Universita di Bologna

Solving ill-posed linear systems with GMRES

V. Simoncini

Università di Bologna (Italy) valeria.simoncini@unibo.it

Joint work with Lars Eldèn, Linköping University, Sweden

The problem
Solve $\quad A x=b \quad$ with GMRES assuming

- $A \in \mathbb{C}^{n \times n}$ large, nonsymmetric
- A almost singular (or numerically singular)
- b noise-perturbed version of "consistent" rhs

The problem
Solve $\quad A x=b \quad$ with GMRES assuming

- $A \in \mathbb{C}^{n \times n}$ large, nonsymmetric
- A almost singular (or numerically singular)
- b noise-perturbed version of "consistent" rhs

Typical singular value distributions

Two different perspectives

For the analysis of the GMRES behavior:

- III-posed problem framework suggests using sing.values (e.g., Jensen, Hansen 2006, Hanke, Nagy, Plemmons 1993, Brianzi, Favati, Menchi, Romani 2006)
- The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel 2002)

Some preliminary considerations
Assume A is exactly singular: $\quad A x=b$
GMRES: Given $x_{0} \in \mathbb{C}^{n}$, and $r_{0}=b-A x_{0}$,
Find $x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)$ such that $x_{k}=\arg \min _{x \in x_{0}+K_{k}\left(A, r_{0}\right)}\|b-A x\|$

Brown, Walker 1997, Hayami, Sugihara 2011:
GMRES determines a least squares solution x_{*} of a singular system $A x=b$, for all b and starting approximations x_{0}, without breakdown, if and only if

$$
\mathcal{N}(\mathcal{A})=\mathcal{N}\left(\mathcal{A}^{*}\right)
$$

Furthermore, if the system is consistent and $x_{0} \in \mathcal{R}(\mathcal{A})$, then x_{*} is a minimum norm solution.

Some preliminary considerations
If $A x=b$ is written as

$$
\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x^{(1)} \\
x^{(2)}
\end{array}\right]=\left[\begin{array}{l}
b^{(1)} \\
b^{(2)}
\end{array}\right], \quad A_{11} \in \mathbb{C}^{m \times m}
$$

then

$$
\mathcal{N}(A)=\mathcal{N}\left(A^{*}\right) \quad \Leftrightarrow \quad A_{12}=0
$$

and

$$
\text { consistency } \quad \Leftrightarrow \quad b^{(2)}=0
$$

Clearly, $A_{12}=0$ corresponds to solving $A_{11} x^{(1)}=b^{(1)}$

In practice: $A_{12} \approx 0$ and $b^{(2)} \approx 0$ (but nonzero)

Our setting

Consider a preconditioned least squares problem

$$
\min _{y}\left\|\left(A M_{m}^{\dagger}\right) y-b\right\|
$$

Discrepancy principle:
Determine approx \hat{x} with residual $\|A \hat{x}-b\| \approx \delta$
(δ prespecified, measure of data noise level)
\Rightarrow right preconditioning
\Rightarrow stopping criterion: $\delta=1.1 \cdot($ data noise $) \cdot /\|b\|$

Our setting

Consider a preconditioned least squares problem

$$
\min _{y}\left\|\left(A M_{m}^{\dagger}\right) y-b\right\|
$$

Discrepancy principle:
Determine approx \hat{x} with residual $\|A \hat{x}-b\| \approx \delta$
(δ prespecified, measure of data noise level)
\Rightarrow right preconditioning
\Rightarrow stopping criterion: $\delta=1.1 \cdot($ data noise $) \cdot /\|b\|$

* Schur decomposition $A M_{m}^{\dagger}=U B U^{*}$ with U unitary. Then

$$
\min _{\left[\begin{array}{l}
d^{(1)} \\
d^{(2)}
\end{array}\right]}\|\underbrace{\left[\begin{array}{cc}
L_{1} & G \\
0 & L_{2}
\end{array}\right]}_{B}\left[\begin{array}{l}
d^{(1)} \\
d^{(2)}
\end{array}\right]-\left[\begin{array}{l}
c^{(1)} \\
c^{(2)}
\end{array}\right]\| \quad c=U^{*} b, d=U^{*} y
$$

$$
\begin{gathered}
\text { Our setting } \\
\min _{\left[\begin{array}{c}
d^{(1)} \\
d^{(2)}
\end{array}\right]}\left\|\left[\begin{array}{cc}
L_{1} & G \\
0 & L_{2}
\end{array}\right]\left[\begin{array}{l}
d^{(1)} \\
d^{(2)}
\end{array}\right]-\left[\begin{array}{l}
c^{(1)} \\
c^{(2)}
\end{array}\right]\right\|
\end{gathered}
$$

with

$$
\left|\lambda_{\min }\left(L_{1}\right)\right| \gg\left|\lambda_{\max }\left(L_{2}\right)\right|, \quad\left\|c^{(1)}\right\| \gg\left\|c^{(2)}\right\|=\delta
$$

$\Rightarrow L_{2}$ and $c^{(2)}$ correspond to "noise"
Moreover,

- $\left\|L_{1}^{-1}\right\|$ moderate; $\|G\|$ moderate (high non-normality excluded)

Our setting

$$
\min _{\left[\begin{array}{l}
d^{(1)} \tag{1}\\
d^{(2)}
\end{array}\right]}\left\|\left[\begin{array}{cc}
L_{1} & G \\
0 & L_{2}
\end{array}\right]\left[\begin{array}{l}
d^{(1)} \\
d^{(2)}
\end{array}\right]-\left[\begin{array}{l}
c^{(1)} \\
c^{(2)}
\end{array}\right]\right\|
$$

with

$$
\left|\lambda_{\min }\left(L_{1}\right)\right| \gg\left|\lambda_{\max }\left(L_{2}\right)\right|, \quad\left\|c^{(1)}\right\| \gg\left\|c^{(2)}\right\|=\delta
$$

$\Rightarrow L_{2}$ and $c^{(2)}$ correspond to "noise"
Moreover,

- $\left\|L_{1}^{-1}\right\|$ moderate; $\|G\|$ moderate (high non-normality excluded)

The problem above may be viewed as a perturbation of

$$
\min _{\left[\begin{array}{l}
d^{(1)} \tag{2}\\
d^{(2)}
\end{array}\right]}\left\|\left[\begin{array}{cc}
L_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
d^{(1)} \\
d^{(2)}
\end{array}\right]-\left[\begin{array}{l}
c^{(1)} \\
c^{(2)}
\end{array}\right]\right\|
$$

Is it possible to "solve" (1) as efficiently as we would do with (2) ?

Spectral decomposition

$$
B=\left[\begin{array}{cc}
L_{1} & G \\
0 & L_{2}
\end{array}\right]=X B_{0} X^{-1}=:\left[X_{1}, X_{2}\right]\left[\begin{array}{cc}
L_{1} & 0 \\
0 & L_{2}
\end{array}\right]\left[\begin{array}{c}
Y_{1}^{*} \\
Y_{2}^{*}
\end{array}\right]
$$

where $\left[Y_{1}, Y_{2}\right]^{*}=\left[X_{1}, X_{2}\right]^{-1}$, and

$$
\left[X_{1}, X_{2}\right]=\left[\begin{array}{cc}
I & P \\
0 & I
\end{array}\right], \quad\left[Y_{1}, Y_{2}\right]=\left[\begin{array}{cc}
I & 0 \\
-P^{*} & I
\end{array}\right],
$$

and P is the unique soln of the Sylvester eqn $L_{1} P-P L_{2}=-G$ Note that

$$
\left\|X_{2}\right\| \leq 1+\|P\|, \quad\left\|Y_{1}\right\| \leq 1+\|P\|, \quad \text { where } \quad\|P\| \leq \frac{\|G\|}{\operatorname{sep}\left(L_{1}, L_{2}\right)}
$$

It also follows that: $\quad\|X\| \leq 1+\|P\|$

The residual polynomial

$$
B d=c
$$

For any polynomial φ_{m},

$$
\varphi_{m}(B) c=\left[X_{1}, X_{2}\right]\left[\begin{array}{c}
\varphi_{m}\left(L_{1}\right) Y_{1}^{*} c \\
\varphi_{m}\left(L_{2}\right) Y_{2}^{*} c
\end{array}\right]=X_{1} \varphi_{m}\left(L_{1}\right) Y_{1}^{*} c+X_{2} \varphi_{m}\left(L_{2}\right) \underbrace{Y_{2}^{*} c}_{=c^{(2)}},
$$

so that

$$
\left\|\varphi_{m}(B) c\right\| \leq\left\|\varphi_{m}\left(L_{1}\right) Y_{1}^{*} c\right\|+\left\|X_{2} \varphi_{m}\left(L_{2}\right) c^{(2)}\right\|
$$

An explanatory example

wing example from Regularization Matlab Toolbox (Hansen, 1994-2007)
(Discretization of a 1st kind Fredholm integral eqn, discontinuous soln) $\operatorname{spec}(A)$:

$$
\begin{aligned}
& 3.74 \cdot 10^{-1},-2.55 \cdot 10^{-2}, 7.65 \cdot 10^{-4},-1.48 \cdot 10^{-5}, \\
& 2.13 \cdot 10^{-7},-2.45 \cdot 10^{-9}, 2.33 \cdot 10^{-11},-1.89 \cdot 10^{-13}, 1.32 \cdot 10^{-15}, \ldots
\end{aligned}
$$

perturbed rhs: $b=b_{e}+\varepsilon p \quad(p$ with randn entries and $\|p\|=1)$
L_{1} : corresponds to the abs largest six eigenvalues
$\|G\|=2.29 \cdot 10^{-5},\|P\|=10.02$
For $\varepsilon=10^{-7}:\left\|Y_{1}^{*} c\right\|=1$ and $\left\|Y_{2}^{*} c\right\|=6.7 \cdot 10^{-7}$
For $\varepsilon=10^{-5}:\left\|Y_{2}^{*} c\right\|=6.49 \cdot 10^{-5}$

GMRES residual bounds

m_{*} : grade of L_{1} with respect to $Y_{1}^{*} c$
$\left(\exists \phi_{m_{*}}\right.$ s.t. $\left.\phi_{m_{*}}\left(L_{1}\right) Y_{1}^{*} c=0\right)$
r_{k} : GMRES residual after k iterations
Δ_{2} : circle centered at the origin and having radius ρ s.t. $\operatorname{spec}\left(L_{2}\right) \subset \Delta_{2}$

GMRES residual bounds

m_{*} : grade of L_{1} with respect to $Y_{1}^{*} c$
$\left(\exists \phi_{m_{*}}\right.$ s.t. $\left.\phi_{m_{*}}\left(L_{1}\right) Y_{1}^{*} c=0\right)$
r_{k} : GMRES residual after k iterations
Δ_{2} : circle centered at the origin and having radius ρ s.t. $\operatorname{spec}\left(L_{2}\right) \subset \Delta_{2}$
i) If $k<m_{*}$, let $s_{k}^{(1)}=\phi_{k}\left(L_{1}\right) Y_{1}^{*} c$ be the GMRES residual associated with $L_{1} z=Y_{1}^{*} c$. Then

$$
\left\|r_{k}\right\| \leq\left\|s_{k}^{(1)}\right\|+\left\|X_{2}\right\| \gamma_{k} \tau, \quad \tau=\rho \max _{z \in \Delta_{2}}\left\|\left(z I-L_{2}\right)^{-1} c^{(2)}\right\|
$$

where $\gamma_{k}=\max _{z \in \Delta_{2}} \prod_{i=1}^{k}\left|\theta_{i}-z\right| /\left|\theta_{i}\right|$ and θ_{i} are the roots of ϕ_{k}

GMRES residual bounds

m_{*} : grade of L_{1} with respect to $Y_{1}^{*} c \quad\left(\exists \phi_{m_{*}}\right.$ s.t. $\left.\phi_{m_{*}}\left(L_{1}\right) Y_{1}^{*} c=0\right)$
r_{k} : GMRES residual after k iterations
Δ_{2} : circle centered at the origin and having radius ρ s.t. $\operatorname{spec}\left(L_{2}\right) \subset \Delta_{2}$
i) If $k<m_{*}$, let $s_{k}^{(1)}=\phi_{k}\left(L_{1}\right) Y_{1}^{*} c$ be the GMRES residual associated with $L_{1} z=Y_{1}^{*} c$. Then

$$
\left\|r_{k}\right\| \leq\left\|s_{k}^{(1)}\right\|+\left\|X_{2}\right\| \gamma_{k} \tau, \quad \tau=\rho \max _{z \in \Delta_{2}}\left\|\left(z I-L_{2}\right)^{-1} c^{(2)}\right\|
$$

where $\gamma_{k}=\max _{z \in \Delta_{2}} \prod_{i=1}^{k}\left|\theta_{i}-z\right| /\left|\theta_{i}\right|$ and θ_{i} are the roots of ϕ_{k}
Wing data. $m_{*}=6,\|G\|=2.29 \cdot 10^{-5}$ and $\|P\|=10.02$. radius $\rho=2 \cdot 10^{-9}$

ε	k	$\left\\|s_{k}^{(1)}\right\\|$	$\left\\|X_{2}\right\\| \gamma_{k} \tau$	Sum	$\left\\|r_{k}\right\\|$
10^{-7}	2	$1.640 \mathrm{e}-03$	$6.770 \mathrm{e}-06$	$1.647 \mathrm{e}-03$	$1.640 \mathrm{e}-03$
	3	$3.594 \mathrm{e}-05$	$6.770 \mathrm{e}-06$	$4.271 \mathrm{e}-05$	$3.573 \mathrm{e}-05$
10^{-5}	2	$1.621 \mathrm{e}-03$	$6.770 \mathrm{e}-04$	$2.298 \mathrm{e}-03$	$1.640 \mathrm{e}-03$
	3	$6.568 \mathrm{e}-05$	$6.770 \mathrm{e}-04$	$7.427 \mathrm{e}-04$	$7.568 \mathrm{e}-05$

GMRES residual bounds

m_{*} : grade of L_{1} with respect to $Y_{1}^{*} c \quad\left(\exists \phi_{m_{*}}\right.$ s.t. $\left.\phi_{m_{*}}\left(L_{1}\right) Y_{1}^{*} c=0\right)$
r_{k} : GMRES residual after k iterations
Δ_{2} : circle centered at the origin and having radius ρ s.t. $\operatorname{spec}\left(L_{2}\right) \subset \Delta_{2}$
ii) If $k=m_{*}+j, j \geq 0$, let $s_{j}^{(2)}=\varphi_{j}\left(L_{2}\right) c^{(2)}$ be the GMRES residual associated with $L_{2} z=c^{(2)}$ after j iterations (note that $\left\|s_{j}^{(2)}\right\| \leq\left\|c^{(2)}\right\|$). Then

$$
\left\|r_{k}\right\| \leq \rho \gamma_{m_{*}}\left\|s_{j}^{(2)}\right\|\left\|X_{2}\right\| \max _{z \in \Delta_{2}}\left\|\left(z I-L_{2}\right)^{-1}\right\|
$$

where $\gamma_{m_{*}}=\max _{z \in \Delta_{2}} \prod_{i=1}^{m_{*}}\left|\theta_{i}-z\right| /\left|\theta_{i}\right|$ and θ_{i} are the roots of the grade polyn of L_{1}

GMRES residual bounds

m_{*} : grade of L_{1} with respect to $Y_{1}^{*} c \quad\left(\exists \phi_{m_{*}}\right.$ s.t. $\left.\phi_{m_{*}}\left(L_{1}\right) Y_{1}^{*} c=0\right)$
r_{k} : GMRES residual after k iterations
Δ_{2} : circle centered at the origin and having radius ρ s.t. $\operatorname{spec}\left(L_{2}\right) \subset \Delta_{2}$
ii) If $k=m_{*}+j, j \geq 0$, let $s_{j}^{(2)}=\varphi_{j}\left(L_{2}\right) c^{(2)}$ be the GMRES residual associated with $L_{2} z=c^{(2)}$ after j iterations (note that $\left\|s_{j}^{(2)}\right\| \leq\left\|c^{(2)}\right\|$). Then

$$
\left\|r_{k}\right\| \leq \rho \gamma_{m_{*}}\left\|s_{j}^{(2)}\right\|\left\|X_{2}\right\| \max _{z \in \Delta_{2}}\left\|\left(z I-L_{2}\right)^{-1}\right\|
$$

where $\gamma_{m_{*}}=\max _{z \in \Delta_{2}} \prod_{i=1}^{m_{*}}\left|\theta_{i}-z\right| /\left|\theta_{i}\right|$ and θ_{i} are the roots of the grade polyn of L_{1}

Wing data. $m_{*}=6,\|G\|=2.29 \cdot 10^{-5}$ and $\|P\|=10.02$. radius $\rho=2 \cdot 10^{-9}$

ε	k	$\left\\|s_{k}^{(1)}\right\\|$	$\left\\|X_{2}\right\\| \gamma_{k} \tau$	Bound	$\left\\|r_{k}\right\\|$
10^{-7}	10			$6.712 \mathrm{e}-06$	$6.311 \mathrm{e}-07$
10^{-5}	10			$6.442 \mathrm{e}-04$	$6.308 \mathrm{e}-05$

Application to singular preconditioning
Let $M_{m}^{\dagger} \in \mathbb{C}^{n \times n}$ be a rank- m approximation of A^{-1}
Then $\operatorname{rank}\left(A M_{m}^{\dagger}\right)=m$,

$$
B=U^{*}\left(A M_{m}^{\dagger}\right) U=\left[\begin{array}{cc}
L_{1} & G \\
0 & 0
\end{array}\right]
$$

and the least squares problem reads

$$
\min _{d}\left\{\left\|\left[L_{1}, G\right] d-c^{(1)}\right\|^{2}+\left\|c^{(2)}\right\|^{2}\right\}, \quad c=U^{*} b=\left[\begin{array}{c}
c^{(1)} \\
c^{(2)}
\end{array}\right]
$$

A preconditioned 2D ill-posed elliptic problem

$$
\left(\beta(y) u_{y}\right)_{y}+\left(\alpha u_{x}\right)_{x}+\gamma u_{x}=0
$$

with $\alpha=1, \gamma=2$, and

$$
\beta(y)= \begin{cases}50, & 0 \leq y \leq 0.5 \\ 8 & 0.5<y \leq 1\end{cases}
$$

randn perturbation s.t.

$$
\left\|g-g_{p e r t}\right\| /\|g\| \approx 1.8 \cdot 10^{-3}
$$

A preconditioned 2D ill-posed elliptic problem

$$
\left(\beta(y) u_{y}\right)_{y}+\left(\alpha u_{x}\right)_{x}+\gamma u_{x}=0
$$

with $\alpha=1, \gamma=2$, and

$$
\beta(y)= \begin{cases}50, & 0 \leq y \leq 0.5 \\ 8 & 0.5<y \leq 1\end{cases}
$$

randn perturbation s.t.
$\left\|g-g_{\text {pert }}\right\| /\|g\| \approx 1.8 \cdot 10^{-3}$

Rank- m preconditioner $M_{m}^{\dagger}(m=9)$:
approx to the exact soln operator: $f_{0}=\cosh \left(\left(\frac{1}{\beta_{0}} L_{m}\right)^{\frac{1}{2}}\right), \beta_{0}=\overline{\beta(y)}$
(Eldèn, Simoncini, 2009)

The preconditioned problem solved by GMRES

$$
\min _{y}\left\|\left(A M_{m}^{\dagger}\right) y-g\right\|, \quad M_{m}^{\dagger}=\cosh \left(\left(\frac{1}{\beta_{0}} L_{m}\right)^{\frac{1}{2}}\right)
$$

* Operation $A v$: solve the well-posed problem with b.c. $u(x, 1)=v(x)$ replacing $u(x, 0)=g(x)(\operatorname{dim} .10000)$

The preconditioned problem solved by GMRES

$$
\min _{y}\left\|\left(A M_{m}^{\dagger}\right) y-g\right\|, \quad M_{m}^{\dagger}=\cosh \left(\left(\frac{1}{\beta_{0}} L_{m}\right)^{\frac{1}{2}}\right)
$$

* Operation $A v$: solve the well-posed problem with b.c. $u(x, 1)=v(x)$ replacing $u(x, 0)=g(x)(\operatorname{dim} .10000)$

Exact soln ('-'). 3 steps Prec'd GMRES ('- -'). Operation $M_{m}^{\dagger} g('-. ')$

The preconditioned problem solved by GMRES

$$
\min _{y}\left\|\left(A M_{m}^{\dagger}\right) y-g\right\|, \quad M_{m}^{\dagger}=\cosh \left(\left(\frac{1}{\beta_{0}} L_{m}\right)^{\frac{1}{2}}\right)
$$

* Operation $A v$: solve the well-posed problem with b.c. $u(x, 1)=v(x)$ replacing $u(x, 0)=g(x)(\operatorname{dim} .10000)$

Exact solution (solid line). Unprec'd GMRES with smallest error (5 steps, dashed)

Conclusions

- Good understanding of GMRES behavior for almost singular systems stemming from ill-posed problems
- Applicability to singular preconditioning

Error bounds (not shown) seem to imply:

- The singular preconditioner acts as regularization operator
- For the residual $r_{k}=b-A x_{k}$, the quantity $\left\|A^{*} r_{k}\right\|$ could be monitored together with $\left\|r_{k}\right\|$

Reference:
L. Eldèn and V. Simoncini, Solving Ill-posed Linear Systems with GMRES and a Singular Preconditioner, SIMAX, v. 33 (4), 2012.

