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Large linear systems

Given a PDE and your preferred discretization strategy,

Ax = b, A ∈ Rn×n

▶ Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

x ≈ xm = Vmym

where Vm has (orthonormal) columns spanning Km(A, b) = span{b,Ab, . . . ,Am−1b}
▶ Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

where AP−1 is “easier” to solve with.

Comfort zone
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Heterogeneous variable setting

The differential problem may depend on space variable and

▶ Time (high quality soln of heat-, wave-type equations, dynamical systems generally)

▶ Parameters (e.g., coefficients with uncertainty, model tuning)

⇓

Approximation space during the discretization phase: tensor space

H× S

with ♣ H: spatial variables
♣ S: time/parameter variables

Algebraic system: A mixes all components, e.g.,

A = I ⊗ A+ GT ⊗ I
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Identity-preserving algebraic formulations

Ax = b, A = I ⊗ A+ GT ⊗ I A ∈ Rn×n, with n = nAnG

⇓

AX + XG = B, x = vec(X ), b = vec(B), X ∈ RnA×nG

Pros:

✓ Matrices of Smaller dimension ⇒ Reach more complex problems

✓ No mixing – Preserve properties of continuous problem

✓ Exploit algebraic structure (symmetries, rank properties...)
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Exploiting rank structure

Assume B can be well represented by a low rank matrix.

x ∈ RnAnG×1 → X ≈ X̃ =

X1

 [ XT
2 ]

with X1 ∈ RnA×k ,X2 ∈ RnG×k tall, k ≪ na, nG

Uncover low rank approximate representation!

▶ Save memory allocations while approximating!

▶ Different interpretation: approximate soln snapshots (MOR style)

▶ Recognize roles at the algebraic level: use different approximations for X1,X2
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Numerical solution of the Sylvester equation

AX + XGT = B

Various settings:

▶ Tiny A and G : Kron will do!

▶ Small A and G : Bartels-Stewart algorithm (Computes the Schur form of A and G )

▶ Large A and G : Iterative solution (B low rank)

▶ Projection methods

▶ ADI (Alternating Direction Iteration)

▶ Data sparse approaches (structure-dependent)

[1]
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Projection-type methods

Assume B = B1B
T
2 .

Given two low dimensional approx spaces KA, KG , and Vm,Wm their orthonormal bases
let Xm := VmYmW

T
m , Xm ≈ X

Galerkin condition: R := AXm + XmG
T − B1B

T
2 ⊥ KA ⊗KG

V⊤
m RWm = 0

Note: KA, KG tiny wrto K(A, b)

————————————

Projected Sylvester equation:

V⊤
m (AVmYmW

⊤
m + VmYmW

⊤
m G⊤ − B1B

⊤
2 )Wm = 0

(V⊤
m AVm)Ym + Ym(V

⊤
m G⊤Vm) − V⊤

m B1B
⊤
2 Wm = 0

Early contributions: Saad ’90, Jaimoukha & Kasenally ’94, for

range(Vm) = KA = Range([B1,AB1, . . . ,Am−1B1])
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More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

(Druskin & Knizhnerman ’98, Simoncini ’07)

• Rational Krylov subspace

KA = KA := Range([B1, (A− s1I )
−1B1, . . . ,

m−1∏
j=1

(A− sj I )
−1B1])

usually, {s1, . . . , sm−1} ⊂ C+ chosen either a-priori or dynamically
(form matrix equations, Druskin & Simoncini ’11)

In both cases, for Range(Vm) = KA, Range(Wm) = KGT projected Lyapunov equation:

(V⊤
m AVm)Ym + Ym(W

⊤
m G⊤Wm)− V⊤

m B1B
⊤
2 Wm = 0 Xm = VmYmW

⊤
m
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Multiterm linear matrix equation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C (1)

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transfor-
mation to a matrix-vector equation [...] allows us to use the considerable arsenal
of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

Another generalization of the Sylvester equation, mainly of
theoretical interest, is (1)

Nick Higham, in ”Accuracy and Stability of Numerical Algorithms”, SIAM, 1996
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Multiterm linear matrix equation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

▶ Kronecker form and back on track

▶ Fixed point iterations (an “evergreen”...)

▶ Projection-type methods ⇒ low rank approximation

▶ Ad-hoc problem-dependent procedures

▶ etc.

A sample of these methodologies on different problems:

♣ Stochastic PDEs

♣ PDEs on polygonal domains, IGA, spectral methods, etc

♣ Space-time PDEs

♣ All-at-once PDE-constrained optimization problem

♣ Bilinear control problems

♣ ....
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Multiterm linear matrix equation. Classical device

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Kronecker formulation(
B⊤
1 ⊗ A1 + . . .+ B⊤

ℓ ⊗ Aℓ

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Bioli, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies,

Nagy, Onwunta, Palitta, Raydan, Robol, Stoll, Tobler, Wedderburn, Zander, ...)

Current very active area of research

Assume A is sym pos.def. (spd) ⇒ CG
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CG matricization and truncation

⋆ Matricization. Typically,

x (k+1) = x (k) + αkp
(k) ∈ Rn2 ⇒ X (k+1) = X (k) + αkP

(k) ∈ Rn×n

⋆ Truncation. If X (k) = X
(k)
1 (X

(k)
1 )⊤ with X

(k)
1 low rank, and similarly for P(k), then

X (k+1) = X
(k)
1 (X

(k)
1 )⊤ + αkP

(k)
1 (P

(k)
1 )⊤

▶ X (k+1) low rank:

X (k+1) = [X
(k)
1 ,

√
αkP

(k)
1 ] [X

(k)
1 ,

√
αkP

(k)
1 ]⊤ (2)

(but generally larger than at iteration k)

▶ Cure: Rank shrinking [X
(k)
1 ,

√
αkP

(k)
1 ] ⇒ X

(k+1)
1 X (k+1) ≈ X

(k+1)
1 (X

(k+1)
1 )⊤

Implementation: T (X (k+1)) acts on the QR-SVD of factor in (2)

Alternative truncation criteria:
♣ Fix lower threshold tolerance ♣ Fix maximum allowed rank
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Truncated matrix-oriented CG (TCG) for Kronecker form

Input: L(X ) = A1XB1 + A2XB2 + . . .+ AℓXBℓ, right-hand side C ∈ Rn×n in low-rank format.
Truncation operator T .
Output: Matrix X ∈ Rn×n in low-rank format s.t. ||L(X )− C ||F /||C ||F ≤ tol

1. X0 = 0, R0 = C , P0 = R0, Q0 = L(P0)

2. ξ0 = ⟨P0,Q0⟩, k = 0 ⟨X ,Y ⟩ = tr(X⊤Y )

3. While ||Rk ||F > tol

4. αk = ⟨Rk ,Pk ⟩/ξk
5. Xk+1 = Xk + αkPk , Xk+1 ← T (Xk+1)

6. Rk+1 = C − L(Xk+1), Optionally: Rk+1 ← T (Rk+1)

7. βk = −⟨Rk+1,Qk ⟩/ξk
8. Pk+1 = Rk+1 + βkPk , Pk+1 ← T (Pk+1)

9. Qk+1 = L(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10. ξk+1 = ⟨Pk+1,Qk+1⟩
11. k = k + 1

12. end while

♣ Iterates kept in factored form! Kressner and Tobler, ’11
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Typical convergence behavior

0 20 40 60 80 100 120

IT

10
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10
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=1e-4

=1e-6

=1e-7

(Hao, ’20, personal comm.)
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Typical iterate rank behavior
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(Simoncini & Hao, ’22)
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Within the CG framework, can we do better?

Considerations:

1. At best, convergence as for Kronecker problem

2. Rank of iterates hard to control to maintain convergence

3. Coeffs α, β under exploited

pk = vec(Pk), rk = vec(Rk) ⇒ {r0, . . . , rk}, {p0, . . . ,pk} orth prop

Recalling CG basics: Ax = b

Problem: Minimize the convex function

Φ(x) =
1

2
xTAx − bTx

xk+1 = xk + αkpk , αk s.t. min
α

Φ(xk + αpk)

with residual and direction updates:

rk+1 = rk −Apkαk , pk+1 = rk+1 + pkβk .
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The new subspace-CG

Warning: For the sake of the presentation, we assume a simplified form:

L(X ) = L(X )T , for any X = XT

This assumption allows us to write a square X as X = XXT

In practice, the whole derivation holds for A = B1 ⊗ A1 + · · ·+ Bℓ ⊗ Aℓ spd
(that is, L spd in the matrix inner product)
so that

X ∈ Rnl×nr , X = X l(X r )T
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The new subspace CG

We define Φ : Rn×n → R,

Φ(X ) =
1

2
⟨X ,L

(
X
)
⟩ − ⟨X ,C ⟩

The new minimization problem: Find X ∈ Rn×n such that

X = arg min
X∈Rn×n

Φ(X )

with iteration
X k+1 = X k + PkαkP

T
k

where αk ∈ Rsk×sk and Pk ∈ Rn×sk

Residual and direction computation:

Rk+1 = Rk − L(PkαkP
T
k ), Pk+1 = Rk+1 + PkβkP

T
k ,

where Pk+1 = Pk+1P
T
k+1
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Defining the coefficients. I

At the kth iteration:

1. Construct αk so that

min
α∈Rsk×sk

Φ(X k + PkαPT
k )

2. Impose a descent direction requirement for Pk = PkP
T
k :

⟨∇Φ(X k),Pk⟩ < 0

3. Construct βk so that the new direction Pk+1 is L-orthogonal with respect to the
previous ones:

(Pk ⊗ Pk)
T vec(L(Pk+1)) = 0
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Defining the coefficients. II

Let Ã
(i)
k = PT

k AiPk , B̃
(i)
k = PT

k BiPk , i = 1, . . . , ℓ

▶ Construction of αk :
αk is the unique solution of

Ã
(1)
k αB̃

(1)
k + . . .+ Ã

(ℓ)
k αB̃

(ℓ)
k = PT

k RkPk

▶ Construction of βk :
βk is the unique solution of

Ã
(1)
k βB̃

(1)
k + . . .+ Ã

(ℓ)
k βB̃

(ℓ)
k = −PT

k L(PkβkP
T
k )Pk
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Making the idea practical

Xk+1 = XkτkX
T
k + PkαkP

T
k = [Xk ,Pk ]τk+1[Xk ,Pk ]

T

Rk+1 = [R0,A⋆ • Xk+1]ρk+1[R0,B⋆ • Xk+1]
T

where A⋆ • R = [A1R, . . . ,AℓR]

▶ All terms are kept in factored form

▶ The rank grows

Rank truncation

▶ Computing Rk+1 becomes too expensive (CPU time and memory)

Randomized range finder

Given a target rank maxrankR and a Gaussian matrix G l ∈ RnB×maxrankR:

Rk+1G
l = C1(C

T
2 G l)−

ℓ∑
i=1

Ai (X
l
k+1τk+1((X

r
k+1)

T (BiG
l)))

(Analogously for RT
k+1)

Then proceed with a cheap evaluation of the reduced residual matrix
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A computational experiment. I

Parameterized diffusion equation (Biolietal, tech.rep.2024)

−∇ · (k∇u) = 0 in (0, 1)2

with homogeneous boundary conditions and semi-separable diffusion coefficient:

k(x , y) =

ℓk∑
j=1

δjkj,x(x)kj,y (y) = 1 +

ℓk−1∑
j=1

10j

j!
x jy j , ℓk = 4

This gives
ℓk∑
j=1

δj(Aj,xXDj,y + Dj,yXAj,y ) = C

with C rank-four nonsym matrix accounting for b.c. (total of ℓ = 8 terms)

Algorithms to be compared:
* ss-cg-determ: new method, residual matrix computed sequentially;
* ss-cg-rand’zed: new method, residual matrix computed using Randfinder
* tpcg: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
* r-nltcg: Riemannian, nonlinear CG (Bioli, Kressner, Robol, tech.rep.2024)
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A computational experiment. II

n Precond maxrank r-nlcg tpcg ss–cg ss–cg
type determ. rand’zed
10000 P1 20 – (100) – (100) – (100) – (100)

P1 40 – (100) – (100) 1.08 ( 5) 0.92 ( 5)
P1 60 – (100) – (100) 2.47 ( 5) 2.34 ( 5)
P2 20 11.25 (36) 11.42 (38) – (100) – (100)
P2 40 *42.97 (36) 15.54 (33) – (100) – (100)
P2 60 *98.62 (35) 32.39 (28) 9.59 ( 5) 8.37 ( 5)

102400 P1 20 – (100) – (100) – (100) – (100)
P1 40 † – (100) 18.17 ( 6) 8.74 ( 6)
P1 60 † – (100) 23.50 ( 5) 16.93 ( 5)
P2 20 183.44 (41) – (100) – (100) – (100)
P2 40 † 446.94 (47) – (100) – (100)
P2 60 † 884.20 (26) 115.73 ( 3) 101.91 ( 3)

– no conv. * Lower final residual norm than other methods † Out of Memory

Running time in seconds (# iter’s)
Stopping tolerance tol = 5 · 10−6 True residual norm at termination

P1: one-term precond, cheap P2: two-term precond, expensive (fixed ADI iters)
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What is left

What I have not told you about:

▶ Orthogonality properties of residuals and directions

▶ Optimality and finite termination properties

▶ Preconditioning

▶ More experiments on a variety of application problems

Outlook:

▶ Experiments are very promising

▶ The idea can be generalized to other Krylov methods

▶ Tensor version under investigation

Reference
Davide Palitta, Martina Iannacito, and V. Simoncini
A subspace-conjugate gradient method for linear matrix equations
pp. 1-25, Jan 2025. ArXiv 2501.02938
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