

The Extended Krylov Subspace for Matrix Function Approximations: Analysis and Applications

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it

Partially joint work with Leonid Knizhnerman, Moscow

The Problem

Given $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ and f sufficiently smooth function, approximate

$$x = f(A)v$$

 $\star A$ large dimensions, $\|v\| = 1$

Applications:

- Numerical solution of evolution PDEs (e.g. $\exp(\lambda), \sqrt{\lambda^{-1}}, \cos(\lambda), ...$)
- Inverse Problems $(\exp(\lambda), \cosh(\lambda), ...)$
- Fluxes on manifolds
- Problems in Scientific Computing (e.g. QCD, $\operatorname{sign}(\lambda)$)
- (Analysis of) reduced Dynamical System Models (via Gramians)

The Problem

Given $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ and f sufficiently smooth function, approximate

$$x = f(A)v$$

 $\star A$ large dimensions, $\|v\| = 1$

Projection-type methods

 \mathcal{K} approximation space, $m = \dim(\mathcal{K})$ $V \in \mathbb{R}^{n \times m}$ s.t. $\mathcal{K} = \operatorname{range}(V)$ $x = f(A)v \approx x_m = Vf(V^{\top}AV)(V^{\top}v)$

The Problem

Given $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ and f sufficiently smooth function, approximate

$$x = f(A)v$$

 $\star A$ large dimensions, $\|v\| = 1$

Projection-type methods

 \mathcal{K} approximation space, $m = \dim(\mathcal{K})$ $V \in \mathbb{R}^{n \times m}$ s.t. $\mathcal{K} = \operatorname{range}(V)$ $x = f(A)v \approx x_m = Vf(V^{\top}AV)(V^{\top}v)$ Question: Which \mathcal{K} ?

Some explored alternatives for $\ensuremath{\mathcal{K}}$

- Krylov subspace, $\mathcal{K} = K_m(A, v)$
- Shift-Invert Krylov subspace, $\mathcal{K} = K_m((I + \gamma A)^{-1}, v)$ for some γ
- Rational Krylov subspace, for some $\omega_1, \omega_2, \dots$ $\mathcal{K} = \operatorname{span}\{v, (A - \omega_1 I)^{-1}v, (A - \omega_2 I)^{-1}v, \dots\}$
- Extended Krylov subspace, $\mathcal{K} = K_m(A, v) + K_m(A^{-1}, A^{-1}v)$
- Restarted Krylov subspace

Note: In all cases, A nonsymmetric.

Theory mostly for field of values of A in \mathbb{C}^+

Field of values: $W(A) = \{x^*Ax, x \in \mathbb{C}^n, ||x|| = 1\}$

Krylov subspace approximation

"Classical" approach:

$$\mathcal{K} = K_m(A, v) = \operatorname{span}\{v, Av, \dots, A^{m-1}v\}$$

For $H_m = V_m^\top A V_m$, $v = V_m e_1$ and $V_m^\top V_m = I_m$:

 $x_m = V_m f(H_m) e_1$

Polynomial approximation: $x_m = p_{m-1}(A)v$ (p_{m-1} interpolates f at eigenvalues of H_m)

★ Numerical and theoretical results since mid '80s (Saad '92)

Acceleration Procedures: Shift-Invert Krylov

Choose γ s.t. $(I + \gamma A)$ is invertible, and construct

 $\mathcal{K} = K_m((I + \gamma A)^{-1}, v),$ Moret-Novati '04, van den Eshof-Hochbruck '06

with $T_m = V_m^\top (I + \gamma A)^{-1} V_m$, $v = V_m e_1$ and $V_m^\top V_m = I_m$

$$x_m = V_m f(\frac{1}{\gamma}(T_m^{-1} - I_m))e_1$$

Rational approximation: $x_m = p_{m-1}((I + \gamma A)^{-1})v$

Choice of
$$\gamma$$
: $A \text{ spd}$, $\gamma = \frac{1}{\sqrt{\lambda_{\min}\lambda_{\max}}}$ (Moret, 2009)
 $A \text{ nonsym}$, (Beckermann-Reichel tr2008)

Acceleration Procedures: Restarted Krylov $AV_m^{(1)} = V_m^{(1)}H_m^{(1)} + v_{m+1}^{(1)}h_{m+1,m}^{(1)}e_m^\top \quad (V_m^{(1)})^\top V_m^{(1)} = I$ $AV_m^{(2)} = V_m^{(2)}H_m^{(2)} + v_{m+1}^{(2)}h_{m+1,m}^{(2)}e_m^\top \quad (V_m^{(2)})^\top V_m^{(2)} = I$ with $V_m^{(2)}e_1 = v_{m+1}^{(1)}$. Then

$$A[V_m^{(1)}, V_m^{(2)}] = [V_m^{(1)}, V_m^{(2)}]\widehat{H}_{2m} + v_{m+1}^{(2)}h_{m+1,m}^{(2)}e_{2m}^{\top},$$

with

$$\widehat{H}_{2m} = \begin{bmatrix} H_m^{(1)} & 0\\ e_1 h_{m+1,m}^{(1)} e_m^\top & H_m^{(2)} \end{bmatrix}$$

Therefore (Eiermann-Ernst, '06)

$$f(A)v \approx x_m^{(1)} = V_m^{(1)} f(H_m^{(1)})$$

$$\approx x_m^{(2)} = V_m^{(1)} f(H_m^{(1)}) e_1 + V_m^{(2)} f(\hat{H}_{2m}) e_1|_{(2)}$$

$$x_m^{(2)} = x_m^{(1)} + V_m^{(2)} f(\hat{H}_{2m}) e_1|_{(2)}$$

Acceleration Procedures: Extended Krylov

For A nonsingular,

 $\mathcal{K} = K_{m_1}(A, v) + K_{m_2}(A^{-1}, A^{-1}v),$ Druskin-Knizhnerman 1998, A sym.

Note:
$$\mathcal{K} = A^{-m_2} K_{m_1+m_2}(A, v)$$

Algorithm (augmentation-style)

- Fix $m_2 \ll m_1$

- Run m_2 steps of Inverted Lanczos
- Run m_1 steps of Standard Lanczos + orth.

Extended Krylov: an effective implementation

 $m_1 = m_2 = m$ not fixed a priori

$$\mathcal{K} = K_m(A, v) + K_m(A^{-1}, A^{-1}v)$$

= span{ $v, A^{-1}v, Av, A^{-2}v, A^2v, \ldots$ }

- ★ *Block* Arnoldi-type recurrence:
 - $U_1 \leftarrow \operatorname{orth}([v, A^{-1}v])$
 - $U_{j+1} \leftarrow [AU_j(:,1), A^{-1}U_j(:,2)] + \text{orth} \quad j = 1, 2, \dots$
- * Recurrence to cheaply compute $\mathcal{T}_m = \mathcal{U}_m^\top A \mathcal{U}_m$, $\mathcal{U}_m = [U_1, \dots, U_m]$
- ★ Compute $x_m = \mathcal{U}_m f(\mathcal{T}_m) e_1$

Simoncini, 2007

Extended Krylov: Convergence theory I

$$f \text{ satisfying } f(z) = \int_{-\infty}^{0} \frac{1}{z-\zeta} d\mu(\zeta), \quad z \in \mathbb{C} \setminus]-\infty, 0]$$

(with convenient measure $d\mu(\zeta)$)

Druskin-Knizhnerman 1998:

A sym:
$$||x - x_m|| = \mathcal{O}\left(m^2 e^{-2m \sqrt[4]{\frac{\lambda_{\min}}{\lambda_{\max}}}}\right)$$

Extended Krylov: Convergence theory II

For nonsingular A, with $0 \notin W(A)$, let $f = f_1 + f_2$, $a \in [0, \infty)$. Then

$$\|f_1(z) - \sum_{k=0}^{m-1} \gamma_{1,k} F_{1,k}(z)\| \le \frac{c_1}{\Phi_1(-a)^m},$$

$$\|f_2(z) - \sum_{k=0}^{m-1} \gamma_{2,k} F_{2,k}(z^{-1})\| \le \frac{c_2}{\Phi_2(-\frac{1}{a})^m},$$

 Φ_j , $F_{j,k}$, j = 1, 2 conformal map and Faber Polyn for W(A) and $W(A)^{-1}$ There exists a > 0 s.t. $|\Phi_1(-a)| = |\Phi_2(-\frac{1}{a})|$ so that

$$\|f(A)v - \mathcal{U}_m f(\mathcal{T}_m)e_1\| \le \frac{c}{|\Phi_1(-a)|^m}$$

Extended Krylov: Convergence theory II

For nonsingular A, with $0 \notin W(A)$, let $f = f_1 + f_2$, $a \in [0, \infty)$. Then

$$\|f_1(z) - \sum_{k=0}^{m-1} \gamma_{1,k} F_{1,k}(z)\| \le \frac{c_1}{\Phi_1(-a)^m},$$

$$\|f_2(z) - \sum_{k=0}^{m-1} \gamma_{2,k} F_{2,k}(z^{-1})\| \le \frac{c_2}{\Phi_2(-\frac{1}{a})^m},$$

 Φ_j , $F_{j,k}$, j = 1, 2 conformal map and Faber Polyn for W(A) and $W(A)^{-1}$ There exists a > 0 s.t. $|\Phi_1(-a)| = |\Phi_2(-\frac{1}{a})|$ so that

$$\|f(A)v - \mathcal{U}_m f(\mathcal{T}_m)e_1\| \le \frac{c}{|\Phi_1(-a)|^m}$$

e.g. for A symmetric $(\Phi_1, \Phi_2 \text{ known}, a = \sqrt{\lambda_{\min} \lambda_{\max}})$: $||x - x_m|| = O(\exp(-2m\sqrt[4]{\frac{\lambda_{\min}}{\lambda_{\max}}}))$

 \boldsymbol{A} from FD discretization of

$$\mathcal{L}_{1}(u) = -100u_{x_{1}x_{1}} - u_{x_{2}x_{2}} + 10x_{1}u_{x_{1}},$$

$$\mathcal{L}_{2}(u) = -100u_{x_{1}x_{1}} - u_{x_{2}x_{2}} - u_{x_{3}x_{3}} + 10x_{1}u_{x_{1}},$$

$$\mathcal{L}_{3}(u) = -e^{-x_{1}x_{2}}u_{x_{1}x_{1}} - e^{x_{1}x_{2}}u_{x_{2}x_{2}} + \frac{1}{x_{1} + x_{2}}u_{x_{1}},$$

$$\mathcal{L}_{4}(u) = -\operatorname{div}(e^{3x_{1}x_{2}}\operatorname{grad} u) + \frac{1}{x_{1} + x_{2}}u_{x_{1}}$$

on unit square/cube, Dirichlet hom. bc.

Inner system solves:

- \bullet Extended Krylov: systems with A solved with GMRES/AMG
- SI-Arnoldi: systems with $I + \gamma A$ solved with IDR(s)/ILU

Comparisons: CPU Time in Matlab (space dim.)					
f	Oper.	n	SI-Arnoldi	EKSM	Std Krylov
$\lambda^{1/2}$	\mathcal{L}_1	2500	0.9 (59)	0.6 (48)	7 (193)
		10000	4.0 (66)	3.6 (68)	*46 (300)
		160000	642.9(<i>246</i>)	219.7(<i>122</i>)	*458(<i>300</i>)
	\mathcal{L}_2	27000	10.8 (55)	7.4 (40)	6.7(<i>119</i>)
		125000	86.7 (60)	65.3 (<i>52</i>)	138.7(<i>196</i>)
	\mathcal{L}_3	40000	26.3 (75)	21.1 (72)	* 87 (<i>300</i>)
		160000	318.5(144)	173.3 (96)	*442(<i>300</i>)
	\mathcal{L}_4	40000	41.1(117)	25.4(<i>106</i>)	*89 (300)
		160000	580.2(<i>442</i>)	231.2(144)	*461 (300)

Oper. \mathcal{L}_1	n	SI-Arnoldi	FKSM	
\mathcal{L}_1				SLU RIYIOV
	2500	0.6 (43)	0.4 (30)	2.2(131)
	10000	2.6 (46)	1.8 (38)	26.2(<i>252</i>)
	160000	79.3 (48)	99.7 (64)	*460(<i>300</i>)
\mathcal{L}_2	27000	7.8 (41)	4.8 (26)	3.1 (82)
	125000	64.8 (45)	38.9 (<i>32</i>)	67.5 (<i>138</i>)
\mathcal{L}_3	40000	20.7 (61)	13.7 (48)	*88 (300)
	160000	116.5 (62)	105.2 (62)	*460 (300)
\mathcal{L}_4	40000	35.8(104)	14.2 (66)	*88 (300)
	160000	208.1(104)	112.2 (<i>84</i>)	*461 (300)
	\mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_4	$\begin{array}{c c} & 10000 \\ 160000 \\ \hline \mathcal{L}_2 & 27000 \\ 125000 \\ \hline \mathcal{L}_3 & 40000 \\ \hline 160000 \\ \hline \mathcal{L}_4 & 40000 \\ \hline 160000 \end{array}$	$\begin{array}{c cccc} 10000 & 2.6 & (46) \\ 160000 & 79.3 & (48) \\ \hline \mathcal{L}_2 & 27000 & 7.8 & (41) \\ 125000 & 64.8 & (45) \\ \hline \mathcal{L}_3 & 40000 & 20.7 & (61) \\ 160000 & 116.5 & (62) \\ \hline \mathcal{L}_4 & 40000 & 35.8 & (104) \\ 160000 & 208.1 & (104) \\ \end{array}$	$\begin{array}{c cccc} 1 & 0 & 0 & 2.6 & (46) & 1.8 & (38) \\ \hline 160000 & 79.3 & (48) & 99.7 & (64) \\ \hline \mathcal{L}_2 & 27000 & 7.8 & (41) & 4.8 & (26) \\ \hline 125000 & 64.8 & (45) & 38.9 & (32) \\ \hline \mathcal{L}_3 & 40000 & 20.7 & (61) & 13.7 & (48) \\ \hline 160000 & 116.5 & (62) & 105.2 & (62) \\ \hline \mathcal{L}_4 & 40000 & 35.8 & (104) & 14.2 & (66) \\ \hline 160000 & 208.1 & (104) & 112.2 & (84) \\ \end{array}$

Stopping criterion

Unlike linear systems: no equation \Rightarrow no residual

Estimate of the error:

(first suggested for $f(\lambda) = e^{-\lambda}$ by van den Eshof-Hochbruck '06)

$$\frac{\|x - x_m\|}{\|x_m\|} \approx \frac{\delta_{m+j}}{1 - \delta_{m+j}}, \qquad \delta_{m+j} = \frac{\|x_{m+j} - x_m\|}{\|x_m\|}$$

Stopping criterion:

if
$$rac{\delta_{m+j}}{1-\delta_{m+j}}\leq$$
 tol then stop

Computational costs awareness: inexact solves in EKSM

systems with A: GMRES with relaxed inner tolerance

$$\epsilon_m^{(\text{inner})} = \frac{\texttt{tolin}}{\|x - x_{m-1}\|}.$$

Final outer error (# outer its / # inner its)

tolin	fixed inner tol	relaxed inner tol
1e-10	6.97e-11 (24/901)	6.58e-11 (24/559)
1e-12	6.48e-11 (24/1052)	6.48e-11 (24/716)

$$\mathcal{L}(u) = -u_{xx} - u_{yy} - u_{zz} + 50(x+y)u_x$$

 $f(\lambda) = \lambda^{-1/3} \qquad \epsilon^{(\text{outer})} = 10^{-10}$

A special case: $f(\lambda) = (\lambda - \sigma)^{-1}$. $x = (A - \sigma I)^{-1} v \equiv f_{\sigma}(A) v$

All as before - and new perspective:

• Many shifts in a wide range (e.g., Structural dynamics, electromagn.)

$$(A - \sigma_j I)x = v, \qquad \sigma_j \in [\alpha, \beta], \quad \text{large interval}$$

 $j = 1, \dots, k$, $k = \mathcal{O}(100)$

• Few shifts (e.g., quadrature formulas)

$$z = \sum_{j=1}^{k} \omega_j (A - \sigma_j I)^{-1} v$$

• Transfer function

$$h(\sigma) = c^* (A - i\sigma I)^{-1} b, \quad \sigma \in [\alpha, \beta]$$

Shifted systems

Extended Krylov subspace method:

$$x \approx \mathcal{U}_m f_\sigma(\mathcal{T}_m) e_1 = \mathcal{U}_m (\mathcal{T}_m - \sigma I)^{-1} e_1$$

standard Galerkin-type approximation for shifted systems (cf. FOM, CG, ...)

Key fact: A single \mathcal{K} for all shifted systems.

Shift invariance:

$$K_m(A, v) = K_m(A + \sigma I, v)$$

Note: Solve systems with A to approximate $(A + \sigma I)^{-1}v$

Added feature: restarting made easy

$$A\mathcal{U}_m = \mathcal{U}_m \mathcal{T}_m + U_{m+1} \boldsymbol{\tau} E_m^\top$$

Proportionality of the residuals:

For
$$x_m(\sigma) = \mathcal{U}_m(\mathcal{T}_m - \sigma I)^{-1}e_1$$
, the residual

 $r_m(\sigma) := b - (A - \sigma I) x_m(\sigma), \qquad r_m(\sigma) \propto \mathcal{U}_{m+1} e_{2m+1} \quad \forall \sigma$

(typical of Galerkin-type procedures)

Added feature: restarting made easy

$$A\mathcal{U}_m = \mathcal{U}_m \mathcal{T}_m + U_{m+1} \boldsymbol{\tau} \boldsymbol{E}_m^\top$$

Proportionality of the residuals:

For
$$x_m(\sigma) = \mathcal{U}_m(\mathcal{T}_m - \sigma I)^{-1}e_1$$
, the residual

 $r_m(\sigma) := b - (A - \sigma I) x_m(\sigma), \qquad r_m(\sigma) \propto \mathcal{U}_{m+1} e_{2m+1} \quad \forall \sigma$

(typical of Galerkin-type procedures)

Restarting with a single approximation space:

$$\mathcal{K}^{(2)} = K_m(A, v^{(2)}) + K_m(A^{-1}, A^{-1}v^{(2)}), \qquad v^{(2)} = \mathcal{U}_{m+1}e_{2m+1}$$

$$x_m^{(2)}(\sigma) = x_m^{(1)}(\sigma) + z_m, \qquad z_m \in \mathcal{K}^{(2)}$$

An example from Structural Dynamics

$$(K^{\star} - \sigma^2 M)x = b, \qquad \Rightarrow \ (K^{\star} M^{-1} - \sigma^2 I)\hat{x} = b$$

 K^{\star} stiffness + hysteretic damping, M mass $\sigma \in 2\pi[0.1, 60.1]$ frequencies, $\quad n=3627$

number	of restarts	(subspace	dimension)
		\	/

restarted	restarted
EKSM	FOM
3 (20)	- (20)
1 (34)	81(40)
	21(80)

Transfer function approximation (cf. MOR) $h(\sigma) = c^* (A - i\sigma I)^{-1} b, \quad \sigma \in [\alpha, \beta]$ Given space \mathcal{K} and V s.t. $\mathcal{K}=\operatorname{range}(V)$, $h(\sigma) \approx (V^* c)^* (V^* A V - \sigma I)^{-1} (V^* b)$

For
$$\mathcal{K} = K_m(A, b)$$
 (standard Krylov):

$$h_m(\sigma) = (V_m^* c)^* (H_m - \sigma I)^{-1} e_1 ||b||$$

For
$$\mathcal{K} = K_m(A, b) + K_m(A^{-1}, A^{-1}b)$$
 (EKSM):

$$h_m(\sigma) = (\mathcal{U}_m^* c)^* (\mathcal{T}_m - \sigma I)^{-1} e_1 \|b\|$$

Alternative: Rational Krylov (Grimme-Gallivan-VanDooren etc.) choosing the poles unresolved issue

An example: CD Player, $|h(\sigma)| = |C_{:,i}^*(A - i\sigma I)^{-1}B_{:,j}|$

An example: CD Player, $|h(\sigma)| = |C^*_{:,i}(A - i\sigma I)^{-1}B_{:,j}|$

Two-parameter linear systems

$$(A + \beta_j B + \alpha_i I)x = v, \qquad x = x(\alpha_i, \beta_j)$$

Commonly: $\#\alpha = O(100), \quad \#\beta = O(10)$

Problem: Solve all systems at a cost sublinear in $\#\alpha, \#\beta$

Two-parameter linear systems

$$(A + \beta_j B + \alpha_i I)x = v, \qquad x = x(\alpha_i, \beta_j)$$

Commonly: $\#\alpha = O(100), \quad \#\beta = O(10)$

Problem: Solve all systems at a cost sublinear in $\#\alpha, \#\beta$

Currently, Shifted restarted EKSM most efficient strategy:

For each β_j , solve $(A + \beta_j B + \alpha_i I)x = v$, $\forall \alpha_i$

But: linear in β ...

Conclusions

- Efficient generation of the Extended Krylov subspace
- Complete theory for EKSM for a large class of functions
- Performance:
 - Competitive with respect to available methods

(when solving with A can be made cheap)

- Does not depend on parameters
- Projection-type method: wide applicability (work in progress)

valeria@dm.unibo.it, http://www.dm.unibo.it/~ simoncin