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Abstract. Many advances in the development of Krylov subspace methods for the iterative
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1. Introduction. Krylov subspace methods are extensively used for the iterative
solution of n× n linear systems of equations of the form

Ax = b,(1.1)

and in particular those arising from discretizations of differential equations. This
can be appreciated by a cursory look at any journal in science or engineering; see
also the very recent book [100]. The availability of more powerful computers and of
better methods has made it possible to solve larger and more complex problems, in
application fields ranging from quantum chromodynamics [230] to air traffic control
problems [3]. This creates the possibility of more detailed scientific models, which in
turn serves as an inspiration for the study of even more effective approaches to their
solution.
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In some cases, direct methods based on sparse matrix factorizations can be used
for fairly large problems [87], [88], [89], e.g., in the numerical treatment of some
two-dimensional differential equations, or in problems coming from electrical power
networks, where the fill-in is somewhat limited; see, e.g., [1]. Nonetheless, iterative
methods are mandatory in the numerical solution of large three-dimensional differ-
ential equations, as well as in the solution of a large variety of application problems
and in numerical discretization methods where the matrix itself is not explicitly avail-
able. For a recent paper on the use of direct methods in combination with iterative
methods, see [86].

In this paper we review many of the advances that have taken place within the
Krylov subspace framework during the last ten to fifteen years. We collect many
results not usually available in widely read books such as [13], [42], [53], [158], [228],
[273], and [333], surveys such as [92], [131], [171], [276], or the Templates on iterative
methods [26]. We emphasize the fact that we mostly discuss recent computational
developments. Nevertheless, in order to make this survey self-contained and also serve
as an introduction to the subject, we include some material which is well known. We
refer to the books and surveys just cited for the description of the historical evolution
of these iterative methods before 1990, and for details on the basic methods beyond
our brief presentation in section 2. In a few instances, though, we dwell on some earlier
results which we feel are not well known. Readers familiar with the basic methods
may want to skip the first part of the paper.

Perhaps the two most widely used Krylov subspace methods for the solution of
nonsymmetric systems are GMRES and Bi-CGStab, described in sections 2 and 3,
respectively. The advantage of the latter is that of limited storage needs, but there
are many problems for which this method does not work well. For these problems,
GMRES has become the method of choice, and this has led both to its ample study
and to many extensions and variants. We discuss these developments in sections 6–11,
which in most cases apply to many methods.

In general, some methods described in this paper work best for some problems,
and not for others. There is no one method which is recommended for all problems
[238]. In the description of the methods, we often point out for which problems the
method may work well. New ideas are commonly specific to certain situations, but not
for all, and we also discuss this when appropriate. In sections 12–14 we review many
of the methods designed for specific classes of problems. Throughout the paper, we
make references to the suitable literature, but we do not claim that our bibliography
is complete. We tried to assemble many relevant references, so that the reader can go
deeper into particular topics if he or she so desires.

While we report on much of the recent progress in the theory and practice of
Krylov subspace methods, this survey cannot be exhaustive. Among the many top-
ics not covered are the following (with some very limited pointers to the literature):
the relation of Krylov subspace methods with orthogonal polynomials and Gaussian
quadrature [115], [229], and with potential theory [85], [207]; special methods for
model reduction [4], [21], [31], [128], although we briefly touch upon this in section
14.2; for KKT systems or saddle point problems [33], [100]; or for integral operators
[203]; considerations for parallel computers [82], [104], [178]; methods for singular ma-
trices [134], [198], [262]; or for regularization of ill-posed problems [58], [179]; multiple
right-hand side and block methods [172]; nonlinear equations and optimization [35],
[56], [205], [260]; or for matrix equations [93], [181], [183], [219], including the Sylvester
equation [78], [185], [264], [286]. We also do not talk here about Krylov-based methods
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for eigenvalue calculations, such as Lanczos or Rational Krylov methods [20].
As is well known, an important ingredient that makes Krylov subspace methods

work is the use of preconditioners, i.e., of a matrix or operator M used to convert
the problem (1.1) into another equivalent problem, e.g., into M−1Ax = M−1b (left
preconditioning) or

AM−1y = b, with Mx = y(1.2)

(right preconditioning). We refer the reader, e.g., to [26], [54], [68], [273], or the excel-
lent survey [32] for more details on preconditioning. For completeness, we comment
very briefly on some of the most simple preconditioning techniques in section 7. In
general, we assume that the matrix A is already preconditioned, except when we talk
about variable or inexact preconditioning in sections 10 and 11, and also in some cases
in sections 9 and 14. We do mention that the development of effective preconditioners
is an active area of research, especially when these preconditioners are being designed
for specific applications.

For simplicity of the exposition, and to concentrate on the computational develop-
ments, throughout most of the paper we assume exact arithmetic. In a few instances,
though, we do refer to the influence of floating point arithmetic in the behavior of the
methods. We refer, e.g., to [90], [158, chapter 4], [163], [215], [229], [266], [309], [320],
for analysis of floating point arithmetic in the context of Krylov subspace methods,
and for the important understanding that this analysis has provided. We remark that
the use of floating point arithmetic may significantly deteriorate the performance of
Krylov subspace methods. In particular, it is well known that (even simple) mathe-
matically equivalent algorithms may have very different convergence behavior when
implemented in practice; see, e.g., [177], [211], [311], for recent analyses. We mention,
in particular, that only very recently the Modified Gram-Schmidt implementation of
GMRES was shown to be backward stable, in the sense that the backward error is
proportional to machine precision [249]. This was a longstanding problem since practi-
tioners have used this implementation for a long time, although only the Householder
implementation of GMRES was known to be robust [90].

We end this section by describing some of the notation we use. By x∗ we de-
note the solution of (1.1). By 〈x, y〉 we denote an inner product between the vectors
x, y ∈ Rn. The transpose of a matrix A is denoted AT and it depends on the un-
derlying inner product, i.e., 〈Ax, y〉 = 〈x,AT y〉. We use different inner products
throughout the paper and in each case the induced vector norm is ‖x‖ = 〈x, x〉1/2.
In most cases though, the Euclidean inner product is used, i.e., 〈x, y〉 = xT y, and
the induced norm is the 2-norm. For any positive definite matrix M , the M -inner
product is defined as 〈x, y〉 = 〈x, y〉M = xTMy. For complex vectors, the conjugate
transpose is denoted by x∗. The matrix or operator norm is induced from the just
defined vector norm in the usual manner ‖A‖ = max{‖x‖=1} ‖Ax‖. The exception
is the Frobenius norm ‖A‖Fr = (

∑
i,j a

2
ij)

1/2. The matrix Im is the m ×m identity
matrix. When the dimension is clear from the context, we simply denote it by I. The
Euclidean vector ej is the jth column of the identity of appropriate order. The range
(or column space) of a matrix M is denoted by R(M).

A square matrix A is said to be normal if ATA = AAT . The algorithmic properties
of many Krylov subspace methods and also certain bounds on their convergence vary
depending on whether the matrix is normal, and we comment on this at various points
in the paper. Clearly, symmetric matrices are normal. Other less trivial examples
of normal matrices are skew symmetric matrices (i.e., those satisfying A = −AT ),
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orthogonal matrices, multiples of orthogonal matrices plus a complex shift, and also
matrices of the form A = M + σI, with M real symmetric and σ complex. This last
case is of particular interest, as it arises in several applications; and it is discussed in
detail in section 14.1.

Throughout the paper we assume real data, although most methods can be im-
plemented in the complex case, and thus methods specifically designed for symmetric
matrices apply to Hermitian ones as well, and we do not repeat the relevant issues.
Specific comments for the general complex case are given in section 12, and for more
special cases in section 13.3.

2. Description of the basic methods. Let x0 be an initial approximation to
the solution of (1.1), r0 = b−Ax0 be the initial residual and let

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}(2.1)

be the Krylov subspace of dimension m defined by A and r0. The short-hand notation
Km is used when the dependence on A and on the specific vector r0 is clear from the
context. Note that these subspaces are nested, i.e., Km ⊆ Km+1.

Krylov subspace methods are iterative methods in which at the mth step an
approximation to the solution of (1.1), xm, is found in x0+Km, i.e., this approximation
is of the form xm = x0 + qm−1(A)r0, where qm−1 is a polynomial of degree at most
m− 1. If the system is real, then qm−1 can be chosen to have real coefficients. This
natural expression implies that the residual rm = b − Axm is associated with the
so-called residual polynomial pm of degree at most m with pm(0) = 1, since

rm = b−Axm = r0 −Aqm−1(A)r0 = pm(A)r0.(2.2)

Analogously, the error satisfies xm − x∗ = pm(A)(x0 − x∗), where x∗ is the solution
of (1.1). Let us denote by Pm the set of all polynomials p of degree at most m such
that p(0) = 1. The approximation xm ∈ x0 +Km (or equivalently, the corresponding
polynomial) is often found by requiring xm to be the minimizer of some functional.
Different methods depend on the choice of this functional, on the characteristics of the
matrix, and on some implementation details, and thus, each method defines implicitly
a different polynomial pm ∈ Pm (or qm−1). For example, in the popular GMRES by
Saad and Schultz [275], the approximation xm is the one minimizing the 2-norm of
the residual; see section 2.2.

In the process of iteratively constructing a basis of Km, each method can be
implemented so that at each iteration only one or two matrix-vector multiplications
with A is required, in the form z = Av (in some methods an additional operation of
the form y = ATw is needed). This fact is what makes these methods of practical
application. In fact, the matrix itself is not needed, only its action as an operator on
a vector is used, usually as a call to a subroutine.

In all cases treated here, the methods start with an initial vector x0, with initial
residual r0 = b− Ax0, and at the mth step obtain an element xm of x0 + Km(A, r0)
satisfying a projection or minimizing condition of some kind. Let rm = b − Axm be
the residual at the mth step. A general condition is the

• Petrov-Galerkin condition

rm ⊥ Rm ,(2.3)

where Rm is some m-dimensional subspace.
When Rm = Km, (2.3) is called a
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• Galerkin condition, i.e., we have

rm ⊥ Km .(2.4)

We also discuss the
• Minimum residual condition

‖rm‖ = min
x∈x0+Km

‖b−Ax‖ .(2.5)

It can be shown that (2.5) is a Petrov-Galerkin condition by choosing Rm = AKm;
see, e.g., Saad [273].

We note that the nested property of the Krylov subspaces, imply that any method
for which one of the conditions (2.3)-(2.5) holds will, in exact arithmetic, terminate
in at most n steps. Of course, in practice one wants the methods to produce a good
approximation to the solution of (1.1) in many fewer than n iterations.

In the rest of this section, we present the methods which are well-known and
commonly used. In several cases we review the development of more recent ideas and
point to the relevant literature. We present here a basic description of the methods
without giving full implementation details, which can be found, e.g., in [26]. For a
historical perspective on the development of these methods, see [276]. Further details
on the basic methods can be found in the books by Greenbaum [158], Saad [273], or
van der Vorst [333] already mentioned. More specialized, or more recent methods are
presented in section 5, and sections 8 to 14.

We assume from now on, without loss of generality, that unless otherwise specified
x0 = 0, and thus r0 = b throughout.

2.1. Arnoldi and Lanczos procedures. Before we describe the Krylov sub-
space methods, we present the Arnoldi procedure to construct an orthonormal basis
of the Krylov subspace [9]. When the matrix is symmetric, this procedure simplifies
and is due to Lanczos [208], [209].

Let β = ‖r0‖, and v1 = r0/β. An orthonormal basis {v1, . . . , vm} of Km(A, r0)
is obtained one vector at a time by computing Avk, orthogonalizing this vector with
respect to the previous ones v1, . . . , vk, and normalizing it. In other words, we have a
relation of the form

vk+1hk+1,k = Avk −
k∑

j=1

vjhjk ,(2.6)

where the coefficients hjk = 〈vj , Avk〉, j ≤ k, are such that orthogonality is achieved,
and hk+1,k is positive and such that ‖vk+1‖ = 1. If one collects the orthonormal
vectors in the matrix Vm = [v1, . . . , vm], and the coefficients hjk into the (m+ 1)×m
upper Hessenberg matrix Hm+1,m, we can write the important Arnoldi relation

AVm = Vm+1Hm+1,m(2.7)
= VmHm + hm+1,mvm+1e

T
m ,(2.8)

where Hm is the m×m matrix containing the first m rows of Hm+1,m, i.e.,

Hm+1,m =
[

Hm

hm+1,me
T
m

]
.(2.9)
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It follows from (2.7) that the rank of Hm+1,m is the same as the rank of AVm,
i.e., Hm+1,m has rank m whenever the new vector Avm is linearly independent with
respect to the previous vectors v1, . . . , vm. Observe also that if hm+1,m = 0, these
m vectors form an invariant subspace of A, and the solution of (1.1) belongs to this
subspace. It also follows from (2.7)-(2.8) that

V T
mAVm = Hm.(2.10)

We note that in our description of the Arnoldi procedure, we used the standard
Gram-Schmidt orthogonalization method. In actual implementations, one usually
uses the modified Gram-Schmidt (MGS) variant which performs the same operations
in a different order and it is more stable [36], [151].

The Lanczos procedure for symmetric A is similar, except that orthogonalization
with respect to the last two previous vectors suffices. In other words, once Avk is
orthogonal to vk and vk−1, it is automatically orthogonal to vj , with j < k−1. Thus,
the right-hand side of (2.6) has only three terms, and the matrix (2.9) is tridiagonal.
We denote it by Tm+1,m and it has the form

Tm+1,m =
[

Tm

tm+1,me
T
m

]
,(2.11)

where Tm is symmetric.
There is also a (two-sided) Lanczos procedure for nonsymmetric matrices by

which a non-orthogonal basis {w1, . . . , wm} of Km(A, r0) is built [209]. Consider
a (left) Krylov subspace defined by the transpose of A, and some auxiliary vec-
tor r̂0 such that 〈r0, r̂0〉 6= 0, i.e., the subspace Km(AT , r̂0) (a common choice is
r̂0 = r0). Let {ŵ1, . . . , ŵm} be a basis for it. The (two-sided) Lanczos procedure
progressively constructs these two bases so that they are bi-orthogonal, i.e., so that
〈ŵi, wj〉 = 0 when i 6= j, and 〈ŵj , wj〉 6= 0. In other words, if Wm = [w1, . . . , wm] and
Ŵm = [ŵ1, . . . , ŵm], then ŴT

mWm is diagonal. Some freedom is left on how to scale
the vectors wj , ŵj ; it is customary to scale these two vectors so that 〈ŵj , wj〉 = 1,
j = 1, 2, . . ., i.e., ŴT

mWm = I. The procedure just outlined is not always successful,
i.e., it may break down as soon as a vector ŵj is found that is orthogonal to the
corresponding wj .

We call attention to a distinction between the breakdown just described due to
the non-existence of the new basis vectors, sometimes called true breakdown, and the
breakdown due to the implementation of the recurrences generating those vectors. The
latter is sometimes called ghost breakdown, or pivot breakdown; see, e.g., Brezinski,
Redivo Zaglia, and Sadok [48], [49], or Gutknecht [171]. In this last reference, a
comparison of all the names of breakdowns is given.

Strategies that try to overcome breakdowns have been proposed in the literature,
including the case of near-breakdown in which case 〈ŵj , wj〉 ≈ 0. A standard pro-
cedure, called look-ahead Lanczos, consists of relaxing the constraint of the matrix
ŴT

mWm being diagonal. Indeed, intuitively, the look-ahead Lanczos looks ahead for
the next basis vectors that will maintain ŴT

mWm nonsingular, therefore only requiring
that this be a block diagonal matrix, rather than simply diagonal. The look-ahead idea
was first suggested in by Parlett, Taylor, and Liu [256] for Lanczos breakdowns only
considering 2 × 2 diagonal blocks, while in Freund, Gutknecht, and Nachtigal [133]
an implementation is presented with diagonal blocks of arbitrary size; see also [167],
[170], [237], and [46], [47], [49] for further analyses of breakdown. Incurable break-
down occurs if the diagonal block cannot be “closed”. In this case, the process needs
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to be restarted with the current approximate solution as initial guess, and a new
auxiliary starting vector.

One advantage of the two-sided Lanczos procedure is that, assuming that no
breakdown occurs, these bases can be constructed by a three-term recurrence, or two
coupled two-term recurrences, and thus, only two to three previous vectors in each
sequence need to be stored, and this was already noted by Lanczos [208]. The matrix
collecting the orthogonality coefficients is thus tridiagonal of the form (2.11), as in the
symmetric case, but here it is nonsymmetric. Therefore, a relation such as (2.7)-(2.8)
holds, namely,

AWm = WmTm + tm+1,mwm+1e
T
m;(2.12)

we refer to the paper by Parlett [254], where context is given for this and other
methods to reduce a matrix to tridiagonal form, and to Gutknecht [167], [170], where
the relation of the Lanczos procedure to Padé approximations and formal orthogonal
polynomials is fully developed. Further comments on breakdown and more references
are given in section 2.5.

We emphasize that the two-sided Lanczos procedure is based on a short-term
recurrence and this is fundamental to keep storage requirements low. In contrast, the
Arnoldi procedure requires that the whole basis be stored since a full recurrence is
needed. Alternative strategies to remedy this are presented in section 8.

We point out that on the negative side, in addition to the possible breakdown
already mentioned, one needs to have access to both operators A and AT , and AT may
be more expensive to apply than A. A typical situation occurs, for instance, when A
is given only as an operator subroutine, as is the case in matrix-free Newton-Krylov
methods [202].

2.2. GMRES and GCR. We begin our description of the Krylov subspace
methods with GMRES (Generalized Minimal RESidual), first proposed by Saad and
Schultz [275]. The projection condition (2.5) is to minimize the residual over all
possible vectors in the Krylov subspace Km(A, r0). That is, one obtains xm such that

‖rm‖ = ‖b−Axm‖ = min
x∈Km(A,r0)

‖b−Ax‖ .(2.13)

For GMRES, usually the 2-norm is used; see section 13.1 for a discussion of minimiza-
tion using other norms. We point out that the solution of the least squares problem
(2.13) is unique as long as A has full rank [36].

The key to GMRES is the implementation of the solution of the least squares
problem (2.13) using an orthonormal basis of the Krylov subspace produced by the
Arnoldi procedure. We write the GMRES approximation at the mth step as

xm = Vmym(2.14)

for some ym ∈ Rm, so that using the Arnoldi relation (2.7) and the fact that Vm+1e1 =
v1 = b/β we have

rm = b−Axm = b−AVmym(2.15)
= βv1 − Vm+1Hm+1,mym = Vm+1(βe1 −Hm+1,mym) .(2.16)

Since Vm+1 has orthonormal columns, the least squares problem (2.13) can thus be
rewritten as

‖rm‖ = min
y∈Rm

‖βe1 −Hm+1,my‖ .(2.17)
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Another key implementation feature of GMRES is the use of the QR factorization
of

Hm+1,m = Qm+1Rm+1,m,(2.18)

where the (m+ 1)× (m+ 1) matrix Qm+1 is orthogonal, and

Rm+1,m =
[
Rm

0

]
,(2.19)

where the m × m matrix Rm is upper triangular. The QR factorization (2.18) is
usually performed with Givens rotations so that only two entries per step need to be
computed and used to update the upper triangular matrix Rm; for details, see, e.g.,
[273], [275]. The least squares problem (2.17) can be replaced by

‖rm‖ = min
y∈Rm

‖QT
m+1βe1 −Rm+1,my‖.(2.20)

Problem (2.20) has a unique solution when Hm+1,m has full rank, i.e., rank m; and
in this case, Rm is nonsingular. Let

QT
m+1βe1 =

[
tm
ρm+1

]
.(2.21)

Then, the solution of (2.17) is ym = R−1
m tm and we can write

xm = Vm(R−1
m tm).(2.22)

Furthermore, it follows from (2.20) that ‖rm‖ = ‖QT
m+1βe1 − Rm+1,mym‖ = |ρm+1|,

and this is how the residual norm is checked in practical implementations. We note
in passing that in finite precision arithmetic, the equality ‖b − Axm‖ = |ρm+1| may
not hold; see Greenbaum [157].

We remark that the sequence of residual norms ‖rm‖ generated by GMRES, like
for all methods satisfying the minimum residual condition (2.5) on nested subspaces,
is non-increasing. The main disadvantage of GMRES is that as the iterations proceed,
i.e., as m grows, the storage requirements grow accordingly. One needs mn storage
locations to store the matrix Vm. As we shall see, there are several alternatives
to alleviate this, using, e.g., restarted or truncated methods. We describe them in
section 8.

An earlier method which also produces the approximation xm defined by (2.13)
is GCR by Eisenstat, Elman and Schultz [96]. The difference with GMRES is in its
implementation, since GCR uses a basis of Km which is not orthogonal. Instead, the
basis used, {p1, p2, . . . , pm}, is such that pT

i A
TApj = 0, i 6= j, and these vectors can

be obtained using the Arnoldi process on the subspace AKm. Since both the vectors pi

and Api need to be stored, GCR is less attractive than GMRES and it is seldom used
with the full recurrence. We mention it here since it is the basis for some methods
described in section 10. We also mention briefly two other methods not used nowadays
in practical computations: Simpler GMRES by Walker and Zhou [342], which can be
useful for certain estimates of convergence bounds [210], and ORTHODIR by Jea and
Young [191], where the minimization is performed on AKm. See, e.g., [11], [158],
[333], for descriptions of these and other earlier methods not discussed in this survey.
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2.3. CG. The method of Conjugate Gradients (CG) was proposed by Hestenes
and Stiefel in [180], and it is the method of choice for symmetric positive definite lin-
ear systems. In our brief description of CG, we begin by considering the (symmetric)
Lanczos procedure and thus have a a basis {v1, . . . , vm} of Km, as described in sec-
tion 2.1. If we consider the CG approximation as xm = Vmym for some ym ∈ Rm, the
Galerkin condition (2.4) can be written as 0 = V T

m (b− Axm) = V T
m b− V T

mAVmym =
βe1 − Tmym, where Tm is symmetric tridiagonal, cf. (2.10). This implies that ym is
the solution of

Tmym = βe1.(2.23)

Since A is positive definite, so is Tm = V T
mAVm, and therefore the system (2.23) is al-

ways solvable, and the Cholesky factorization always exists, as well as the factorization
Tm = LmDmL

T
m. It turns out that the diagonal matrix Dm and the unit bidiagonal

matrix Lm are principal submatrices of the matrices Dm+1 and Lm+1 of the next
step. We define the so-called search directions as the columns of Pm = [p1, . . . , pm],
where Pm = VmL

−T
m . We then have that p1 = v1, and

pm = vm + λmpm−1, m > 1,(2.24)

for some scalars λm; see, e.g., [250]. With these search directions, one can obtain the
CG approximation directly from the previous one, i.e., it holds that

xm = xm−1 + αmpm,(2.25)

for some scalar αm, and this is how the CG approximation xm is updated in actual
implementations. In such implementations, one can obtain the Lanczos vectors and
the search directions using two coupled two-term recurrences.

In this symmetric positive definite case, the Galerkin condition (2.4) can be shown
to be equivalent to the minimizing condition minx∈Km

ψ(x), where ψ(x) = 1
2x

TAx−
xT b, which is also equivalent to minimizing the A-norm of the error, i.e.,

min
x∈Km

‖x− x∗‖A,(2.26)

where the A-norm is induced by the A-inner product 〈x, y〉 = xTAy. This norm is
often referred to as the energy norm. It turns out that the search direction vectors
are conjugate, i.e., they are orthogonal in the underlying A-inner product satisfying
pT

i Apj = 0, i 6= j. The scalar αm in (2.25) can be interpreted as the solution of the
minimization problem minα∈R ψ(xm−1 + αpm), and in fact

xm = xm−1 + αmpm = arg min
x∈Km

ψ(x),

i.e., the one dimensional minimization in the direction pm is the same as the global
minimization on the subspace Km = span{p1, . . . , pm}. For details, we refer, e.g., to
the books by Axelsson [13], Fischer [115], Golub and Van Loan [151], or Luenberger
[220], and also the survey by Golub and O’Leary [148] which in addition includes an
extensive bibliography on the subject.

Finally, we mention that CG can be used also for solving Ax = b when A is
nonsymmetric or rectangular. Indeed, multiplying by AT we obtain the system of
normal equations ATAx = AT b, whose coefficient matrix is symmetric and positive
definite, if A has full column-rank. A good implementation of CG for the normal
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equations is LSQR by Paige and Saunders [251]. While for A symmetric and positive
definite, convergence bounds of CG can be derived that only depend on κ(A) (cf.
section 6), when using the system of normal equations κ(ATA) = κ(A)2 is the key
quantity, and much slower convergence may be observed; see Nachtigal, Reddy, and
Trefethen [238] for an intriguing experimental comparison of CG on the system of
normal equations with other methods designed specifically for nonsymmetric systems.

2.4. MINRES and SYMMLQ. Paige and Saunders [250] proposed two meth-
ods for symmetric but indefinite linear systems. In the MINRES method, the minimal
residual condition (2.5) is imposed, the Lanczos method is used to generate an or-
thonormal basis of Km, and, as outlined in the following, only two basis vectors are
needed for the computation of the approximation xm.

The implementation of the method relies on the QR factorization of the (rectan-
gular) tridiagonal matrix Tm+1,m = Qm+1Rm. Let Pm = VmR

−1
m = [p1, . . . , pm]. The

columns of Pm can be computed one at a time, since PmRm = Vm translates into a
set of three-term recurrences for the columns of Pm owing to the fact that Rm has
only three nonzero diagonals. It turns out that the minimum residual approximation
(2.22) can be written as

xm = Pmtm = xm−1 + τmpm,(2.27)

where tTm = (τ1, . . . , τm) i.e., only the last component of tm changes from the previous
step (see [250]); here, pm is the mth direction vector, cf. (2.25).

A second approach consists of considering the Galerkin condition (2.4) as in CG,
and the linear system (2.23). The tridiagonal matrix Tm may now be singular, or
nearly singular. On the other hand, it is not hard to show that if Tm is singular,
Tm+1 is not, unless tm+1,m = 0, in which case rm = 0, cf. (2.11) and (2.6). Paige and
Saunders [250] proposed to use the LQ factorization of Tm, producing the CG approx-
imation if it exists, and another sequence of approximations. This is the SYMMLQ
method. Paige and Saunders were not aware that this second sequence of approx-
imations in fact minimizes the 2-norm of the error over the subspace Km(A,Ar0).
Fridman [138] had suggested such an error-minimization algorithm. Fletcher [120]
independently rediscovered Fridman’s method and showed that SYMMLQ produces
the same iterates. Stoer and Freund [319] showed that SYMMLQ can be considered a
stable implementation of Fridman’s method; see also [318], [323]. Other more recent
error minimizing methods are described in section 5.

2.5. FOM, Lanczos, and BiCG. Using the Arnoldi process for nonsymmet-
ric A, if one imposes the Galerkin condition (2.4), i.e., V T

m (b−Axm) = 0, one obtains
the Full Orthogonalization Method (FOM) [269]. As in CG, using xm = Vmym, (2.15)
and (2.10), we rewrite this condition as

0 = V T
m b− V T

mAVmym = βe1 −Hmym.(2.28)

Thus, the FOM solution is obtained by solving at each step the m×m linear system

Hmym = βe1.

A nice feature of this method is that the residual and its norm are easily available.
Indeed, using the Arnoldi relation (2.8) we can write

rm = b−AVmym = βv1 − VmHmym − hm+1,mvm+1e
T
mym ,(2.29)
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and since Vme1 = v1, using (2.28) we have that

rm = −hm+1,mvm+1e
T
mym(2.30)

and thus ‖rm‖ = hm+1,m|eT
mym|.

If instead of the Arnoldi process, one uses two-sided Lanczos and imposes the
Petrov-Galerkin condition (2.3) with Rm = Km(AT , r0), i.e., ŴT

m(b − Axm) = 0,
one obtains the Lanczos method [209]. Considering xm = Wmym, using (2.12) and
scaling Ŵm so that ŴT

mWm = I, ym is found by solving (2.23) with Tm nonsymmetric
and tridiagonal. The polynomial such that rm = pm(A)r0 is then called the Lanczos
(residual) polynomial.

Fletcher [120] suggested to use the LU factorization of the nonsymmetric tridiago-
nal matrix Tm. This is called the Bi-Conjugate Gradient method (BiCG). Since BiCG
is a different implementation of the Lanczos method, in exact arithmetic, the approx-
imation xm is the same as that of the Lanczos method, and thus rm = pm(A)r0, with
pm the Lanczos polynomial. The problems of the non-symmetric Lanczos method are
still present in BiCG, and in addition, the method may break down if the LU fac-
torization without pivoting does not exist, whence this is called a pivot breakdown.
QMR methods overcome this difficulty by solving the least squares problem instead
of implicitly solving the m × m linear system with Tm. The Lanczos method (and
thus BiCG) reduces to CG when A = AT and it is positive definite. In this case,
the Cholesky factorization of Tm always exists if A is symmetric and positive definite.
The breakdown due to the possible singularity or near singularity of the tridiagonal
matrix Tm can be fixed by skipping the singular step as proposed by Bank and Chan
[24], [25], and goes with the name of “composite step.” The idea is to use a 2×2 pivot
when necessary and obtain an LDU factorization of Tm where D has either 1 × 1 or
2 × 2 diagonal blocks. We mention that the breakdowns of BiCG due to a Lanczos
or a pivot breakdown in the Lanczos process may also be possibly solved by the use
of look-ahead, as described in section 2.1. Modified versions of the Lanczos process
that mitigate the breakdown sensitivity have also been proposed by Joubert [195].

Hochbruck and Lubich [182] provide the following bound between the norm of
the BiCG residual, which we denote by rB

m, and that of GMRES at the previous step:

‖rB
m‖ ≤

√
m ‖gm‖‖rG

m−1‖,(2.31)

where gm is the solution of TT
mgm = tm+1,mem, cf. (2.12). It follows from examples

and a discussion in [182] that
√
m ‖gm‖ well represents the ratio of the residuals in a

qualitative way.
There are several reasons why Lanczos or BiCG are not much used nowadays. In

addition to the possible breakdown of two-sided Lanczos and the need to have access to
both operators A and AT , the Lanczos method is not very stable (see, e.g., Gutknecht
and Strakoš [177]), and the residual norms may have large oscillations, sometimes
referred to as irregular (or erratic) convergence. In fact, unlike the minimum residual
methods, in the methods described here, the residual norms are not necessarily non-
increasing. This should not be a problem as long as there is a downward trend,
but many people prefer to see a smooth decreasing curve, and this fact has led to
several suggestions on how to achieve some smoothing. This is described in section 4.
However, it should be kept in mind that smoothing the residual does not improve the
numerical properties of the short-term Lanczos recurrence.
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3. CGS, Bi-CGStab, and other polynomial product methods. Sonneveld
[313] developed Conjugate Gradient Squared (CGS) which is based on BiCG, but
without the need of the transpose operator. The main idea is to exploit the fact
that if pm is any polynomial then 〈pm(A)v, pm(AT )w〉 = 〈p2

m(A)v, w〉. While not
requiring the transpose operator, the oscillatory behavior of the convergence of BiCG
is amplified.

Van der Vorst [332] fixed some of the oscillatory behavior by replacing the polyno-
mial p2

m(A) by a product of polynomials qm(A)pm(A), with pm still being the Lanczos
(or BiCG) polynomial, and choosing

qm(ζ) = (1− ω1ζ)(1− ω2ζ) · · · (1− ωmζ) = qm−1(ζ)(1− ωmζ),(3.1)

where the new root 1/ωm is chosen so that rm = qm(A)pm(A)r0 has minimum norm
over all possible choices of this root. This method is called Bi-CGStab, and is one
of the most popular methods in use today. Bi-CGStab is not very effective when the
spectrum has large imaginary components, as is the case, e.g., for matrices stemming
from advection dominated PDEs; see Gutknecht [169], Sleijpen and Fokkema [303].
This problem motivated the introduction of methods such as Bi-CGStab2 and Bi-
CGStab(`) discussed next.

The idea of using a product of polynomials gave rise to several methods, appropri-
ately called product methods. The first of such methods was Bi-CGStab2 [169], the
odd step is as in (3.1), while at the next step, the last factor is replaced by a quadratic
polynomial; see also Cao [61]. Computational experience using Bi-CGStab2 for VLSI
design was reported by Pommerell and Fichtner [259]; the method is also successfully
used in the numerical solution of advection-diffusion problems; see for instance the
discussion in Elman, Sylvester, and Wathen [100, p. 176].

These ideas were further generalized to have qm instead be a product of polyno-
mials φ(ζ) of degree ` such that φ(0) = 1, i.e., qm = qk`+` = φkφk−1 . . . φ1, and φk

is chosen so that it minimizes the norm of rm = qm(A)pm(A)r0; see [303], [310] for
more details.

Many other choices of the polynomial qm(ζ) are possible in principle; see, e.g.,
Brezinski and Redivo Zaglia [44]; but the challenge is to find some that are better. As
discussed later in section 6, certain Krylov methods appear to have good convergence
behavior when the roots of the corresponding polynomial approximate well the eigen-
values of the matrix A. One of the advantages of these product methods is that, unlike
Bi-CGStab, their polynomials can have complex roots and thus have the possibility
of working well with real matrices with complex spectrum. Thus, Zhang [350] chose
qm(ζ) using a polynomial three-term recurrence, while allowing for complex roots.
The minimization step to find the next polynomial is over a two-dimensional search
space; see also Rollin and Gutknecht [265] for alternative formulations. Numerical ex-
periments indicate that this approach, called GPBi-CG, can outperform Bi-CGStab
and CGS for matrices with complex spectrum [333, section 9.3.1], [350].

Another product method is CGS2 by Fokkema, Sleijpen, and van der Vorst [121],
where one of the polynomials is the Bi-CG polynomial pm (corresponding to r0),
and the other is a Bi-CG polynomial corresponding to a different initial residual s0.
The two polynomials have roots which are approaching the same eigenvalues of the
matrix as the degree increases (though in different ways), but their product produces
a method with less erratic behavior than CGS. The performance of CGS2 (and its
convergence curve) is comparable to that of Bi-CGStab in some problems. In some
cases, such as the linear systems at each step of a Newton method, CGS2 may perform
better [121].
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All product methods described in this section can be derived using a common
theory of orthogonal polynomials; see Brezinski and Redivo Zaglia [45].

The concept of composite step already mentioned in section 2.5 was also applied to
Bi-CGStab by Chan and Szeto [65], thus eliminating a possible source of breakdown.
Look-ahead strategies for product methods are also available in an attempt to avoid
the other possible source of breakdown [44], [171], [173].

4. Smoothing procedures: QMR, TFQMR, QMR-CGStab, and more.
Freund and Nachtigal [135] proposed a procedure, called QMR (Quasi-Minimum
Residual), that replaces the Lanczos solution iterates with a new sequence of ap-
proximate solutions such that the associated residuals satisfy a quasi-optimal min-
imization condition. In addition to overcoming the possible erratic behavior of the
BiCG residual, the proposed approach also avoids pivot breakdown. More precisely,
let Wm contain the (non-orthogonal) basis of Km(A, b), so that (2.12) holds. Then,
the residual can be written as

rm = b−AWmym = βw1 −Wm+1Hm+1,mym = Wm+1(βe1 − Tm+1,mym) .(4.1)

Instead of minimizing ‖rm‖ = ‖Wm+1(βe1 − Tm+1,mym)‖ as in GMRES, QMR mini-
mizes the norm of the quasi-residual ‖βe1 − Tm+1,mym‖, i.e., ym is found by solving
the least squares problem

min
y∈Rm

‖βe1 − Tm+1,my‖ .(4.2)

The cost of solving (4.2) at each iteration is small, since Tm+1,m is tridiagonal,
though nonsymmetric, so that the solution Wmym can be easily updated without
storing the whole basis matrix Wm. The additional cost, compared to the standard
Lanczos method with three-term recurrence is quite irrelevant (a few scalar opera-
tions per step). Although the resulting method (Lanczos with the QMR procedure)
does provide a smoother convergence history, a more sound numerical implementa-
tion is obtained after devising the coupled two-term recurrence version of the method,
which was experimentally shown to be numerically more reliable in [136]. See also
Cullum [72] for more numerical insight into the behavior of QMR, compared with
residual norm minimizing methods. We mention though the following well-known
comparison between the norm of the QMR residual, and that of GMRES, denoted rQ

m

and rG
m, respectively,

‖rQ
m‖ ≤ κ(Wm+1)‖rG

m‖,(4.3)

which was first obtained by Nachtigal [237]. Since ‖rG
m‖ ≤ ‖rQ

m‖, if
WT

m+1Wm+1 = Im+1 then it must hold ‖rQ
m‖ = ‖rG

m‖. In general, the bound (4.3) sug-
gests that the QMR residual norm may be very far from the optimal GMRES norm
when the chosen basis is ill conditioned. However, it was recently shown in [300]
that this type of bound may considerably underestimate the actual behavior of quasi-
optimal methods, in this case that of QMR. In particular, as long as the basis vectors
remain linearly independent, convergence is not significantly different. We point out
that in (4.3) the comparison of the two methods is done at the same iteration. An al-
ternative measure of delay is obtained by monitoring the number of iterations required
for the two methods to reach the same accuracy.

QMR is a successful implementation of more general residual smoothing schemes,
which have received renewed interest after the work by Freund and Nachtigal. In fact,
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given a sequence of approximate solutions {xk} and associated residuals rk = b−Axk,
the following general residual smoothing technique can be considered (see, e.g., the
presentation by Walker [341])

y0 = x0, s0 = r0

yk = yk−1 + ηk(xk − yk−1), sk = sk−1 + ηk(rk − sk−1);

we refer to Brezinski and Redivo Zaglia [43] for more general procedures. Typically,
the parameter ηk can be chosen so that the norms of the new sequence of residuals,
{sk}, have a smoother behavior than their original counterparts. In particular, this
is the case if ηk is chosen as ηk = −sT

k−1(rk − sk−1)/‖rk − sk−1‖2, which corresponds
to the solution of the problem

min
η
‖sk−1 + η(rk − sk−1)‖,

yielding the minimal ‖sk‖. As a consequence, ‖sk‖ ≤ ‖sk−1‖ and ‖sk‖ ≤ ‖rk‖. Several
additional properties can be derived by exploiting further imposed conditions on the
residual sequences, such as orthogonality among the original residual vectors. A full
account can be found in Weiss [346]. With this choice of parameters, known relations
between orthogonal residual and minimal residual methods may be restated, and they
fully uncover the tight relation between, say, FOM and GMRES, as representatives
of orthogonal and norm minimizing residual methods, respectively; cf. Brown [50],
Cullum and Greenbaum [73]. In particular, the following relation can be inferred
from the general procedure above,

‖rF
k ‖ =

‖rG
k ‖√

1− (‖rG
k ‖/‖rF

k−1‖)2
,

where rF
k , rG

k are the FOM and GMRES residuals after k iterations, respectively. This
equality provides a fundamental argument in showing that peaks in the FOM residual
norm correspond to plateaus in the GMRES residual norm, or, in other words, that
the two methods converge hand in hand.

Another interesting choice in the smoothing sequence results from setting

ηk =
τ2
k

‖rk‖2
where

τ0 = ‖r0‖, τk such that
1
τ2
k

=
1

τ2
k−1

+
1
‖rk‖2

.

In this case, and assuming exact arithmetic, it can be shown that if the original
residual sequence is the one produced by BiCG, then the new sequence {sk} corre-
sponds to the QMR residuals; see Zhou and Walker [352]. Considerations for the
peaks/plateaus behavior hold as for FOM and GMRES; see Cullum [71], Cullum and
Greenbaum [73]. A bound between QMR and GMRES residual norms similar to
(2.31) can be found in Hochbruck and Lubich [182]. We also refer to Gutknecht and
Rozložnik [174] for further insight into relations between orthogonal residual methods
and norm (quasi-)minimizing residual methods in a general framework.

With analogous devices [352], one can derive an additionally smoothed variant of
Bi-CGStab, originally named QMRCGSTAB by Chan et al. [64]. A similar approach
called TFQMR is used by Freund [127] to smooth the highly erratic convergence
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behavior of CGS. A general theory of QMR smoothing for product methods is given
by Ressel and Gutknecht [263] encompassing all these methods.

In [64] and [127] the algorithms are implemented with a procedure that mimics
that used for Lanczos-QMR described earlier in this section. The derivation relies on
the fact that, by collecting the subsequent iterates, the approximate solution in the
original methods Bi-CGStab and CGS, can be written as xk = x0 + Zkyk, where the
full column rank matrix Zk satisfies a key relation of the form

AZk = Uk+1Tk+1,k.(4.4)

Here the columns of Uk+1 collect the first k + 1 residuals, and Tk+1,k is banded; in
addition, note that (4.4) is even more general than (2.12) as it does not require that
Zk = Uk.

Then, following precisely the QMR derivation, the residual can be written as rk =
r0 − AZkyk = Uk+1(βe1 − Tk+1,kyk), and a quasi-minimal residual norm procedure
can be applied to determine a new vector yk. It goes without saying that any Krylov
subspace method where a relation of the type (4.4) holds, can be equipped with a QMR
smoothing. This fact suggests that smoothing may simply be viewed as a “cosmetic”
tool to let the convergence curve degrade more gently. A natural question is whether
smoothing does provide a more accurate final solution or, in other words, whether
the final attainable residual in finite precision arithmetic, is any better than the non-
smoothed one. A thorough analysis performed by Gutknecht and Rozložńık [175]
answers negatively to this question for most smoothing methods, that is, no gain is
obtained by the smoothing algorithms as of final solution accuracy.

5. Other minimization procedures. We begin by noting that some of the
minimal residual methods described in the previous sections can be implemented in
norms other than the 2-norm, and this is treated in some detail in section 13.1; see
also a special case of this in section 10. When A is ill conditioned, small residuals do
not necessarily imply accurate approximate solutions. Methods minimizing quantities
other than the residual norm or the error A-norm have been proposed in the past few
years. These include minimizing the 2-norm of the error, as we shall see next, and
minimizing the joint backward perturbation norm, yielding an approximate solution
in the Krylov subspace which is optimal in backward error sense.

A general error minimization problem in a given subspace Sm of dimension m can
be formulated as

min
x∈Sm

‖x− x∗‖.

As mentioned in section 2.4, algorithm SYMMLQ provides a stable implementation to
solve this problem with Sm = Km(A,Ar0), for symmetric, not necessarily positive def-
inite matrices. For nonsymmetric problems, Weiss [345], [346], more recently proposed
a generalization of this approach by choosing Sm = ATKm(AT , r0) ≡ Km(AT , AT r0)
and then applying a Galerkin condition to the error x − x∗. Although the approach
minimizes the 2-norm of the error, this choice of approximation space does not en-
sure finite termination, unless the coefficient matrix is normal. Various alternative
implementations of the method are investigated by Rozložńık and Weiss [266], some
of which are shown to be stable.

Methods minimizing the residual 2-norm determine xm in Km(A, r0) satisfying
Axm = b − rm with the minimum value of ‖rm‖. More generally, one can look
for a vector xm in Km(A, r0) satisfying (A − ∆A)xm = b + ∆b, such that the joint
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backward perturbation matrix [∆A,∆b] is minimized, in terms of the Frobenius norm.
The approach is reminiscent of the total least squares problem [336], although in the
present case the approximate solution is constrained to belong to the generated Krylov
subspace. The problem can be formally stated as

min
xm∈Km(A,r0)

‖[∆A,∆b]‖Fr, subject to (A−∆A)xm = b+ ∆b.(5.1)

A complete characterization of this problem and its solution was presented by Kase-
nally and Simoncini [201]. Moreover, the authors show that the solution to (5.1) is
given by xm = Vmym, where ym satisfies[

1
ym

]
=

1
eT
1 um+1

um+1,

and where um+1 is the left singular vector corresponding to the smallest singular
value σm+1 of the (m + 1) × (m + 1) matrix [−βe1,Hm+1,m]. In addition, it holds
that ‖[∆A,∆b]‖Fr = σm+1. Clearly, the solution ym is well defined only if the first
component of um+1 is nonzero, i.e., eT

1 um+1 6= 0, and the solution is unique if σm+1

is a simple singular value. These conditions are in agreement with the corresponding
constraints in the total least squares setting [336]. The behavior of the method for
eT
1 um+1 ≈ 0 is not analyzed in [201], although a small factor eT

1 um+1 may cause
problems in finite precision arithmetic. It can be shown that the magnitude of eT

1 um+1

is related to how close is δ = σmin([e1,Hm+1,m])/σmin(Hm+1,m) to one. A thorough
analysis of the role of δ in the solution of least squares and total least squares problems
can be found in [252], [253], [336].

An algorithm implementing the solution to (5.1) is in general computationally
more expensive than GMRES or FOM, for it requires the solution of a singular value
problem with an upper triangular matrix of size m+1 at each iteration. On the other
hand, its restarted version was shown to be more effective than restarted GMRES on
certain sensitive matrices (restarted methods are described in section 8). It is also
worth noticing that an almost equivalent method could be devised by using the 2-norm
instead of the Frobenius norm in the constrained minimization problem (5.1) [156].
Finally, we mention that the method above, referred to in [201] as Minpert, is a
generalization of a method introduced in [200], where the perturbation in (5.1) is
limited to the coefficient matrix, namely, it is assumed that ∆b = 0.

6. Spectral tools and considerations on convergence. In this survey, we
do not analyze in detail the convergence properties of all the methods described in
sections 2-5. In this section, we present an introduction useful in understanding some
of the convergence behavior of the methods, and we introduce some spectral tools, such
as Ritz and harmonic Ritz values, that have been used to enhance the convergence
rate of some Krylov subspace methods.

The residual rm = r0−Axm satisfies (2.2). Therefore, the residual (and similarly
the error) satisfies

‖rm‖ ≤ ‖pm(A)‖ ‖r0‖,

for some pm ∈ Pm, where Pm is the set of all polynomials p of degree at most m such
that p(0) = 1, and ‖pm(A)‖ is the induced matrix norm of pm(A). This simple bound
shows that an estimate of the convergence of the residual norm may be obtained by
analyzing the behavior of the associated polynomial on A. Note that this estimate
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does not take into account the action of r0 on the matrix polynomial, therefore it is
not sharp in most cases. For detailed studies on worst-case convergence of certain
methods applied to some problems or for particular right-hand sides, see [107], [103],
[216], [217], [218], [240], [241], [325], [349].

Assume next that A is diagonalizable, so that there exists a nonsingular matrix
X of eigenvectors of A and a diagonal matrix Λ = diag(λ1, . . . , λn) of corresponding
eigenvalues such that A = XΛX−1. Therefore,

‖rm‖ ≤ max
i=1,...,n

|pm(λi)|‖X‖ ‖X−1‖ ‖r0‖.(6.1)

If the coefficient matrix A is normal (e.g., symmetric), then X is unitary, so that
‖X‖ = ‖X−1‖ = 1, therefore an upper bound for the residual can be derived by only
analyzing the behavior of the residual polynomial at the eigenvalues of A. When A
is symmetric and positive definite and CG is used, a similar relation can be shown
to hold for the A-norm of the error, which is the quantity that is minimized by the
method. For CG we thus have

‖x∗ − xm‖A ≤ min
pm∈Pm

max
i=1,...,n

|pm(λi)|‖x∗ − x0‖A(6.2)

≤ min
pm∈Pm

max
λ∈[λmin,λmax]

|pm(λ)|‖x∗ − x0‖A,

where in the last bound λmin and λmax are the smallest and largest eigenvalues of the
positive definite matrix A. The polynomial min-max problem has a classical solution
[79], which yields the well-known bound

‖x∗ − xm‖A ≤ 2
(√

κ− 1√
κ+ 1

)m

‖x∗ − x0‖A,(6.3)

where κ = λmax/λmin is called the condition number of A. When the matrix is
nonsymmetric, a min-max polynomial problem can still be obtained by using a residual
minimizing method such as GMRES. In this case, if rm is the residual afterm GMRES
iterations, one obtains

‖rm‖ ≤ ‖X‖ ‖X−1‖ min
pm∈Pm

max
i=1,...,n

|pm(λi)| ‖r0‖.

Especially in the case of highly non-normal matrices, however, this bound may be a
very poor estimate of the actual convergence, because ‖X‖ ‖X−1‖ may be very large
irrespective of the value of ‖rm‖; see also Ipsen [187]. We also mention that a similar
bound for nondiagonalizable matrices can be obtained, by using the Jordan canonical
form of A; see Freund [125].

Other analyses have been proposed in the past few years, mostly aiming at sharp-
ening the estimate of ‖pm(A)‖, see, e.g., [159], [160], [161], [165], [243]. Different
approaches have used the field of values and pseudospectrum as possibly more repre-
sentative tools for highly non-normal matrices [91], [107], [315], [327], [328]. Nonethe-
less, practical examples can be constructed where all these approaches show poor
performance in describing the actual residual behavior [101], confirming that work is
still needed to complete our understanding of the convergence when using a polyno-
mial approximation approach.

Towards more realistic bounds, recent efforts have aimed at including the initial
residual r0 in the analysis. Some very insightful results have been obtained in [30],
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[213], [214], although sharp bounds for the residual in the most general cases have not
been obtained.

We also mention that when A is nonsymmetric and positive real, i.e., when its
symmetric part (A+AT )/2 is positive definite, classical bounds can also be obtained
using spectral information of the symmetric part of the matrix, and of ATA. In the
case of GMRES, for instance, the following bound holds

‖rm‖ ≤
(

1− α2

β

)m/2

‖r0‖,(6.4)

where α = λmin((A+AT )/2) and β = λmax(ATA); see [96], [98], [275]. Although not
sharp in general, the bound (6.4) is commonly used in the context of discretization
methods for partial differential equations to show that certain preconditioning schemes
based on multilevel techniques provide convergence estimates that do not depend on
the discretization parameters. This fact is usually established by showing that both
α and β are bounded independently of the mesh size; see, e.g., [13], [57], [261], [281],
[326], [348], and references therein. See also Starke [315] for a similar approach using
the field of values and Eiermann and Ernst [92] for a complete derivation. We also
mention the very recent paper by Beckermann, Goreinov, and Tyrtyshnikov [28],
where the bound (6.4) is improved.

Most convergence analyses of Krylov subspace methods, such as those described
so far in this section - including those leading to the bounds (6.3) or (6.4), indicate a
linear convergence rate, since they are based on asymptotic bounds. Nevertheless, in
many occasions, these methods display faster convergence, and this has been called
superlinear convergence. By this (non-traditional) superlinear convergence it is meant
that the reduction of the residual norms is linear, but that the linear rate often in-
creases, i.e., it accelerates as the iterations proceed; see [243, p.9] for an alternative
definition of superlinear convergence. This behavior has been nicely characterized in
the symmetric case, see, e.g., Axelsson and Lindskog [17], van der Sluis and van der
Vorst [331]. In particular, it has been argued that once some of the roots of the poly-
nomial defining the Krylov subspace method approximate certain eigenvalues of A,
from then on the process behaves in the same manner as a new process with the same
Krylov subspace method, where the initial residual has been stripped of all eigenvec-
tor components corresponding to these eigenvalues, and the rate changes. We also
mention the work of Beckermann and Kulijlaars [29], where superlinear convergence
for CG is studied using tools from potential theory; see also the recent paper [207].

In the nonsymmetric case, different approaches have been proposed, including
some generalizations of the concepts for the symmetric case. A bibliography on the
subject can be found in the recent paper [301]. In this last reference a new general
analytic model of superlinear convergence is presented. Briefly, this model says that
as soon as the Krylov subspace Km(A, r0) approximates well an invariant subspace
of A, from then on the process behaves in the same manner as a new process with
the same Krylov subspace method, where the initial residual has been stripped of all
components lying in that invariant subspace. One measure for the approximation of
these subspaces is given by the so-called gap, which is related to the canonical angles
between the subspaces.

We mention another recent contribution to the understanding of superlinear con-
vergence of minimal residual methods by Kaporin [199], where a special conditioning
measure is introduced using, among other parameters, the distance from the spectrum
of A to the origin.
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The relation between the residual polynomial and the convergence of Krylov sub-
space methods has motivated the study of these polynomials in greater detail. Infor-
mation, either explicit or implicit, on the polynomial roots may be used to accelerate
or to analyze convergence as the iterations proceed. It can be shown that the roots of
the residual polynomial in FOM and CG coincide with the eigenvalues of the upper
Hessenberg matrix Hm in the Arnoldi procedure; see, e.g., Saylor and Smolarski [284].
These are called Ritz values. For simplicity, let us consider the symmetric case. It
can be shown that for m sufficiently large, some of the Ritz values tend to converge to
the extreme eigenvalues of A. In other words, some of the roots of the residual poly-
nomial of sufficiently large degree are very close to the extreme eigenvalues λ of A,
so that |pm(λ)| � 1. Analogously, it can be shown that the roots of the GMRES
and MINRES residual polynomials coincide with the eigenvalues of the generalized
eigenvalue problem

HT
m+1,mHm+1,mz = θHT

mz

(see Freund [125], Manteuffel and Otto [223]), or of the standard eigenvalue problem

(Hm + (HT
m)−1emh

2
m+1,me

T
m)z = θz;

see Paige, Parlett and van der Vorst [248], Simoncini and Gallopoulos [295]. These
latter eigenvalues have been first called harmonic Ritz values in [248], where it is shown
that these eigenvalues derive from an orthogonal projection method for approximating
eigenvalues of A−1. It is interesting to observe that in terms of A, harmonic Ritz values
are typically derived by means of an oblique projection method, whereas orthogonal
(Galerkin) projection leads to Ritz eigenpairs [20, section 3.2]; see also Morgan [231].
Relations between Ritz and harmonic Ritz values have been explicitly discussed by
Goossens and Roose [155].

It is common practice to use Ritz or harmonic Ritz values as approximate eigen-
values in both the symmetric and nonsymmetric case. In particular, these approxi-
mations are used in some of the acceleration procedures that we discuss in section 9.
On the other hand, in the non-normal case, eigenvalues of A and thus their approxi-
mations, may not play a role in the convergence. In fact, it was shown by Greenbaum,
Ptàk, and Strakoš [162], [164], that spectral information alone may provide misleading
information in the non-normal case. These conflicting views indicate that the conver-
gence analysis of Krylov subspace methods for general problems is a challenging area
of research. Both the right-hand side and the invariant subspaces associated with A
seem to provide more valuable information than the spectrum alone; the analytical
model in [301] combines these two quantities in an insightful manner.

7. Brief comments on preconditioning techniques. We give here a brief
introduction to preconditioning, mostly directed to the reader unfamiliar with this
concept and its use. Again, we refer to [26], [32], [54], [68], [273], and references
therein for details.

By preconditioning it is usually meant a transformation of the original problem
(1.1) to the form

M−1
1 AM−1

2 x̂ = M−1
1 b, x̂ = M2x,

where M1,M2 are two non-singular matrices with the following crucial properties:
(i) their inverse should be cheaply applicable; (ii) their use should entail low memory
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requirements; (iii) the transformed problem should converge faster (less computa-
tional time) than the original problem. There is a clear conflict among these three
requirements, especially for the construction of general purpose preconditioners. The
generic formulation above allows for left preconditioning (M2 = I), right precondition-
ing (M1 = I), or left-right preconditioning. Since only matrix-vector multiplications
with the (preconditioned) coefficient matrix of the type v = M−1

1 AM−1
2 z are required

in Krylov subspace methods, the matrices M−1
1 and/or M−1

2 need not be explicitly
known or computed. What is needed is a subroutine that computes, say, M−1

1 w for
any vector w. In some application-oriented preconditionining techniques, this feature
allows to fully meet requirements (i) and (ii).

The bound (6.3) suggests that in the symmetric positive definite case M1,M2 may
be chosen so that κ(M−1

1 AM−1
2 )� κ(A). Generalizing this concept, a good precon-

ditioner is such that in some sense M−1
1 AM−1

2 is close to the identity, for example,
with many eigenvalues clustered near 1. The simplest and cheapest preconditioner is,
for instance, M1 = diag(A), M2 = I, i.e., a scaling so that M−1

1 A has unit diagonal
entries. This choice may be effective when A is strongly diagonally dominant.

We can identify two major approaches: those problem specific, often used in con-
junction with a differential equation, and algebraic ones. A particularly successful
approach in the latter class consists of approximately performing a possibly implicit
factorization of the matrix A (or of its inverse), while maintaining low memory re-
quirements. For example an incomplete Cholesky factorization of a sparse positive
definite symmetric matrix has the form LLT , where L is derived in a way similar to
a complete factorization, so as to either maintain a certain level of sparsity, and/or
have values above certain threshold. The goodness of the approximation is measured
in terms of some norm of A − LLT . The symmetric and indefinite case provides
additional challenges.

In the nonsymmetric case, such incomplete factorizations are also widely used.
Even in the simplest cases, however, the amount of success often depends on the user
ability to tune the fill-in and threshold parameters. Unfortunately, these algebraic
approaches do not work well in all cases. As we discussed briefly in the previous
section, part of the difficulty in the nonsymmetric case is that the convergence of
the Krylov subspace methods does not depend only on the eigenvalues, especially in
the non-normal case. In particular, the convergence may not depend only on their
relative position in the complex plane, e.g., clustering. Nevertheless, incomplete LU
factorizations, especially using thresholds, and sparse approximate inverse factoriza-
tions can be very effective for many problems. Other widely used preconditioners
are multigrid and domain decomposition techniques, which are commonly applied by
means of a subroutine, since an explicit expression for them is not needed; see, e.g.,
[100], [326], and [329]. For harder problems different types of preconditioners can be
combined to optimize the trade-off between efficiency and computational constraints.
We stress here that recent work on preconditioning has made iterative methods for
certain problems closer to direct methods in terms of robustness [32], [100], [326].

8. Reducing the cost I: restarted and truncated methods. The methods
based on the (full) Arnoldi recurrence for nonsymmetric matrices are in general very
expensive, in their original form. A large number of iterations may be required to
achieve a sufficiently accurate solution, so that the Arnoldi matrix Vm becomes un-
acceptably large to be stored and to be kept orthonormal. The standard procedure
consists in restarting the method when a maximum subspace dimension is reached.
More precisely, after say, m iterations, the process is interrupted, and the current ap-
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proximation xm and associated residual rm are computed. These become the starting
quantities for the new recursion that is executed for at most m iterations. Clearly,
any of the methods discussed in the previous sections could be used at each restart,
such as GMRES, FOM, Minpert, and the restarted versions are denoted GMRES(m),
FOM(m), Minpert(m), etc.; we also refer to Chronopoulos [69] for a different minimal
residual-type implementation of the same idea. The overall procedure for a maximum
“maxit” number of restarts works as follows

Given A, x(i)
0 , b,m, maxit

while i <maxit
Run m iterations of the chosen method and get x(i)

m

Test ‖r(i)m ‖ = ‖b−Ax(i)
m ‖. If satisfied then stop

Set x(i+1)
0 = x

(i)
m , i = i+ 1

end

The iteration above is a first example of nested iterations, where an (outer) it-
eration requires an (inner) iteration at each step; we discuss more advanced nested
procedures later in this section and in section 10. We also mention that in some cases,
the efficiency of this type of nested iteration can be improved by judiciously playing
with low and high accuracy computation; see Turner and Walker [330].

The advantage of a restarted procedure is that at most m iterations of the Arnoldi
method are carried out, so that both computational costs and memory allocations per
cycle are under control. On the other hand, optimality properties of the process, as
in GMRES or Minpert, are lost after the first restart. As a result, the overall process
may not converge. In the case of GMRES, for instance, the outer recurrence may
stagnate with ‖r(i+1)

m ‖ ≈ ‖r(i)m ‖ for all i. Note that in GMRES the residual norm
cannot increase in the outer iteration, since the optimality of the inner GMRES step
ensures that ‖r(i)m ‖ ≤ ‖r(i)0 ‖ for all i. If stagnation occurs, a simple cure is to enlarge
the maximum allowed subspace dimension, m, to enrich the subspace information.
We stress however that enlarging the subspace dimension does not always ensure
faster convergence; see Eiermann, Ernst, and Schneider [94], Embree [102], for some
critical examples and for pointers to further numerical evidence. Moreover, choosing
a larger m may not be possible in general, especially on large problems, since m is
usually chosen as the maximum dimension affordable, although judiciously selecting a
dynamic subspace dimension may provide some advantages; see Joubert [197]. When
restarting is used, the GMRES residual may not be the most significant direction
vector to carry over to the new restart. The residual r(i)m is a linear combination of
all m + 1 basis vectors (cf. (2.16)); in particular, if r(i)m is mostly in the direction
of the first basis vector v1, that is r(i)m is almost a multiple of v1, then at the next
restart the starting vector r(i+1)

0 ≡ r
(i)
m builds a Krylov subspace that is very close

to the previous one, so that no significant approximation improvement is observed.
This argument partially explains stagnation. In fact, if vT

m+1r
(i)
m 6= 0, then the overall

generated space in two consecutive restarts of size m is the same as that obtained by
performing 2m steps of the unrestarted method [94], [289]. Clearly, in this case the
two procedures differs in the way they determine the solution within this subspace of
dimension 2m. A natural strategy to ensure that the overall subspace generated after
restarting the method has maximum dimension (in exact arithmetic) is to enforce that
the new direction vector has non-negligible component onto vm+1. Such requirement
is automatically satisfied by FOM, since r(i)m is a multiple of vm+1; see (2.30). In this
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sense, FOM may be more appealing than GMRES in a restarted context; see also the
relevant discussion in [298, section 5]. Other schemes can be coupled with GMRES
at restart time, resulting in better restarting strategies than restarted GMRES; see,
e.g., the strategy proposed in [288].

Recent efforts have focused on enriching the information carried over at restart
time. The main motivation is that, except for the current approximation to the
solution, at each restart all information generated during the inner Arnoldi iteration
is completely lost. Numerical evidence showed that there is relevant information that,
if kept, may help enhance later restarts. These issues are discussed in the following
paragraphs. A recent experimental analysis by Zhong and Morgan [351] also pointed
out that the eigencomponents of the GMRES residual vector may significantly vary
at different restarts, showing a complementary role of various parts of the spectrum
at restart time.

A simple way to maintain information from previously built vectors while limiting
memory requirements, is to discard older vectors in the basis, that is, only the last j,
say, vectors in the basis are kept orthogonal to each other. Then the summation in
the basic recurrence (2.6) becomes

hk+1,kvk+1 = Avk −
k∑

i=max{1,k−j+1}

hikvi .

The set of orthogonal Krylov subspace vectors is dynamically updated and after the
first j steps, at each iteration the oldest vector leaves the set and the last computed
vector enters the set. In this way, the original Arnoldi procedure is truncated; however,
the relation (2.8) remains valid, but only j consecutive columns of Vm are orthonormal,
and the upper Hessenberg Hm is banded with upper bandwidth j. The fact that
Hm is banded allows to progressively update the approximate solution xm, while
storing only the last j columns in the matrix Vm. In this manner restarting can be
avoided, although the selection of j may require some tuning. Truncated versions of
both GMRES and FOM can be derived, as shown by Saad and Wu [277], and Saad
[269], respectively; in [270] a more efficient implementation of the original truncated
FOM was also introduced. The advantages of these procedures over their restarted
counterparts are not always apparent for general nonsymmetric matrices; see e.g., [273,
sections 6.4.2, 6.5.6]. However, a recent analysis in [300] shows that if the original full
(non-truncated) method converges smoothly and reasonably fast, then the truncated
scheme only experiences a small convergence delay; see also Jia [192] for a similar
discussion specific for truncated FOM. A natural question when discussing truncation
strategies is whether it is necessarily the wisest thing to keep the latest basis vectors;
in general, some of the discarded vectors might have been more significant than the
ones that are kept. Proposed strategies on how to choose the “good” vectors are
discussed in the next section.

9. Reducing the cost II: augmented and deflated methods. The gen-
eral idea of deflation and augmentation methods is to determine an approximation
space of dimension m as the direct sum of two spaces of smaller dimension, as
span{v1, . . . , vk, w1, . . . , wm−k}: the first k vectors are determined using the standard
Arnoldi procedure with the current residual, while the remaining vectors w1, . . . , wm−k

contain relevant information saved from previous outer cycles.
The various techniques differ either on the strategy used to compute these latter

vectors, or on the way these are included in the approximation procedure. A thorough
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analysis of these acceleration procedures in Hilbert spaces is presented in [94]. In
there, various approaches proposed in the literature are presented within the same
framework, and some elegant relations among the discussed methods are uncovered.
Below we review some of the principal techniques, while we refer to the original papers
for a more detailed presentation and for performance evaluation.

In [232], Morgan proposes to compute w1, . . . , wm−k as approximate eigenvectors
generated in the current approximation space, for example Ritz vectors in the case of
FOM, or harmonic Ritz vectors in the case of GMRES. This strategy seems to work
well when approximate eigenvectors associated with a group of small (in magnitude)
eigenvalues are retained. The rationale behind the use of a nearly invariant sub-
space U is that the residual obtained after projection onto the so-called augmented
space has little components onto U ; see, e.g., Eiermann, Ernst, and Schneider [94,
Proposition 4.1].

It can be shown that if the approximate eigenvectors are selected as Ritz
or harmonic Ritz vectors (see section 6 for their definition), then the subspace
span{v1, . . . , vk, w1, . . . , wm−k} is still a Krylov subspace generated by A, but with
a different starting vector. As an example, let w1, w2 be two harmonic Ritz vectors
with θ1, θ2 associated harmonic Ritz values. We first notice that Awj − θjwj = γjrm,
j = 1, 2 for some γj , where rm is the GMRES residual at the current cycle; in partic-
ular, this means that both eigenresiduals are multiples of the GMRES residual. Then
setting s = γ2w1− γ1w2 and letting v1 = rm/‖rm‖ be the new cycle initial vector, we
have (see Morgan [233])

span{s,As, . . . , Am−1s} = span{w1, w2, v1, Av1, . . . , A
m−3v1}.

The idea of implicitly including the eigenvectors in restarted GMRES is first discussed
by Morgan [233], while a more stable implementation is proposed in [234], where the
inclusion of the enriching vectors is done within the Krylov subspace during each
cycle. We also point to Baglama et al. [19] for an implementation of this idea using
the Implicitly Restarted Arnoldi method of Sorensen [314]. This strategy seems to be
particularly effective when a-priori information on the problem confirms the presence
of a group of small (or more generally outlying) eigenvalues. In particular, if spectral
information is available from the application, then this should be directly injected
into the process, possibly with an explicit deflation procedure; see below. We refer
to Saad [274] for some theoretical results establishing bounds for the residual in the
Krylov subspace augmented by nearly invariant subspaces, both in the symmetric and
nonsymmetric cases. The success of these augmented strategies also depends on the
matrix being not too far from normal.

Available spectral information may be included in the restarted process in the
form of acceleration procedures, such as polynomial preconditioning and explicit de-
flation strategies. Polynomial preconditioners are of the form M−1 = p(A) for some
polynomial p; see, e.g., [97], [123], [193], [196], [271]. The approach using polynomial
preconditioning may be implemented by explicitly applying a conveniently chosen
polynomial before each restart. Several strategies have been proposed, which mostly
differ on the type of polynomial explicitly generated, either at each restart or once
for all cycles. See [239], [285], [316], for some examples where the chosen polynomial
p = p(λ), p(0) = 1, is applied to the residual rm as r̂m = p(A)rm; the approximate
solution is updated accordingly. The Krylov subspace method is then restarted with
r̂m. Most commonly, spectral information is employed in the form of eigenvalue ap-
proximations, as polynomial roots, or by determining a least squares polynomial in
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a region possibly including the matrix eigenvalues. Such an approach is particularly
convenient with symmetric problems, or with positive definite matrices having eigen-
values with small imaginary part. On the other hand, it was shown by Sorensen [314]
that polynomial information computed within the Arnoldi procedure can be applied
without explicitly performing matrix-vector multiplications with A; the resulting ap-
proach is the implicitly restarted method by Morgan [233] that we discussed in the
previous paragraph.

If the spectral information carried around is limited, it may be convenient to
explicitly deflate the eigenvector components and directly solve the deflated problem.
We begin our description of this technique with the case of A symmetric and positive
definite. Let the columns of matrix W be good eigenvector approximations of A. Let
x0 be a starting approximation such that r0 = b−Ax0 ⊥ R(W ). Then an approximate
solution can be determined as x0 + z where z solves

(A−AW (WTAW )−1WTA)z = r0, r0 ⊥ R(W );(9.1)

see, e.g., [105], [106], [122], [222], [244], [278]. The coefficient matrix needs not be
computed explicitly. In practice, one can compute Ŵ = AW , factorize the small
matrix WT Ŵ once for all, and compute the matrix vector multiply as

v̂ = Av, y = (A−AW (WT Ŵ )−1WTA)v = v̂ − Ŵ ((WT Ŵ )−1(WT v̂)).

A more general formulation is possible, that does not require the initial constraint
r0 ⊥ R(W ). Indeed, the solution x can always be written as x = x0+
W (WTAW )−1WT r0 + PDz, where PD = I − AW (WTAW )−1WT and y is any
solution to the singular (but consistent) linear system PDAz = PDb; see Nabben
and Vuik [235]. An iterative procedure following this approach reduces to (9.1) if
r0 ⊥ R(W ).

It is shown by Saad et al. [278] that the approach in (9.1) can be nicely inserted
into a CG-type iteration, and that the recurrence does not break down, in spite of
the singular coefficient matrix. Moreover, the upper bound (6.3) for the convergence
rate of CG holds with κ = λmax/λk, where λk is the smallest nonzero eigenvalue
of A. In particular, if exact spectral information of A is available about some critical
region of the spectrum, say the region closest to zero, convergence of the deflated
method is only driven by the remaining (nonzero) eigenvalues of A. It should be noted
that the procedure above amounts to finding an approximate solution to Ax = b in
the space spanned by W and the Krylov subspace vectors, making explicit the link
between deflation and augmented procedures. In other words, the deflation procedure
explicitly solves the linear system in the known eigenspace, while it uses CG to solve
for the remaining invariant subspace. The matrix W may be either available from
the application problem, or computed by means of a pre-processing with a (sparse)
eigenvalue solver. We refer to Perotti and Simoncini [258] for an application with
complex symmetric matrices in a structural dynamics application, where the known
approximate eigenvectors correspond to the problem rigid modes. There is an elegant
and insightful connection between the explicit deflation method presented above and
the so-called coarse grid correction preconditioning, a well established approach in
the domain decomposition literature; see, e.g., [261], [326]. This relation is uncovered
by Nabben and Vuik in [235]; see also [236], [247],

The procedure can be generalized to nonsymmetric A. The problem to be solved
becomes

(I − USWT )Ax = (I − USWT )b,
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where S = (WTAU)−1 and the columns of U , W , span approximate right and left
invariant subspaces, respectively, associated with a group of “undesired” eigenvalues;
see Chapman and Saad [66]. However, it was shown in [94, Theorem 4.6] that if
an exact invariant subspace of A is available, the residual norm obtained with this
approach is not smaller than that obtained by using the corresponding augmented
technique. In case of nearly invariant subspaces the comparisons are less decisive.

Finally, an adaptive approach close to those described above is based on the idea
of translating a group of small eigenvalues by means of a series of low-rank projections
of the coefficient matrix of the form

Ã = A(I + u1w
T
1 ) · · · (I + ukw

T
k ).

where uj , wj are the right and left eigenvectors associated with the eigenvalues to
be translated; see Kharchenko and Yeremin [204]. The Krylov subspace method is
thus applied to Ã. If a restarted method is employed, then Ã is updated at each
restart, by possibly modifying the eigenvalues to be translated. We should mention
that as described in previous sections, the whole procedure may be applied when
A is already a preconditioned matrix, giving rise to a “two-level” preconditioning
strategy; see, e.g., Nicolaides [244], Padiy, Axelsson, and Polman [247], Carpentieri,
Duff, and Giraud [62]. In particular, in [62] the issues associated with an effective
implementation of this approach on real application problems are explored; in Giraud,
Gratton, and Martin [144] additional theoretical results are reported, together with
the description of applications to the solution of sequences of linear systems. The
accuracy with which spectral information is obtained is crucial for the performance
of the method.

A very promising generalization of augmentation procedures aims at determining
augmentation spaces based on information other than spectral invariant subspaces, in
the hope that performance will not crucially depend on the presence of well identified
eigenvalue clusters. At each restart, the strategy decides which subspace of the sub-
space available should be kept to augment the Krylov subspace at the next restart.
The analyzed space includes previously kept vectors, as well as the vectors generated
in the current cycle. Usually, the new Krylov subspace vectors are orthogonalized
with respect to the kept basis, so that completely fresh information is added.

In de Sturler [83] this general strategy, called GCROT, is employed within an
inner-outer method; see section 10 for a more detailed description of inner-outer
methods including GCRO. The outer method used is restarted GCRO while the inner
method is GMRES. At each iteration of GCRO, m steps of GMRES are carried out,
an approximate solution and a Krylov subspace basis are generated. This inner basis
is kept orthogonal also with respect to the outer GCRO basis built so far. At the
end of the inner GMRES cycle, a subspace of dimension p1 < m is selected from
the GMRES space, to complement the outer basis. The proposed strategy selects the
subspace that provided the smallest inner residual norm. The actual algorithm is even
more flexible, but for ease of presentation we restrict to this “simpler” implementation.
The outer process then proceeds one more step, and the described process is repeated
until restart time for GCRO. If after the addition of the inner vectors the outer basis
becomes larger than the maximum allowed dimension, truncation takes place and
only the most significant vectors are retained; this step is carried out by comparing
the residual components in the combined inner-outer space, and those in the inner
space; we refer to [83] for a complete description of this approach. The results are
in general quite satisfactory, and in some nontrivial instances the method may even
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compete with full (unrestarted) GMRES. Unfortunately, the current implementation
requires the selection of as many as six parameters, which may be hard to tune. With
some practice, however, some of these parameters may be fixed, as suggested by the
author.

A simplified version of this approach, fully based on restarted GMRES has been
recently proposed by Baker, Jessup, and Manteuffel [23]. In this case, at each restart
an approximate solution is constructed by using the generated Krylov subspace and
an additional basis, in which each of the k vectors contains “error” information of each
previously built k subspaces. In spite of the large number of numerical experiments
on different benchmark problems, neither of these two methods seems to perform
consistently better than the other. This is certainly a very promising area of research,
i.e., to be able to substantially improve the performance of Krylov subspace method
on large applications, when no a-priori information on the problem is available.

10. Flexible methods with variable preconditioning. Flexible Krylov sub-
space methods refers to a class of methods in which the preconditioner is allowed to
change from one step to the next. The ideas described in this section are most gen-
erally used with right preconditioning as in (1.2). Thus, at each step of the Krylov
subspace method one needs to compute AM−1vk (and then usually orthogonalize this
vector as in (2.6)). This is performed in two steps: first solving the preconditioning
equation

Mz = vk,(10.1)

and then computing Az.
One of the motivations for these flexible methods with variable preconditioners is

the need to solve each preconditioning equation (10.1) only approximately. In other
words, when solving the system (10.1) one may have a different matrix, say M = Mk,
for each k. Often in these cases, an approximate solution ẑ of (10.1) is determined so
that the associated residual falls below some prescribed (inner) tolerance, i.e., such
that

‖vk −Mẑ‖ < εk.(10.2)

This is done, e.g., by Dolean and Lanteri [84], Elman, Ernst, and O’Leary [99] using
multigrid, or by Warsa and Benzi [343] using a two-stage preconditioner, one of which
is variable; see also Carpentieri [2]. Furthermore, in certain cases, preconditioners can
be updated with newly computed information, e.g., as by Eirola and Nevanlinna [95]
(see also [51], [340], [346]), or when a preconditioner such as SOR uses a parameter
which can be improved as the iterations proceed [257]. We discuss another motivation
in more detail later in this section, where the preconditioner is itself a call to a Krylov
subspace method.

We begin by briefly describing a flexible variant of GMRES, called FGMRES,
proposed by Saad [272]. When we have a fixed right preconditioner, the approximation
xm is written as (cf. (2.14))

xm = M−1Vmym.(10.3)

With right variable preconditioning, clearly M−1Vm 6= [M−1
1 v1, . . . ,M

−1
m vm], there-

fore the final approximate solution xm cannot be recovered at convergence by means
of (10.3). Instead, during the recurrence, one computes zk ≈ M−1

k vk, k = 1, . . . ,m,
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and collects these vectors in Zm = [z1, . . . , zm], so as to write

xm = Zmym.(10.4)

The corresponding Arnoldi relation is AZm = Vm+1Hm+1,m and the vector ym is
obtained by the same minimization (2.17).

We make several observations. The subspace R(Zm) is not necessarily a Krylov
subspace. Unlike the situation in several methods described in sections 8 and 9, there
may not exist any Krylov subspace containing R(Zm); for a special case though, see
the end of the section. Nevertheless, as long as R(Zm) ⊂ R(Zm+1) and thus the sub-
space keeps growing, there is no breakdown, and the sequence ‖rm‖ is nonincreasing;
cf. the analysis by Eiermann and Ernst [92]. In this method, the storage is essentially
doubled, since we have to store both Zm (to get the iterates as in (10.4)) and Vm (to
keep orthogonalizing against its columns).

Following analogous procedures, flexible variants of other preconditioned algo-
rithms can be derived, such as variable preconditioned CG [153], [245], flexible
CG [113], flexible QMR [322], or flexible BiCG and Bi-CGStab [337].

A case of special interest, both from a practical as well as from a theoretical
point of view, is given by the possibility that the variable preconditioner Mk be a
call to a Krylov subspace method, with either a larger tolerance, or a fixed number
of iterations (or a combination of both). This preconditioner is referred to as the
inner iterative method (or inner iterations) and the overall method as an inner-outer
method, or sometimes as a nested method. Examples of these include GMRESR by
van der Vorst and Vuik [335], [338], [339], where both the outer and the inner are the
GMRES method. GMRESR is in fact a particular case of GMRES?, a general inner-
outer method where the outer method is GMRES [335]. Conceptually, GMRESR can
be seen as FGMRES with an inner iterative method. In practice, the implementation
is different since GMRESR is based on GCR (see section 2.2), and furthermore in
the original proposal for GMRESR [335], one or more additional steps of LSQR by
Paige and Saunders [251] (see section 2.3) are performed to guarantee that there is
no breakdown, i.e., that the subspace keeps growing.

The first paper describing a Krylov subspace method for variable precondition-
ing was possibly by Axelsson and Vassilevski [18], where the Generalized Conjugate
Gradient method (GCG) is used; see also [13]. GCG uses orthogonal directions zi,
i = 1, . . . ,m, (with respect to a particular inner product) to span a subspace in which
the approximate solution xm is taken so that the residual norm is minimized (in some
norm induced by some - possibly different - inner product); see Axelsson [12]

It turns out then, that FGMRES and GMRESR are special cases of GCG with
the appropriate choices of inner products, although van der Vorst [333, p. 91] says
that the GMRES? implementation is a more efficient computational scheme. The
Flexible CG of Notay [245] is also a particular case of GCG.

Another way of looking at these inner-outer methods is to view them as having
polynomial preconditioners (as defined in section 9), where the polynomial changes
from one step to the next, as is implicitly defined by the inner Krylov subspace
method. We mention in passing that a fixed polynomial preconditioning is often not
competitive; see, e.g., Faber and Joubert [109].

De Sturler [81] made the observation that in the inner-outer methods just de-
scribed, the inner iterative method does not take advantage of any of the information
available from the subspace of the outer iteration. He proposed that the inner iteration
take place in a subspace orthogonal to the (outer) Krylov subspace. In this manner,
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the inner iteration would minimize the residual over both the inner and the outer
subspaces. Experiments in [81] indicate that in some cases, the additional cost of
orthogonalizations may be justified, and the resulting method, the already discussed
GCRO, may perform better than the inner-outer methods (without orthogonaliza-
tions).

In inner-outer methods, when the outer and the inner methods are the same, e.g.,
FGMRES-GMRES, FQMR-QMR, GMRESR, it is shown in [298] that the (global)
iterate xm lies in an m-dimensional subspace of a larger Krylov subspace, of dimen-
sion p, where p is the total number of inner iterations; cf. also [81] and [333, p. 93]. It
should be clear that these methods cannot find a better approximation than the corre-
sponding minimum residual method over Kp, but of course the advantage is that many
fewer vectors are kept in storage, and fewer calculations are performed as well. If one
fixes the number of inner iterations, e.g., using FGMRES-GMRES(k), it is natural to
compare the performance of these methods with the restarted methods of section 8,
using the same amount of storage. An argument based on the minimization properties
of the outer method can be made, indicating that one can expect that in general the
inner-outer method would outperform the truncated method. Experiments indicate
that this is often the case, but not always; see further details in [298].

11. Inexact methods. In the first part of this section we return to considering
the matrix A, and Krylov subspaces associated with it. This matrix may represent
the already preconditioned operator AM−1 or M−1A. As we have seen, this matrix
is needed as an operator to produce a matrix-vector product z = Av. Inexact Krylov
subspace methods is the name given to a class of methods where this matrix-vector
product is not performed exactly. Instead, we have

z = (A+ E)v = Av + f,(11.1)

where E is some error matrix, which may change from one application of the operator
A to the next. We remark that the magnitude of ‖E‖ can be quite large, that is, we
are not discussing here small perturbations, such as those arising in finite precision
arithmetic.

There are many scientific applications where the inexact matrix–vector prod-
uct (11.1) appears naturally. For example, when using approximately a Schur com-
plement as in Mandel [221], Maryška, Rozložńık, and Tůma [225], or Smith, Bjørstad,
and Gropp [312], or other situations where the operator in question implies a solu-
tion of a linear system, such as in certain eigenvalue algorithms; see Golub, Zhang,
and Zha [154], Simoncini and Eldèn [293]. Other examples include cases when the
matrix is very large (and/or dense), and a reasonable approximation can be used; see
Carpentieri, Duff, Giraud, and Sylvand [63], Cundy, van den Eshof, Frommer, Lippert,
Krieg, and Schäfer [76].

A series of experimental reports by Bouras, Frayssé, and Giraud [37], [38], [39],
have brought to the fore interest in this class of methods, since the authors observed
that the norm of the error matrix should be small during the first iterations of the
Krylov subspace method, but that it can grow at later stages of the method. In other
words, as the iterations proceed, the matrix-vector product can be more and more
inexact. The authors posited that if one restricts the inexactness at the step m of the
Krylov subspace method in (11.1) by

‖f‖ ≤ ε

‖rm−1‖
,(11.2)
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the overall method maintains its convergence properties. Their experiments show that
this was true in some cases, but not in others.

Let Ek be the error matrix at the kth iteration. The Arnoldi relation (2.7)
becomes

AVm = Vm+1Hm+1,m − [E1v1, E2v2, . . . , Emvm]
= Vm+1Hm+1,m − [f1, . . . , fm].(11.3)

This is another situation where the columns of Vm do not span a Krylov subspace
generated by the matrix A. Nevertheless, the subspaces R(Vm) are nested, and as
long as the new vector (A+Ek)vk is linearly independent with respect to the vectors in
R(Vm), a minimal residual method or a method with a Galerkin condition converges
to the solution of (1.1); see, e.g., Eiermann and Ernst [92]. On the other hand, if
for some k, (A + Ek)vk ∈ R(Vk), then breakdown occurs. In Giraud, Gratton, and
Langou [143, Theorem 1] sufficient conditions on ‖Ek‖ are given so that only a benign
breakdown occurs, with which the GMRES computed solution can still be obtained.

Analysis of inexact methods can be found in [299], [305], where bounds of the
norm of the difference between the computed residual r̃m and the true residuals
rm = b − Axm, i.e., the residual gap, were given in terms of the magnitude of the
error matrix. The computed residual is usually obtained from the method directly,
for example, as in (2.30). Let Wm = Vm+1Hm+1,m, and let ym = [η(m)

1 , . . . , η
(m)
m ]T .

In [299] it is shown that for inexact GMRES

‖rm − r̃m‖ ≤
m∑

k=1

|η(m)
k | ‖Ek‖, and ‖WT

mrm‖ ≤ ‖Hm+1,m‖
m∑

k=1

|η(m)
k | ‖Ek‖ .(11.4)

From these bounds it can be seen that as long as the products |η(m)
k | ‖Ek‖ are small,

then the residual gap and the projection of the residual onto the subspace R(Wm) are
small, even if one of the factors, especially the norm of the error matrix is large. It
turns out that the magnitude of the components of ym is indeed decreasing, that is,
|η(m)

1 | ≥ |η(m)
2 | ≥ . . . ≥ |η(m)

m |, so that the magnitude of the error matrices can grow
as the iterations progress. We refer to [302] for a detailed analysis of this decreasing
pattern, while here we emphasize that it holds |η(m)

k | = O(‖e1β−Hk,k−1yk−1‖), where
‖e1β −Hk,k−1yk−1‖ is the residual obtained at the (k − 1)st iteration. We note that
the second bound in (11.4) indicates how far one is from the exact situation, where
one would have WT

mrm = 0. Bounds similar to those in (11.4) can also be obtained
for inexact FOM.

In [299], it is also shown that if

‖fk‖ ≤ `m
ε

‖r̃k−1‖
, for k ≤ m,(11.5)

then ‖rm − r̃m‖ ≤ ε, where `m is a problem dependent constant. Once this con-
stant is obtained or estimated, one has a reliable method to reduce the cost of the
matrix-vector product, dynamically changing how inexact it is, while controlling the
attainable residual norm; see also Giraud, Gratton, and Langou [143], where some
improvements of these criteria are given taking into account backward errors. This
discussion also explains why the criterion (11.2) failed in some cases in which the con-
stant `m is less than one, so that specific information from the problem to be solved
is needed to obtain a good estimate of `m. In most practical cases, if (11.5) is used, it
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was observed that the convergence curve for the inexact methods is identical to that of
the exact method. No deterioration of convergence is noticed, although experiments
with highly sensitive matrices or special right-hand sides, where convergence is in fact
delayed have been reported; cf., e.g., [305]. For applications of these ideas to specific
problems, see, e.g., [84], [119], [219], [282], [292], [306], [307], [308], [344].

When one uses a fixed matrix A, but a variable preconditioner, say such that
M−1

k = M−1 + Fk, then, as long as one can monitor Fk (or Fkvk) we are in the
situation described above since AM−1

k = AM−1 +AFk, and AFk is the error matrix
for this case. It follows from this observation that some flexible methods with variable
preconditioning described in section 10 can be recast in terms of inexact matrix-vector
products. One of the distinctions is that here we need to monitor the inexactness so as
to maintain the preconditioner effectiveness. We remark however that, as a key feature
of flexible methods, one obtains the approximation directly from the preconditioned
basis z1, . . . , zm as in (10.4). In particular, only the preconditioner is applied inexactly,
and not the coefficient matrix, so that the true (unpreconditioned) residual can be
evaluated exactly; see further the discussion in [299].

We mention that several authors have studied different aspects of the use of
inexact matrix-vector multiplication in iterative methods, sometimes in the context of
small perturbations, and in some other instances allowing for large tolerances (though
not letting them grow); see, e.g., [149], [152], [153], [317]. Golub and Overton [149]
were possibly the first to observe that the Conjugate Gradient method was robust
in the sense that convergence can be achieved with inexact matrix-vector products,
and in particular using inexact preconditioning. Golub and Ye [153] developed inner
stopping criteria of the form (10.2) so as to maintain superlinear convergence of CG.
This was improved by Notay [245]. These authors insisted on a small tolerance, and
obtained a small “delay” in the convergence, as compared to the exact matrix-vector
product case; see also [300], where an explanation is given for why this small delay
is possible. Here we allow larger tolerances, but we lose the three-term recurrence of
CG, and instead need the full orthogonalization of the new vector (A + Ek)vk with
respect to all previous ones; cf. (11.3). In a sense it seems that for CG there is a choice:
either one allows for small tolerances, keeping the three-term recurrence, and loosing
the orthogonality of the basis, ore one allows for larger tolerances in the matrix-vector
product, but as a consequence one needs more storage for the orthogonal basis.

We conclude by mentioning that the general analytic model of convergence given
in [301], and already mentioned in section 6 applies to inexact Krylov methods as well,
providing another explanation on why and how these methods work: at the beginning
of the computations one needs the matrix-vector product to be more exact, and once
the appropriate invariant subspace is well approximated, one can have more inexact
matrix-vector products.

12. General complex matrices. Most methods described in previous sections
can be employed with no change in case the linear system is complex, with the
use of the complex inner product; this is done for instance by Chatfield et al. [67],
Rusch [268], Joly and Meurant [194]. Note that often the methods and their im-
plementation are naturally presented in complex arithmetic; see, e.g., Freund and
Nachtigal [135], Gutknecht [167], [169], [170]. We refer to Saad [273, section 6.5.9] for
details on the implementation of GMRES.

In Jacobs [188] the idea of using BiCG with the conjugate initial residual as
auxiliary vector is explored, in a way that anticipates its use for complex symmetric
matrices (see section 13.3), although this specific structure is not mentioned; see
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also [279] for a similar approach and [224] for an analysis of the functional associated
with the CG method in complex arithmetic.

Complex matrices have in general complex eigenvalues, possibly with no specific
pattern or axial symmetry. In particular, if the spectrum largely surrounds the ori-
gin, Krylov subspace methods may be very slow. In this case, if no preconditioning is
available, one may want to solve the equivalent Hermitian system of normal equations
A∗Ax = A∗b, by means of an implementation of CG in complex arithmetic. Conver-
gence in this case depends on the spectral properties of A∗A, instead of those of A;
see also the discussion in Freund [124], Freund, Golub, and Nachtigal [132].

An alternative to the use of complex arithmetic is to work with the real form of
the problem Ax = b. Let A = R + iS, with R = (A+ A∗)/2 and S = (A− A∗)/(2i).
Then one can write the original system as[

R −S
S R

] [
Rex
Imx

]
=

[
Re b
Im b

]
.(12.1)

Other mathematically equivalent forms may be devised. This one is particularly inter-
esting because the coefficient matrix is real and has eigenvalues which are symmetric
with respect to the real axis. Moreover, if R is positive definite, the eigenvalues lie
on a half plane, a property that is well suited for Krylov subspace methods. For
general R, however, the system in (12.1) may not be easier to solve than the original
system. When the original matrix A has some convenient structure, say, e.g., banded
form, then one may consider reordering the rows and columns of the coefficient matrix
in (12.1) so as to maintain that structure. We refer to [80] for a thorough discussion
on different real formulations and on their use within preconditioned Krylov subspace
methods. The choice between the complex and real formulations is thus problem de-
pendent, with the availability of a good preconditioner also playing a role; see, e.g.,
Campobasso [60], Natarajan [242], Sarkar, Yang, and Arvas [280], for some numerical
experience on application problems. Note that in some of these cases the coefficient
matrix is in fact complex symmetric, for which specific strategies may be adopted;
see section 13.3.

13. Systems with special properties I: exploiting other forms of sym-
metry.

13.1. The role of an inner product. Inner (scalar) products have a funda-
mental role in devising effective Krylov subspace methods. The optimal procedures
discussed in previous sections all rely on minimizing a norm in the underlying in-
ner product, such as the energy norm (A-norm) for the Conjugate Gradients, or the
Euclidean norm for MINRES and GMRES. Clearly, minimization strategies may be
devised to obtain solutions that are optimal with respect to other inner products, such
as 〈x, y〉 = xTMy, where M is symmetric positive definite and may be either fixed or
variable throughout the iteration [27], [108], [168], [176], [281]. This latter case occurs,
for instance, in QMR, where the matrix M varies as the iteration proceeds [92]; other
typical examples include M = ATA or M = AAT , when A is nonsymmetric. In [108],
a diagonal matrix M is used in the context of restarted methods (see section 8); the
vector of diagonal entries is chosen proportional to the magnitude of residual entries
at restart. Suitable choices of M allow one to devise methods that minimize the error
even in the nonsymmetric case, by possibly employing Krylov subspaces other than
Km(A, r0); see, e.g., section 5. Interestingly, by playing with various inner products it
is possible to restate the given minimization problem in a seemingly more accessible
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way; see, e.g., Gutknecht and Rozložńık [176] and references therein. As a simple ex-
ample, the minimization in the A-norm of the error corresponds to the minimization
in the A−1-norm of the residual.

A thorough description of various algorithms based on specific M -inner products
can be found in Ashby, Manteuffel, and Saylor [11], Broyden [52], where the more
general class of M -normal matrices is discussed; see also section 13.2. In this class
also fall M -symmetric (or M -Hermitian) matrices, i.e., M -selfadjoint, defined as the
(possibly nonsymmetric) matrices A such that 〈x,Ay〉 = 〈Ax, y〉, that is, ATM = MA
[145]; see, e.g., Freund and Nachtigal [137] for a particularly convenient exploitation of
this property in Krylov subspace methods, and Gutknecht [168] for relations among
different methods derived by using different inner products. This view point has
found great application in the context of generalized eigenproblems, see, e.g., the
early references Grimes, Lewis, and Simon [166], Nour-Omid et al. [246].

The inner product framework has found an appropriate role in the analysis of
preconditioned iterations, where M is the preconditioner, or a quantity related to it;
see, e.g., the discussion in Axelsson [13, section 11.1.2]. In this case, often it can
be shown that the employed preconditioned method, e.g., MINRES or CG, is op-
timal with respect to the inner product defined by the preconditioner [100], [115],
[226]. As an example, the following algorithm generalizes the standard Arnoldi re-
currence to compute an M−1-orthogonal basis {v1, . . . , vm} of the Krylov subspace
Km(AM−1, v1):

Given v1, A, m, and M symmetric positive definite
w1 = M−1v1
τ = (wT

1 v1)
1/2

v1 = v1/τ , w1 = w1/τ

for i = 1, . . . ,m
v̂i+1 = Awi

v̂i+1 = v̂i+1 −
i∑

j=1

(wT
j vi+1)vj

ŵi+1 = M−1v̂i+1

τ = (ŵT
i+1v̂i+1)1/2

vi+1 = v̂i+1/τ , wi+1 = ŵi+1/τ

end

Note that this algorithm also generates the auxiliary basis {w1, . . . , wm} with wi =
M−1vi, i = 1, . . . ,m. We point out that the Arnoldi relation (2.7) is maintained, i.e.,
we have (AM−1)Vm = Vm+1Hm+1,m, but now the matrices Vm and Hm+1,m are not
the same as if one uses the Euclidean inner product. Other implementations can be
devised, that use for instance left preconditioning, see, e.g., [115], [226], [281].

Particularly appealing in some applications is the case in which, given a matrix A,
its symmetirc part M = (A + AT )/2 is positive definite. In this case, one can see
that the “preconditioned” matrix M−1A is equal to the identity matrix plus a skew-
symmetric matrix with respect to the M -inner product. In this way, it can be readily
seen that the Arnoldi process on M−1A in the M -inner product simplifies, resulting
in a three-term recursion associated with a tridiagonal matrix Hm; this fact has
been noticed some years ago by Concus and Golub [70], and Widlund [347], and
it has been reconsidered using different motivations; see, e.g., Arioli, Loghin, and
Wathen [7], Faber and Manteuffel [111]. We return to this property in section 13.2.
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In general, if the nonsymmetric matrix A is diagonalizable and has real and positive
eigenvalues, then there exists a symmetric and positive definite matrix M such that A
is M -symmetric or, in other words, A is similar to a symmetric and positive definite
matrix. In general such an M is difficult to determine, however, in case it can be
derived (as in, e.g., [11], [52], [34], [41], [118]), then a CG-type method with an M -
inner product may be employed, as discussed above, in spite of A being nonsymmetric.

More recently, interest has been extended to the case of symmetric but indefinite
M for the solution of linear systems as well as of eigenvalue problems [137], [191], [255],
[291]. This situation occurs very often in practice, in problems that are intrinsically
indefinite. In particular, it may happen that the given matrix A is nonsymmetric,
but it is M -symmetric with respect to a symmetric indefinite M , as in the following
example:

A =
[

2 1
−1 3

]
, M =

[
1 0
0 −1

]
.

In this case, the bilinear form 〈x, y〉 = xTMy does not define a proper inner product, as
it may happen that xTMx = 0 for x 6= 0 (just take xT = [1, 1] andM as in the example
above). Safeguard strategies have been proposed to overcome this weakness. The
structural complexity of indefinite inner products has motivated several theoretical
as well as computational studies in the past few years, for which the book [145]
provides solid foundations. From a computational stand point, exploiting the M -
symmetry leads to significant advantages within the two-sided Lanczos recurrence.
More precisely, let A be M -symmetric, for some symmetric M . Then, by choosing
r̂0 = Mr0 as auxiliary starting vector (see section 2.1), one can show that

ŵj = ξjMwj , j = 1, 2, . . .

where the ξj ’s are suitable scaling factors. Therefore, the left Lanczos basis need not
be recursively computed, leading to a simplified recurrence that does not require mul-
tiplications by AT . Freund and Nachtigal [137] present a detailed implementation of
this simplified procedure. This approach has found large application in precondition-
ing of symmetric but indefinite matrices, when the preconditioner is itself indefinite;
see, e.g., [291] and references therein. In this case, preconditioned versions of CG or
MINRES cannot be applied, and the simplified Lanczos or QMR procedures are a par-
ticularly appealing alternative to long-term recurrence schemes or to truncated meth-
ods. On the other hand, it is shown in [267] that BiCG on a symmetric saddle point
problem with a structured indefinite preconditioner is equivalent to preconditioned
CG, and safeguard strategies are proposed in [267] to avoid possible misconvergence
of the indefinite CG iteration.

We conclude this section devoted to the use of different inner products with point-
ers to some papers that attempted to significantly limit the use of any inner product
in Conjugate Gradient-type methods. These efforts aim to go beyond the use of semi-
iterative methods such as Richardson or Chebyshev methods, which make no use of
inner products and are therefore amenable to effective parallel/vector implementa-
tions; see Saad [273]. In particular, Fischer and Freund [116] present a polynomial
method that approximates the behavior of the Conjugate Gradient residual polyno-
mial with information generated with a few Krylov subspace iterations. The limited
numerical experience shows a similarity in the convergence behavior of the two poly-
nomials, although, as expected, the new residual polynomial seems unable to capture
the superlinear convergence of the Krylov subspace solver.
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13.2. Normal and B-normal matrices. Normality and B-normality are more
subtle properties that make it possible to generalize the discussion in section 13.1 to
certain matrices that have a less simple structure. Nevertheless, this structure can
be exploited to derive short-term recurrences in Krylov subspace methods. The key
property of normal matrices in this context is that if their eigenvalues lie on a line in
the complex plane, the Arnoldi recurrence simplifies, so that an optimal three-term
recursion results. This fact was amply discussed by Faber and Manteuffel [110] and
further analyzed by Liesen and Saylor [212].

For more general normal matrices, that is, for those normal matrices whose eigen-
values do not lie on a line, Huhtanen [186] more recently proposed an optimal (residual
norm minimizing) three-term recurrence based on the Lanczos method. The strat-
egy exploits the fact that when A is normal, the decomposition A = R + iS with
R = (A + A∗)/2 and S = (A − A∗)/(2i) satisfies AR = RA, that is, A and R com-
mute. Therefore, it is suggested to replace A with the Hermitian matrix R in the
generation of the Krylov subspace, and thus determine the solution as

min
xm∈Km(R,b)

‖b−Axm‖ = min
zm∈Km(R,Ab)

‖b− zm‖.

The approximate solution xm can be recovered from zm by a strategy that closely
resembles a flexible technique; see section 10. The algorithm proposed in [186] can
be easily implemented and the shown numerical results confirm the efficiency of the
approach on generic normal matrices, as compared to methods that do not take nor-
mality into account. It should be mentioned, however, that the algorithm might need
restarting in some specific cases; restarting strategies are also discussed in [186]. Re-
fined schemes can be obtained when further conditions are imposed to the spectrum
location, as described by Fassbender and Ikramov [112].

The special case of normal matrices in the form of scaled and shifted orthogonal
matrices, has received distinct attention, and specific implementations for large linear
systems have been proposed; see Jagels and Reichel [189], [190] and the references
therein.

Finally, a theoretically richer class is that of B-normal(s) matrices. A matrix A is
said to be B-normal(s) if there exists an Hermitian and positive definite matrix B such
that B−1A∗B is a polynomial of A of degree s. For instance, B-Hermitian matrices are
B-normal(1), since from A∗B = BA it follows B−1A∗B = A. B-normal(s) matrices
are interesting because they allow the construction of Krylov subspace methods with
s+ 2-term recurrence. However, they are not so interesting in practice in the context
of iterative methods, since it was recently shown in [212] that either the associated
iterative scheme converges very quickly, or for s large, the occurrence of a short-term
recurrence is lost.

13.3. Complex symmetric matrices. A square complex matrix is said to be
symmetric if A = AT , that is, A is equal to its transpose, with no conjugation.
This class of matrices arises in a variety of applications, such as electromagnetics
and acoustics. For this reason methods have been devised specifically tailored to
exploit this particular structure and they have proven to be superior to methods that
disregard this property. Joly and Meurant [194] combine the normal equations with
a special definite inner product. In some particular cases, their approach reduces to
one of the algorithms discussed below.

A special form of indefinite inner product has become quite popular when solving
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complex symmetric systems, and this is given by

[[x, y]] := xT y, x, y,∈ Cn.(13.1)

This is clearly not a definite inner product, as it may happen that [[x, x]] = 0 for
x 6= 0; take for instance the vector xT = [1, i] where i is the imaginary unit. Such
nonzero vectors are called isotropic [184]. Successful implementations of short-term
recurrences employing the inner product (13.1) have been proposed in the eigenvalue
context already by Cullum and Willoughby [75]. The Conjugate Gradient method can
be formally implemented with the usual Euclidean inner product replaced by (13.1).
The short-term recurrence generates a basis for the same Krylov subspace as with the
Euclidean inner product. However, the computed basis is different, since orthogonality
properties hold with respect to the indefinite inner product (13.1). This approach is
called COCG in van der Vorst and Melissen [334]; see also [74], [75]. The method
may break down if some basis vector is isotropic; however this is not the case if A
has n distinct eigenvalues; see Freund [124]. It is noticed in [334] that COCG often
behaves like BiCG, in terms of number of iterations, but with half the computational
cost. In fact, this is due to the interesting fact that if one starts the usual (Euclidean)
BiCG iteration with auxiliary vector r̂0 = r̄0 (i.e. with the conjugate of the starting
residual), then indeed the “right” recurrence is the same as that of COCG, while the
“left” recurrence is redundant since the constructed matrix satisfies Ŵm = Wm. In
terms of the two-sided Lanczos procedure, we have the following two relations,

AWm = Wm+1,mTm+1,m, A∗Wm = Wm+1T
∗
m,m+1

which are clearly the conjugate of each other for A = AT . This fact was fully ex-
ploited by Freund in [124], where a QMR procedure (quasi-minimum residual norm
in the Euclidean inner product) applied to this simplified Lanczos recurrence is pro-
posed and tested. In practice, the redundant auxiliary recurrence is not constructed,
and the indefinite inner product (13.1) is used throughout; we refer to Boyse and
Seidl [40], and [294], as well as the references therein for a more complete discussion
on using (13.1) with complex symmetric matrices.

A particular variant can be implemented when the complex symmetric matrix has
the form A = M +σI, with M real symmetric and σ ∈ C. Due to the shift-invariance
property of Krylov subspaces, i.e., it holds that Km(M, b) = Km(M+σI, b), the space
generated by A is the same as that generated by M . Therefore, if the starting residual
is real, a less computationally intensive real basis for the approximation space can be
generated, while complex arithmetic need be employed only to build the approximate
solution; see Freund [123] for an implementation.

A way around the indefinite inner product that still exploits the symmetric form
was proposed in Bunse-Gerstner and Stöver [55], where a Lanczos-type recurrence is
devised by using the basis Wm and its conjugate in the same recurrence, yielding the
following relation

AWm = W̄mTm + w̄m+1tm+1,me
T
m.

The method works with the Euclidean inner product, and is a special implementa-
tion of the coupled recurrence method proposed by Saunders, Simon, and Yip [283].
The approach relies on the general full unitary transformation T = WTAW , with
W ∗W = In and T tridiagonal complex symmetric. The Lanczos-type recurrence that
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partially completes the unitary transformation thus generates a matrix Wm with or-
thonormal columns. This allows the scheme to determine an approximate solution
by an (optimal) residual minimization, together with a short-term recurrence. The
resulting method is called CSYM in [55]. Convergence properties are also derived in
the same reference, showing that the behavior of the method depends on the extreme
singular values of A. In several of the experiments presented in [55], CSYM performs
very well compared to QMR and to CG applied to the system of normal equations;
see section 12.

A more “classical” approach consists of resorting to the double size real form.
Writing A = R + iS with R, S real and symmetric, the complex symmetric system
Ax = b may be written, e.g., as[

R S
S −R

] [
x1

−x2

]
=

[
b1
b2

]
, x = x1 + ix2, b = b1 + ib2.

Other formulations are possible (see section 12, and in particular (12.1)), by appro-
priately changing the block signs; see Axelsson and Kucherov [16], Freund [123]. In
the formulation above, the new coefficient matrix is doubled in size, but it is real
symmetric. In [123] it is shown that in general and without preconditioning, Krylov
subspace methods are not efficient when applied to this formulation. However, in [16]
the authors propose the following parameter-dependent formulation[

R− αS
√

1 + α2S√
1 + α2S −R− αS

] [
x1

z

]
=

[
b1
d

]
,

where α is a real nonzero parameter, and z, d are real vectors associated with the
solution and the right-hand side of the original system; see also the references in [16],
and also [206]. Here it is assumed that α is such that the real symmetric matrix
R+αS is nonsingular. Under the assumption that R and S are semidefinite and that
one of them is positive definite, the authors show that the Schur complement system
associated with the system above can be solved efficiently by using R+αS as precon-
ditioner. We refer to [16] for some considerations on the practical implementation of
this idea and for a detailed spectral analysis. A performance comparison with other
approaches is carried out with shifted systems (i.e., S = σI, σ ∈ R) stemming from
real applications. In section 14.1 we discuss more specific methods for shifted linear
systems.

Preconditioning complex symmetric matrices is a very active area of research and
no guidelines really exist up to today. Although we do not address this important issue
in this context, we would like to remark that in some cases, the selection of the iterative
method depends on the effectiveness of available preconditioners. Due to the lack of
a wide variety of robust preconditioners that maintain the complex symmetry of the
problem, practitioners often prefer to either employ non-symmetric preconditioners,
thus destroying the problem structure, or to handle the real form of the linear system.
To give standard preconditioners a chance, however, we close by noticing that a mere
“complexification” of an incomplete Cholesky-type preconditioner may sometimes be
very effective; see [297] for a practical application.

14. Systems with special properties II: parametrized systems.

14.1. Shifted systems. In this section we discuss the solution of systems that
depend linearly on a parameter σ. We start with the shifted form (A− σI)x = b and
then generalize it to (A− σB)x = b.
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In several applications the following nonsingular system needs to be solved

(A− σI)x = b, x = x(σ),(14.1)

for many tabulated values of the parameter σ, while the matrix A and the right-hand
side b remain fixed. If σ is very close to zero, then A− σI may be viewed as a special
perturbation of A, so that we expect x not to be too far from A−1b, depending on
the sensitivity of the coefficient matrix A. In general, however, σ varies in a possibly
wide range, so that (14.1) needs to be solved explicitly.

Krylov subspace methods are particularly appealing for these problems because
of the shift-invariance property of Krylov subspaces; see section 13.3. This allows one
to obtain approximate solutions for all values of the parameter, by generating a single
approximation space. The Arnoldi relation (2.8) can be rewritten as

(A− σI)Vm = Vm(Hm − σI) + hm+1,mvm+1e
T
m,(14.2)

and we emphasize that the matrices Vm and Hm are the same as in (2.8) and do not
depend on σ. Note that if A and b are real and σ is complex, then the matrix Vm+1

and the upper Hessenberg representation matrix Hm+1,m are both real. Moreover,
if A is real symmetric, then A− σI is real or complex symmetric so that short-term
recurrences apply; in particular, for σ ∈ C, A− σI is a normal matrix.

Analogously, the Lanczos relation (2.12) becomes

(A− σI)Wm = Wm(Tm − σI) + tm+1,mwm+1e
T
m.(14.3)

The rectangular matrices Hm+1,m and Tm+1,m are defined accordingly, following (2.9)
and (2.11).

All methods discussed in the previous sections that are based on the Arnoldi or
Lanczos relations can be generalized to handle the shifted forms (14.2) or (14.3). This
was first proposed by Datta and Saad [78], where a minimal residual method for each
shifted system was obtained by minimizing the residual r(σ)

m = b − (A − σI)Vmy
(σ).

For each parameter σ, this corresponds to solving (cf. also section 2.2)

min
y∈Rm

‖e1β0 − (Hm+1,m − σĨ)y‖, Ĩ =
[
Im
0T

]
∈ R(m+1)×m.

Clearly, the computationally demanding step of generating the basis vectors is carried
out only once for all parameters of interest, possibly leading to great computational
savings as compared to solving each shifted system separately. Moreover, as a function
of the number of parameters, memory requirements only depend on m.

In the case of the two-sided Lanczos process, or when A is symmetric, the banded
structure of Tm can be used to derive a short-term recurrence as in the unshifted
case. However, the direction vectors depend on the parameter σ in a way that we
discuss next. The general approach was first derived by Freund in [123] for CG
and in [126] for TFQMR. For instance, for the QMR method, let Q(σ)

m+1R
(σ)
m+1,m be

the QR factorization of the shifted Lanczos matrix Tm+1,m − σĨ. Since Tm+1,m is
tridiagonal, then R

(σ)
m = [Im, 0]R(σ)

m+1,m is upper triangular and banded with three
nonzero diagonals, i.e., semibandwidth 2. Then, assuming x0 = 0, the QMR solution
can be written as follows (cf. also sections 2.2 and 4). Set tm = [Im, 0](Q(σ)

m+1)
T e1β0

so that x(σ)
m = Vm(R(σ)

m )−1tm. As discussed in the previous sections, the banded
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structure of R(σ)
m allows one to derive a short-term recurrence for x(σ)

m . On the other
hand, this procedure forces to store the last few columns of P (σ)

m := Vm(R(σ)
m )−1, which

clearly depend on σ. Therefore, as many replications of these vectors are required
as the number of available parameters. Storage savings may be obtained if only
some of the solution components are required. In this case, only the corresponding
components in the vectors in P (σ)

m need be carried around. Depending on the number
of parameters, it may be more convenient not to form P

(σ)
m and store the matrix Vm

instead, or some of its row components, as needed. As a generalization, if DTx
(σ)
m is

of interest for some tall matrix D, then the small matrix DTP
(σ)
m should be stored in

place of the last columns of P (σ)
m .

The sensitivity of the symmetric positive definite matrix A and the role of the shift
have also been analyzed. In particular, Sleijpen and van den Eshof [304] study this
in connection with the solution of shifted systems arising in Tikhonov regularization
procedures; see also Frommer and Maass [141].

A short-term recurrence alternative to Lanczos-type methods in the nonsymmetric
case has been recently proposed by Frommer [139], where the Bi-CGstab(`) method
is adapted to handle several shifts simultaneously.

If a method based on the Arnoldi relation is used in the nonsymmetric case, the
shifted form still suffers from the known memory limitations associated with keeping
the whole basis Vm. Restarting or truncating are thus required; see section 8. To effi-
ciently exploit Krylov subspace invariance after restarting, all residual vectors of the
unconverged systems should be collinear. If this is not the case, the corresponding
subspaces are not equal and the method proceeds with completely uncoupled pro-
cesses for each shift after the first restart. Unfortunately, the residuals obtained with
GMRES are not collinear, so that the original method cannot be efficiently restarted
to solve the systems for all parameters simultaneously. An attempt to overcome
this problem was presented by Frommer and Glassner [140]. They propose to force
collinearity of the GMRES residuals by relaxing the minimization constraint for all
but one system, called the seed system, corresponding to the zero shift. In fact, the
seed system does not need to be associated with the zero shift, but any of the shifted
systems could be considered, after an appropriate parameter dilation; see Feriani et
al. [114]. Assuming that the starting residual r0 is the same for all shifted systems, in
[140] the nonseed residual rm = p̂(A− σI)r0 is obtained, with p̂(λ) = p(λ+ σ)/p(σ),
where p is the optimal residual polynomial associated with the seed system; a practi-
cal implementation is discussed in [140]. It is important to notice that p̂(λ) is defined
only if p(σ) 6= 0, and that the method is very sensitive to the actual magnitude of
p(σ). It is shown in [140] that convergence of all shifted systems can be obtained with
the restarted procedure if A− σI is positive real.

A way to completely overcome the collinearity problem in Arnoldi-based algo-
rithms is to resort to the restarted version of FOM (see section 2.5). Indeed, since
in FOM the residual vector is a multiple of vm+1 (cf. (2.30)), the residuals of all
shifted systems are naturally collinear. The FOM method can thus be restarted with
the same new direction vector for all unconverged shifted systems. More precisely,
r
(σ)
k = β

(σ)
k vk+1 for some scalar β(σ)

k . By taking v̂1 = r
(σ)
k /β

(σ)
k (= ±vk+1) at restart,

for one of the σ’s, the new Krylov subspace Km(A, v̂1) can be built. We denote by
V̂m the matrix whose columns span the new subspace, so that the new approximate
solutions can be written as x(σ)

m ← x
(σ)
m + V̂my

(σ)
m , with

y(σ)
m = (Ĥm − σI)−1e1β

(σ)
m , Ĥm = V̂ T

mAV̂m.
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Implementation details as well as numerical comparisons can be found in [290].
A similar situation arises if one wishes to solve the following parametrized system

(A− σB)z = f, z = z(σ),(14.4)

for several values of σ. The system (14.4) arises in a variety of applications, and
also in shift-and-invert approaches to solve eigenvalue problems [20]. If A or B is
nonsingular, the problem can be restated as a shifted system. For instance, assuming
B nonsingular, then

(AB−1 − σI)ẑ = f, z = B−1ẑ,(14.5)

to which the methods described earlier in the section can be applied. In particular,
if A and B are real symmetric and B is also positive definite, then the coefficient
matrix in (14.5) is symmetric with respect to the B-inner product, so that a short-
term recurrence method can effectively be applied, see section 13.1. Various aspects
related to the application of the Lanczos and MINRES methods to (14.5) with the
B-inner product have been recently analyzed by Meerbergen [226]. If B is not positive
definite, but AB−1 is J-symmetric for some matrix J , then this can be exploited as
described in section 13.2. For instance, if A is symmetric, then AB−1 is B-symmetric
and the theory applies.

A less restrictive approach consists of applying (A − τB)−1, for a judiciously
chosen τ , that is,

(A− τB)−1(A− σB)z = (A− τB)−1f.

Clearly, τ should be chosen so that (A− τB) is nonsingular, but also so as to improve
the spectral properties of the resulting matrix; in the eigenvalue literature, this is
known as the Cayley transformation [20], [151], and it acts on the original system as
a preconditioner. The case of symmetric A and B has been analyzed in [226], where a
comparison of Lanczos and MINRES methods is performed, together with a detailed
analysis of error estimations in finite precision arithmetic. Unless other special prop-
erties of the coefficient matrices can be taken into account, the preconditioned system
can be solved by one of the Krylov subspace methods mentioned in the previous sec-
tions, keeping in mind that for large problems, the matrix (A − τB) should not be
inverted explicitly; see also section 11.

The preconditioner just described may be viewed as a convenient strategy that al-
lows one to still exploit the shifted structure of the problem. Similar properties charac-
terize more general polynomial preconditioners; see Freund [123]. On the other hand,
standard preconditioning approaches may be more effective on each single shifted
system, but unfortunately they destroy the shifted structure so that the convenient
invariance property of the Krylov subspace can no longer be employed. At this time,
determining good preconditioners for shifted systems that preserve the original struc-
ture of the problem is an open area of research.

A related but different problem is the solution of linear systems in the form

Ax = (A− γI)v,(14.6)

where γ is a nonzero complex parameter. The system solution can also be obtained
as x = v − γA−1v, therefore the question arises whether it is more convenient to
explicitly perform the matrix-vector product in the right-hand side of (14.6), or to
solve Ad = v first and then update x. For the symmetric case, in [296] a theoretical
analysis is presented that shows the advantages of solving Ad = v first. Numerical
results where the right-hand side is a second degree polynomial in A are also reported.
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14.2. Systems depending quadratically on a parameter. A natural gen-
eralization of the shifted problem arises in the situation where the coefficient matrix
depends nonlinearly on the parameter σ, and the system needs to be solved for several
values of the parameter. The problem has been addressed in the literature in the case
of quadratic dependence, mostly focusing on the symmetric case, whereas the problem
is far from being solved in the more general case; we comment on this at the end of
this section.

We consider the following linear system,

(σ2A+ σB + C)x = b, x = x(σ).(14.7)

We assume B 6= 0, otherwise the problem can be dealt with as in (14.4) by first re-
naming σ2; we also assume that either A or C is nonsingular. The coefficient matrix
is a special case of matrix polynomial in σ, and more precisely a second degree matrix
polynomial; we refer to [146] for a thorough analysis of its spectral properties. We
assume throughout that σ is such that the coefficient matrix is nonsingular. In the fol-
lowing we shall review two general strategies for solving the system (14.7), which have
also been employed in the eigenvalue context; see, e.g., Tisseur and Meerbergen [324].
A natural way to proceed consists of linearizing the equation in terms of σ. There are
several different ways to realize this, leading to differently structured problems. For
instance, (14.7) is equivalent to a larger system (A− σB)z = f , given by([

B C
M 0

]
− σ

[
−A 0

0 M

]) [
y
x

]
=

[
b
0

]
,(14.8)

for any nonsingular matrix M . Note that σx = y and that the dependence on σ
in (A − σB)z = f is now linear. If B is symmetric, whenever C is nonsingular and
symmetric, the choice M = C makes the matrix A symmetric. In the more general
case of singular C, however, the linearized form above can still be employed in some
cases. Assume that C is symmetric and positive semidefinite, as is the case in certain
structural dynamics applications, and let C = C1C

T
1 , with C1 full column rank. Then

we can write([
B C1C

T
1

C1C
T
1 0

]
− σ

[
−A 0

0 C1C
T
1

]) [
y
x

]
=

[
b
0

]
,([

B C1

CT
1 0

]
− σ

[
−A 0

0 I

]) [
y
x̂

]
=

[
b
0

]
, x̂ = CT

1 x,

and the vector σ−1y is the unique solution to the linear system (14.7) [287]. Anal-
ogously, if C is nonsymmetric and it is possible to factorize C as C = C1C

T
2 with

C1, C2 full rank, then([
B C1

CT
2 0

]
− σ(

[
−A 0

0 I

])[
y
x̂

]
=

[
b
0

]
, x̂ = CT

2 x,

and the vector σ−1y is the sought after solution.
To simplify the presentation, in the following we shall refer to (14.8) with C

nonsingular, keeping in mind that one can work with the “reduced” form above if C
is singular. The system (A − σB)z = f can be solved as described in the previous
section. If A and C are symmetric, by choosing M = C we find that AB−1 is B-
symmetric, and thus a simplified version of the Lanczos process can be derived; see
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section 13.2. These aspects, together with several implementation issues associated
with the special form of A and B are described in [297].

An alternative approach that is being currently investigated, mostly in the eigen-
value setting, attempts to avoid linearization. The reason for this is that linearization
doubles the problem size and thus the dimension of all recurrence vectors. The gen-
eral idea consists of projecting the original problem onto a subspace of much smaller
dimension, say m, imposing a Galerkin condition on the residual; see similar strategies
in the eigenvalue setting in [20]. Let the columns of Ym span such subspace. Then an
approximation xm = Ymym to the solution x is found by solving the reduced problem

Y T
m (σ2A+ σB + C)Ymym = Y T

m b

or equivalently, setting bm = Y T
m b, Am = Y T

mAYm, Bm = Y T
mBYm, and Cm =

Y T
mCYm,

(σ2Am + σBm + Cm)ym = bm.

A major issue is the choice of the approximation subspace. Bai and Su [22] present
an approach where Ym is obtained by efficiently compressing the relevant information
of the Krylov subspace obtained with the linearized problem. The approach seems to
work well in the context of model reduction of second-order dynamical systems, where
the transfer function h(σ) = dT (σ2A + σB + C)−1b needs to be approximated, for
values of σ close to a fixed target. The authors report better numerical performance,
in terms of accuracy and memory requirements, than with the linearized case in the
general nonsymmetric setting. Several issues are still open, such as restarting, to
make the approach appealing on large size problems; see also Freund [129], [130].

15. Stopping criteria. In the discussion of the previous sections little has been
said about when to stop the iterations. A good account of various stopping criteria
used in practice may be found in [26], among which are

1. ‖rm‖ ≤ ε(‖A‖ ‖xm‖+ ‖b‖)
2. ‖rm‖ ≤ ε‖b‖
3. ‖rm‖ ≤ ε‖r0‖.

The quantity ε is commonly a user supplied parameter. All three tests involve the
residual, which is usually available during the iteration, by means of a vector recur-
rence or by direct computation. The ideal quantity to be monitored, the error x∗−xm

is clearly not available, since the exact solution x∗ is unknown; however, see below
for estimates of the error norm. If information is available on ‖A−1‖, say its order of
magnitude, then a good estimate of the error norm may be obtained as ‖A−1‖ ‖rm‖;
alternatively, one can directly measure the ATA-norm of the error by means of the
(computable) residual norm as ‖x∗−xm‖2AT A = ‖rm‖2. We refer to [10], [11], [52], for
further discussion on this equivalence and for estimates of ‖A−1‖ within the Krylov
subspace iteration.

While the third criterion is commonly employed, it may be considered the less
reliable one, as it may dramatically depend on the initial approximation x0. The first
criterion takes into account possible ill-conditioning of the problem, manifesting itself
with the bound ‖A‖ ‖x∗‖ ≥ ‖b‖, and it is therefore less strict than the second criterion,
which assumes ‖A‖ ‖x∗‖ ≈ ‖b‖. In fact, this latter criterion may be hard to satisfy
in case of ill-conditioned problems. Moreover, the first criterion is the one closest to
the actual convergence properties of methods such as GMRES. Indeed, it was shown
by Dřkosová, Greenbaum, Rozložńık, and Strakoš [90] that a robust implementation
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of GMRES, using for instance Householder Gram-Schmidt orthogonalization, is back-
ward stable in the sense that given the final approximation xn, the backward error
‖b − Axn‖/(‖A‖ ‖xn‖ + ‖b‖) is at worst O(n5/2)ε, where ε is the machine precision.
A similar result was very recently proven for the Modified Gram-Schmidt implemen-
tation of GMRES by Paige, Rozložńık, and Strakoš [249], thus solving a longstanding
open problem. The usefulness of the stopping criteria above in the finite precision
setting is discussed by Strakoš and Tichý [320], [321] for the Conjugate Gradients
algorithm and its preconditioned form.

If information on the single entries of A are available, a component-wise stopping
criterion may be considered, to exploit the problem sparsity; see Arioli, Duff, and
Ruiz [6]. We refer to [26] for a more complete discussion of these and other criteria,
which have found great interest during the developments of new Krylov subspace
methods.

An alternative, very classical stopping criterion relates to the number of iterations.
More precisely, in some cases it is possible to give sufficient conditions on the minimum
number of iterations needed to achieve an error or residual norm that is less than a
prescribed tolerance, see, e.g., the discussion by Axelsson [13, Chapter 13]. Although
this type of bounds provides a good tool when available, at least in exact arithmetic,
the given estimate is often very loose, predicting a much larger number of iterations
than is actually necessary. Therefore, such estimates should be always accompanied
by a-posteriori estimates such as those described above. Coupled automatic stopping
criteria may be particularly appropriate when the iterative solver is embedded in
another (possibly nonlinear) iterative procedure; see, e.g., Axelsson and Kaporin [15]
for such an analysis.

In the rest of this section, we describe some recent developments on
(a) Monitoring/estimating quantities that are possibly minimized by the method;
(b) Monitoring/estimating the quantity of interest to the discretized problem.
As for point (a), methods that (quasi-)minimize the residual norm, such as GM-

RES and the smoothing techniques of section 4, naturally employ the residual norm
in their stopping criterion, following one of the tests cited above. The case of CG
for A symmetric and positive definite has received a lot of attention, because of its
wide applicability, especially in problems associated with the discretization of partial
differential equations. As we already discussed, CG minimizes the A-norm of the error
at each iteration, therefore it would be important to at least estimate this quantity. It
turns out that several authors have tried to address this problem. Identities relating
the error A-norm and 2-norm with quantities available in the algorithm, were already
present in the original paper by Hestenes and Stiefel [180], but apparently they have
been reconsidered only recently by Strakoš and Tichý [320].

In the meantime, several authors have analyzed the problem of approximating
the error norm for A symmetric (and positive definite), by using several possibly
related approaches, such as Gauss quadrature-type formulas, see, e.g., [59], [77], [147],
[150], [227], together with interval arithmetic techniques [142], and purely algebraic
approaches [15], [117]; we refer to [320] for a more detailed account of the literature
on the subject. In particular, the authors of [320] derive computable bounds from
the original results in [180], that also work in finite precision computations. More
precisely, if xm, xm+d are two approximate solution iterates, with d > 0, then the
following relation is exploited,

‖x∗ − xm‖2A =
m+d−1∑

i=m

γi‖ri‖2 + ‖x∗ − xm+d‖2A,
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where x∗ is the exact solution, ri the computed residual after i iterations, and γi =
rT
i ri/(p

T
i Api) is a recurrence coefficient computed at each iteration of the standard

Conjugate Gradient implementation [151]. If d is an integer such that ‖x∗−xm‖2A �
‖x∗ − xm+d‖2A, then it is shown in [320] that the square root of

m+d−1∑
i=m

γi‖ri‖2

is a good easily computable estimate, both in exact as well as in finite precision
arithmetic, of the error A-norm at stepm. The sharpness of the bound clearly depends
on the “delay” index d, since one can estimate the error at step m only after d more
iterations are carried out. If used as stopping criterion strategy, this forces to perform
d additional iterations than the stopping criterion would suggest. However, one may
be willing to pay this price if some confidence in the actual error is obtained. The
value of d is chosen a-priori, and some tuning is clearly necessary.

Point (b) has recently received more attention, possibly due to the described
advances in error estimates, and it actually emphasizes one of the major advantages
of using iterative compared to direct methods. Arioli [5] shows that the Conjugate
Gradient error A-norm and the estimates analyzed in [320] can naturally and fruitfully
be employed in stopping criteria for linear systems stemming from the finite element
discretization of self-adjoint elliptic partial differential equations. In particular, in [5]
it is shown how to conveniently tune the parameter η in a stopping criterion of the
type

‖x∗ − xm‖A ≤ η‖x∗‖A

so as to comply with the accuracy obtained by the finite element approximation, which
can usually be expressed in terms of the mesh fineness. More precisely, η should be
related to the mesh parameter, with a value that is in practice much less stringent than
ε in the residual bounds at the beginning of this section. We also refer to Axelsson
and Baker [14, section 7.5] for a general discussion on the relation between η and the
discretization error.

The numerical experiments reported in [5] demonstrate that the algebraic solution
obtained with the suggested stopping criterion is capable of achieving the same level
of accuracy as in the chosen problem discretization, even when dealing with opera-
tors having highly discontinuous coefficients. This property is explored by comparing
the algebraic approximate solution with the exact solution to the considered elliptic
equation. It turns out that residual based stopping criteria may force the method to
perform a large number of useless iterations, during which the approximation error
with respect to the exact (continuous) solution does not show any further decrease.
In summary, whenever the linear system to be solved stems from a suitable partial
differential equation, an appropriately chosen stopping criterion may allow to termi-
nate the computation much earlier than a generic strategy would predict. Moreover,
the discussion above substantiates the fact that direct methods determine a machine
precision accurate solution to the “wrong” problem, whose distance from the con-
tinuous problem depends on the formulation used and on the approximation of the
discretized problem.

More recently, Arioli, Loghin, and Wathen [7] extend the results in [5] to the
non-self adjoint case, by significantly modifying the approach by Arioli, Noulard, and
Russo [8]. The authors show that a natural generalization of the A-norm of the error,
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or equivalently, of the A−1-norm of the residual, is given by the H−1-norm of the
residual, where H−1 can be either the inverse of the symmetric part of A, or the
symmetric part of A−1. These appear to be the natural norms for the chosen problem
formulation. The authors also derive numerical estimates for these norms, with which
good estimates of the final attainable accuracy of the algebraic approximate solution
are obtained.

Finally, in [100, section 6.2.1] the authors analyze preconditioning strategies for
the Stokes problem in fluid dynamics that allow minimal residual methods to min-
imize the residual in the appropriate natural matrix norm. The authors show that
a good norm should be consistent with the different norms used for measuring the
discretization error in the spaces associated with the two different variables, velocity
and pressure. In this setting, the stopping criterion can be naturally linked to the
magnitude of the employed discretization error.

16. Conclusions. We have described many ideas used in the development and
extensions of Krylov subspace methods. In this final section we make some concluding
remarks, and in particular on the current trends in this area.

There is a good understanding of the convergence of methods for symmetric ma-
trices, such as CG in the positive definite case. In the case of nonsymmetric matrices,
for certain Arnoldi-based methods, such as full GMRES, there is an increased com-
prehension of their behavior. In contrast, there is very little or no theory for the
two methods most commonly used by many scientists and engineers: Bi-CGStab and
restarted GMRES. We stress that the latter does not inherit the convergence proper-
ties of the full method, possibly leading to stagnation due to the repeated generation
of the same subspace after each restart; see section 8. This is commonly overlooked
by practitioners, who too often completely ignore the fact that other methods may
be more effective than restarted GMRES, with similar computational costs.

An area of current active research is the development of new and more effective
preconditioners, especially for specific types of applications. It is often the situa-
tion that when a computational scientist is dissatisfied with the performance of a
Krylov subspace solver, a better preconditioner is sought. This situation provides
the motivation for the development of more advanced solvers, the deepening of their
understanding and reliability, in order to considerably spread their use, and thus
encourage the user to try a better (or more appropriate) method first.

Several variants, including flexible, inexact, and augmented methods have shown
to be viable alternatives in many applications, and their potential has yet to be widely
appreciated. All these methods have the common thread that the subspace being used
is not in fact a standard Krylov subspace; see sections 9–11. In other words, they
have lost certain optimality properties, but in exchange they gain in efficiency. The
same can be said about methods with indefinite inner products; see section 13.

Frequently, people in applications do not wait for a complete convergence anal-
ysis, or for methods guaranteed to work in a variety of problems, and are ready to
take the risk of (often unlikely) breakdown to satisfy their need to solve large-scale
problems. Efforts in better understanding these uncommon frameworks are bound
to give additional confidence in using a variety of Krylov subspace methods such as
those described in this paper, and those yet to be proposed. Scientists who accept
the challenge of further analyzing the existing methods, enhancing their comprehen-
sion and reliability, or proposing new alternatives, will be rewarded by the applied
community.
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[213] Jörg Liesen and Zdeněk Strakoš. Convergence of GMRES for tridiagonal Toeplitz matrices.
SIAM Journal on Matrix Analysis and Applications, 26:233–251, 2004.
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[238] Nöel M. Nachtigal, Satish C. Reddy, and Lloyd N. Trefethen. How fast are nonsymmetric
matrix iterations? SIAM Journal on Matrix Analysis and Applications, 13:778–795,
1992.
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[346] Rüdiger Weiss. Parameter-Free Iterative Linear Solvers. Akademie-Verlag, Berlin, 1996.
Mathematical Research Series, Volume 97.

[347] Olof B. Widlund. A Lanczos method for a class of nonsymmetric systems of linear equations.
SIAM Journal on Numerical Analysis, 15:801–812, 1978.

[348] Jinchao Xu and Xiao-Chuan Cai. A preconditioned GMRES method for nonsymmetric or
indefinite problems. Mathematics of Computations, 59:311–319, 1992.

[349] Ilyia Zavorin, Howard C. Elman, and Dianne P. O’Leary. Complete stagnation of GMRES.
Linear Algebra and its Applications, 367:165–183, 2003.

[350] Shao-Liang Zhang. GPBi-CG: Generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems. SIAM Journal on Scientific Computing, 18:537–551, 1997.

[351] Baojiang Zhong and Ronald B. Morgan. Complementary cycles of restarted GMRES. Tech-
nical report, Department of Mathematics, Baylor University, Waco, Texas, 2004.

[352] Lou Zhou and Homer F. Walker. Residual smoothing techniques for iterative methods. SIAM
Journal on Scientific Computing, 15:297–312, 1994.


