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Some matrix equations

• Sylvester matrix equation

AX+XB +D = 0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

AX+XA⊤ +D = 0, D = D⊤

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

Multiterm matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

(Stochastic) PDEs

Focus: All or some of the matrices are large (and possibly sparse)
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Control, (Stochastic) PDEs, ...

Survey article: V.Simoncini, SIAM Review 2016.
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More matrix equations

• Systems of linear matrix equations:

A2X+XA1 +BTP = F1

A1Y +YA2 + PB = F2

BX+YBT = F3

Riccati equation: Find X ∈ R
n×n such that

AX+XA⊤ −XBB⊤X+ C⊤C = 0

workhorse in Control Theory

Focus: All or some of the matrices are large (and possibly sparse)
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Solving the Lyapunov equation. The problem

Approximate X in:

AX+XA⊤ +BB⊤ = 0

A ∈ R
n×n neg.real B ∈ R

n×p, 1 ≤ p≪ n

————————————

Time-invariant linear dynamical system:

x′(t) = Ax(t) +Bu(t), x(0) = x0

Closed form solution:

X =

∫ ∞

0

e−tABB⊤e−tA⊤

dt =

∫ ∞

0

xx⊤dt with x = exp(−tA)B.

⇒ X symmetric semidef.

see, e.g., Antoulas ’05, Benner ’06
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Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equation:

AX+XA⊤ +BB⊤ = 0

No preconditioning to preserve symmetry

X is a large, dense matrix ⇒ low rank approximation

X ≈ X̃ = ZZ⊤, Z tall
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Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equations:

AX+XA⊤ +BB⊤ = 0

Kronecker formulation:

(A⊗ I + I ⊗A)x = b x = vec(X)
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Projection-type methods

Given an low dimensional approximation space K,

X ≈ Xm col(Xm) ∈ K

Galerkin condition: R := AXm +XmA
⊤ +BB⊤ ⊥ K

V ⊤

mRVm = 0 K = Range(Vm)

————————————

Assume V ⊤
m Vm = Im and let Xm := VmYmV

⊤
m .

Projected Lyapunov equation:

V ⊤

m (AVmYmV
⊤

m + VmYmV
⊤

mA
⊤ + BB⊤)Vm = 0

(V ⊤

mAVm)Ym + Ym(V ⊤

mA
⊤Vm) + V ⊤

mBB
⊤Vm = 0

Early contributions: Saad ’90, Jaimoukha & Kasenally ’94, for

K = Km(A,B) = Range([B,AB, . . . , Am−1B])
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More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

K = EK := Km(A,B) +Km(A−1, A−1B),

that is, K = Range([B,A−1B,AB,A−2B,A2B,A−3B, . . . , ])

(Druskin & Knizhnerman ’98, Simoncini ’07)

• Rational Krylov subspace

K = K := Range([B, (A− s1I)
−1B, . . . , (A− smI)

−1B])

usually, {s1, . . . , sm} ⊂ C
+ chosen either a-priori or dynamically

In both cases, for Range(Vm) = K, projected Lyapunov equation:

(V⊤

mAVm)Ym + Ym(V⊤

mA
⊤Vm) + V⊤

mBB
⊤Vm = 0

Xm = VmYmV⊤
m
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Applications:

• Control

• (Stochastic) PDEs

• Matrix least squares

• ...

Main device: Kronecker formulation

(
B⊤

1 ⊗A1 + . . .+B⊤

ℓ ⊗Aℓ

)
x = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Applications:

• Control

• (Stochastic) PDEs

• Matrix least squares

• ...

Alternative approaches:

• Projection onto rich approximation space

• Compression to two-term matrix equation

• Splitting strategy towards two-term matrix equation

• ...
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PDEs on uniform grids and separable coeffs

−ε∆u+φ1(x)ψ1(y)ux+φ2(x)ψ2(y)uy+γ1(x)γ2(y)u = f (x, y) ∈ Ω

φi, ψi, γi, i = 1, 2 sufficiently regular functions + b.c.

Problem discretization by means of a tensor basis

Multiterm linear equation:

−εT1U− εUT2 +Φ1B1UΨ1 +Φ2UB
⊤

2 Ψ2 + Γ1UΓ2 = F

Finite Diff.: Ui,j = U(xi, yj) approximate solution at the nodes
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u : D×Ω → R s.t. P-a.s.,




−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D

u(x, ω) = 0 on ∂D

f : deterministic;

a: random field, linear function of finite no. of real-valued random

variables ξr : Ω → Γr ⊂ R

Common choice: truncated Karhunen–Loève (KL) expansion,

a(x, ω) = µ(x) + σ

m∑

r=1

√
λrφr(x)ξr(ω),

µ(x): expected value of diffusion coef. σ: std dev.

(λr, φr(x)) eigs of the integral operator V wrto V (x,x′) = 1

σ2C(x,x
′)

(λr ց C : D ×D → R covariance fun. )
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Discretization by stochastic Galerkin

Approx with space in tensor product forma Xh × Sp

Ax = b, A = G0 ⊗K0 +

m∑

r=1

Gr ⊗Kr, b = g0 ⊗ f0,

x: expansion coef. of approx to u in the tensor product basis {ϕiψk}

Kr ∈ Rnx×nx , FE matrices (sym)

Gr ∈ R
nξ×nξ , r = 0, 1, . . . ,m Galerkin matrices associated w/ Sp (sym.)

g0: first column of G0

f0: FE rhs of deterministic PDE

nξ = dim(Sp) =
(m+ p)!

m!p!
⇒ nx · nξ huge

aSp set of multivariate polyn of total degree ≤ p
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The matrix equation formulation

(G0 ⊗K0 +G1 ⊗K1 + . . .+Gm ⊗Km)x = g0 ⊗ f0

transforms into

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤

0

(G0 = I)

Solution strategy. Conjecture:

• {Kr} from trunc’d Karhunen–Loève (KL) expansion

⇓

X ≈ X̃ low rank, X̃ = X1X
T
2

(Possibly extending results of Grasedyck, 2004)
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Matrix Galerkin approximation of the deterministic part. 1

Approximation space Kk and basis matrix Vk: X ≈ Xk = VkY

V ⊤

k Rk = 0, Rk := K0Xk +K1XkG1 + . . .+KmXkGm − f0g
⊤

0

Computational challenges:

• Generation of Kk involved m+ 1 different matrices {Kr} !

• Matrices Kr have different spectral properties

• nx, nξ so large that Xk, Rk should not be formed !

(Powell & Silvester & Simoncini, SISC 2017)
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Systems of linear matrix equations

Find X ∈ R
n1×n2 and P ∈ R

m×n2 such that

A1X+XA2 +B
T
P = F1

BX = F2

with Ai ∈ R
ni×ni , B ∈ R

m×n1 , F1 ∈ R
n1×n2 , F2 ∈ R

m×n2 , m ≤ n1

Emerging matrix formulation of different application problems

• Constraint control

• Mixed formulations of stochastic diffusion problems

• Discretized deterministic/stochastic (Navier-)Stokes equations

• ...
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An example. Mixed FE formulation of stochastic Galerkin diffusion pb

c
−1

~u−∇p = 0,

−∇ · ~u = f,

Assume that c−1 = c0 +

ℓ∑

r=1

√
λrcr(~x)ξr(ω) and that an appropriate class of

finite elements is used for the discretization of the problem

(see, e.g., the derivation in Elman & Furnival & Powell, 2010)

After discretization the problem reads:



G0 ⊗K0 +

ℓ∑

r=1

√
λGr ⊗Kr GT

0 ⊗BT
0

G0 ⊗B0





u
p


 =


0

f




For ℓ = 1 we obtain

K0XG0 +K1XG1 +BT
0 PG0 = 0,

B0XG0 = F
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Computational strategies for systems of matrix equations

A1X+XA2 +B
T
P = F1

BX = F2

Kronecker formulation (monolithic):


A BT

B O




x
p


 =


f1
f2


 , A = I ⊗A1 +A

T
2 ⊗ I, B = B ⊗ I

with x = vec(X), p = vec(P), f1 = vec(F1) and f2 = vec(F2)

Extremely rich literature from saddle point algebraic linear systems

Problem: Coefficient matrix has size (n1n2 +mn2)× (n1n2 +mn2)
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Computational strategies for systems of matrix equations. Cont’d

A1X+XA2 +B
T
P = F1

BX = F2

⋆ Derive numerical strategies that directly work with the matrix equations:

• Small scale: Null space method

• Small and medium scale: Schur complement method

(also directly applicable to trilinear case)

• Large scale: Iterative method for low rank Fi, i = 1, 2

“Small and medium scale” actually means “Large scale” for

the Kronecker form!

V.Simoncini, 2018, to appear in IMA J. Numer. Analysis
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Large scale problem. Iterative method. 1/3

A1X+XA2 +B
T
P = F1

BX = F2

Rewrite as

A1 BT

B 0




X
P


+


In1

0

0 0




X
P


A2 =


F1

F2


 , ⇔ MZ+D0ZA2 = F

with

M,D0 ∈ R
(n1+m)×(n1+m)

A2 ∈ R
n2×n2 nonsingular

D0 highly singular

If F low rank, exploit projection-type strategies for Sylvester equations
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Large scale problem. Iterative method. 2/3


A1 BT

B 0




X
P


+


In1

0

0 0




X
P


A2 =


F1

F2


 ⇔ MZ+D0ZA2 = F

with F low rank. We rewrite the matrix equation as a Sylvester equation:

ZA
−1
2 +M−1D0Z = F̂

with F̂ = M−1FA−1
2 of low rank if F is of low rank, F̂ = F̂ℓF̂

T
r

⇒ Z ≈ Z̃k = VkZkW
T
k

with Range(Vk),Range(Wk) appropriate approximation spaces of small

dimensions
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Large scale problem. Iterative method. 3/3

Galerkin-Projection method

ZA
−1
2 +M−1D0Z = F̂lF̂

T
r ⇒ Z ≈ Z̃k = VkZkW

T
k

Choice of Vk,Wk. A possible strategy:

• Wk = EKk(A
−T
2 , F̂r), Extended Krylov subspace

• Vk = Kk(M−1D0, F̂l) ∪Kk((M−1D0 + σI)−1, F̂l)

Augmented Krylov subspace, σ ∈ R

(see, e.g., Shank & Simoncini, 2013)

Note: M has size (n1 +m)× (n1 +m)

(Compare with (n1n2 +mn2)× (n1n2 +mn2) of the Kronecker form)
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Numerical experiments

A1X−XA2 +B
T
P = 0, vs Az = f

BX = F2

A1 → L1 = −uxx − uyy , F2 rank-1

A2 → L1 = −(e−10xyux)x − (e10xyuy)y + 10(x+ y)ux

B = bidiag(−1, 1) ∈ R(n2−n1)×n2 , params: tol=10−6, σ = 10−2

n1 n2 size(A) Monolithic Matrix eqns

Elapsed Time Elapsed Time

400 100 79,000 6.9769e-02 3.1523e-02 (4)

900 225 401,625 3.4808e-01 5.0447e-02 (4)

1600 400 1272,000 1.1319e+00 7.8018e-02 (4)

2500 625 3109,375 3.1212e+00 1.5282e-01 (5)

3600 900 6453,000 1.0210e+01 2.8053e-01 (5)

4900 1225 11,962,125 3.7699e+01 1.4754e+00 (5)

Monolithic: direct solver (iterative not competitive)
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Numerical experiments. 1D stochastic Stokes problem.

H BT

B 0




x
p


 =


f1
f2


 , H = (ν0G0 + ν1G1)⊗Ax, B = G0 ⊗Bx

where ν = ν0 + ν1ξ(ω) uncertain viscosity, ξ random variable

Then

AxXG0ν0 +AxXG1ν1 +BT
x PG0 = F1, BxX = F2

with G0 = I. This corresponds to

ν0Ax BT

x

Bx 0




X
P


+


ν1Ax

0




X
P


G1 =


F1

F2




that is

MZ+D0ZG1 = F
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Numerical experiments. 1D stochastic Stokes problem.

MZ+D0ZG1 = F vs Az = f

ν0 = 1/10, ν1 = 3ν0/10 Powell & Silvester, 2012

Elapsed Time

n1 n2 nB size(A) Monolithic Monolithic Iterative

direct minres EK(σ)

1256 4 389 6,580 0.1852 0.146 (11) 0.19 (2)

3526 4 990 18,064 0.9063 0.275 (11) 0.52 (2)

9812 4 2615 49,708 4.6418 0.981 (10) 2.09 (2)

n1 n2 nB size(A) Monolithic Monolithic Iterative

direct minres EK(σ)

1256 165 389 271,425 2.91 1.53 (11) 0.20 (2)

3526 165 990 745,140 12.16 7.43 (11) 0.45 (2)

9812 165 2615 2050,455 - - 1.87 (2)

• n2 could be much larger, n2 = O(103)

• Memory requirements are limited, Z̃ = Z1ZT
2 of very low rank
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Numerical experiments. 2D stochastic Stokes problem

H BT

B 0




x
p


 =


f1
f2


 ,

H = blkdiag((ν0G0 + ν1G1)⊗Ax, (ν0G0 + ν1G1)⊗Ay)

B = [G0 ⊗Bx, G0 ⊗By ]

MZ+D0ZG1 = F vs Az = f

n1 n2 size(A) Monolithic Monolithic Iterative

direct minres EK(σ)

2512 4 11,604 0.55 0.12 (12) 0.28 (2)

7052 4 32,168 3.73 0.36 (12) 1.22 (2)

19624 4 88,956 11.93 1.51 (12) 4.37 (2)

n1 n2 size(A) Monolithic Monolithic Iterative

direct minres EK(σ)

2512 165 478 665 7.60 3.16 (17) 0.33 (2)

7052 165 1 326 930 34.08 15.52 (18) 1.32 (2)

19624 165 3 669 435 – – 5.69 (3)

ν0 = 1/10, ν1 = 3ν0/10 Powell-Silvester (2012)
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Not discussed but in this category

• Sylvester-like linear matrix equations

AX + f(X)B = C

typically (but not only!): f(X) = X̄, f(X) = X⊤, or f(X) = X∗

(Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez,

Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder,

Vorntsov, Watkins, Wu, ...)

Linear systems with complex tensor structure

Ax = b with A =

k∑

j=1

In1
⊗ · · · ⊗ Inj−1

⊗Aj ⊗ Inj+1
· · · ⊗ Ink

.

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov,

and many more...
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Conclusions

Large-scale (Multiterm) linear equations are a new computational tool

• Great advances in solving really large linear matrix equations

• Second order (matrix) challenges rely on strength and maturity of

linear system solvers

• Low-rank tensor formats is the new generation of approximations

Reference for linear matrix equations:

⋆ V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.
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