e+00 7.2152e+00

6 2.7405e+00 7.5056e+00 3.5500e+00

7 2.4702e+00 7.3139e+00 3.4225e+00

8 9.6702e-01 6.2312e+00 1.5778e+00

9 1.1626e+00 5.9204e+00 1.4661e+00

10 6.8898e-01 3.6656e+00 7.7561e-01

11 5.6553e-01 3.1566e+00 6.5119e-01

12 3.4578e-01 1.9966e+00 3.7893e-01

13 1.5762e-01 1.5262e+00 2.7801e-01

14 1.7042e-01 1.1055e+00 1.9291e-01

15 9.9190e-02 6.0673e-01 9.9876e-02

16 1.0663e-01 5.7272e-01 9.3967e-02

17 7.5535e-02 2.8017e-01 4.4350e-02

18 7.5720e-02 2.7952e-01 4.4243e-02

19 6.6334e-02 8.6494e-02 1.3315e-02

20 6.5934e-02 7.1054e-02 1.0922e-02

21 6.5445e-02 4.3954e-02 6.7394e-03 Bingo!

Eigenvalue convergence

k infsup lambda

4 0.9807 1.0212

5 0.9340 1.0065

6 0.9147 1.0024

7 0.6689 0.9896

8 0.6618 0.9887

9 0.3581 0.9705

10 0.3502 0.9671

11 0.2992 0.9305

12 0.2917 0.9218

13 0.2684 0.9071

14 0.2576 0.9031

15 0.2468 0.9000

16 0.2328 0.8973

17 0.2320 0.8971
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18 0.2239 0.8945

19 0.2238 0.8945

20 0.2177 0.8904

21 0.2174 0.8897

Final estimated error is 6.5445e-02

Optimality in 21 iterations

>> [np,nu]=size(Bst); xdiff=norm(xmr(1:nu)-xst(1:nu),inf);

>> fprintf(’velocity solution difference is %7.3e\n’,xdiff)

velocity solution difference is 6.888e-04

6. CONCLUSIONS

This article describes the design and implementation of EST MINRES, an algo-
rithm for solving symmetric saddle-point systems. It is argued that consideration
of the PDE origins of such systems is essential if uniformly efficient preconditioning
is to be achieved. It is also demonstrated that if an (energy–) a posteriori error
estimation routine is available then an optimally efficient stopping criterion can
be realized. An important point is that our solver methodology is very general in
scope—although the emphasis in this article is on discretized problems arising in
the modelling of incompressible fluid flow—the EST MINRES algorithm (and our
matlab implementation) is applicable to any saddle point system that arises from
mixed approximation.
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