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Abstract In this paper we present a mathematical model for the aggregation and
diffusion of Aβ amyloid in the brain affected by Alzheimer’s disease, at the early stage
of the disease. The model is based on a classical discrete Smoluchowski aggregation
equation modified to take diffusion into account. We also describe a numerical scheme
and discuss the results of the simulations in the light of the recent biomedical literature.
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1370 Y. Achdou et al.

1 Introduction

This paper aims at proposing a mathematical model for the onset of the Alzheimer
disease (AD hereafter), nowadays one of the most common late life dementia.

In recent years, mathematical models have been largely developed for the descrip-
tion and the study of other pathologies such as tumors. Restricting ourselves to the
neurological area, we refer for instance to Hatzikirou et al. (2005). Concerning AD,
modeling is far less developed. Besides the classical approaches in vivo and in vitro,
there has been an increasing interest toward the approach in silico, i.e. toward math-
ematical modeling and computer simulations. We refer for instance to Urbanc et al.
(1999); Cruz et al. (1997), and, first of all, to the remarkably exhaustive and deep
paper (Edelstein-Keshet and Spiross 2002).

It is important to stress from the very beginning that, despite the large number of
experimental data that can be extracted from biomedical literature and incorporated in
mathematical models as in Edelstein-Keshet and Spiross (2002), mathematical models
do not currently have a “predictive” value; rather, they are what physicists call “toy
models”, i.e. simplified formal models that can be used in order to test preliminary
new theories, quickly identifying, for instance, the most relevant hypotheses or reject-
ing those less likely to lead to new insights. In this sense, qualitative models take a
place beside more specific fully quantitative models, and can be used for reducing
experimental costs or for overcoming structural difficulties.

The aim of this note is to provide an elementary mathematical model of the dif-
fusion and agglomeration of the β-amyloid (Aβ hereafter) in the brain affected by
Alzheimer’s disease (AD). Current estimates of AD incidence are above 24 million
of affected persons worldwide, a number that is expected to double every 20 years.
For a comprehensive review of the key aspects of the disease, such as epidemiology,
genetics, pathogenesis, diagnosis, and treatment, we refer for instance to Blennow et
al. (2006) and Mattson (2004).

For a detailed review of the current knowledge on the role of Aβ in AD (the so-called
amyloid cascade hypothesis), we refer to Haass and Selkoe (2007). Roughly speaking,
Aβ is produced normally by the intramembranous proteolysis of APP (amyloid pre-
cursor protein) throughout life, but a change in the metabolism may increase the total
production of Aβ, and, in particular, the production—among other isoforms—of the
monomeric Aβ40 and Aβ42 that are highly toxic. From now on, for sake of simplicity,
we shall simply write Aβ.

Successively, Aβ oligomers are subject to two different phenomena:

• agglomeration, leading eventually to the formation of long, insoluble amyloid fib-
rils, which accumulate in spherical microscopic deposits known as senile plaques;

• diffusion through the microscopic tortuosity of the brain tissue.

In fact, agglomeration can be articulated in several steps (Chimon et al. 2007):
initial seeds, soluble small oligomers, protofibrils and insoluble polymers, amyloid
fibrils with a β-sheet conformation. However, this level of description remains behind
the scope of our model, as will be explained in detail in the next section.
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A qualitative model for aggregation and diffusion 1371

We refer for instance to Walsh and Selkoe (2007) for an exhaustive historical
account, and to Ono et al. (2009) for an experimental analysis of the different types
of oligomers.

The plan of the work is the following:

– in Sect. 1, we describe the general biological context in which we will operate,
and situate the model from a phenomenological point of view with useful biblio-
graphical references;

– in Sect. 2, we give a detailed description of our model and particularly emphasize
the specific phenomena that are taken into account and the relevant variables in
our approach;

– in Sect. 3, we present some rigorous results on the mathematical model along with
a bio-physical interpretation;

– in Sect. 4, we describe a numerical scheme in detail. In particular we explain some
additional assumptions made in order to simplify the implementation;

– in Sect. 5, we present some numerical results and discuss them in view of some
recent results from biomedical literature;

– in Sect. 6, we propose some conclusions and comments.

2 Description of the model

It has been recently suggested that soluble Aβ can be considered as the principal cause
of neuronal death and eventually of dementia (Walsh and Selkoe 2007). Indeed modern
Aβ enzyme-linked-immunosorbent assays (ELISAs) coupled with western blotting
and mass spectrometry suggest that the plaque counting yields a poor measure of the
severity of the AD, and that the levels of soluble Aβ, including soluble oligomers,
correlate much better with the presence and degree of cognitive deficits than plaque
statistics. Even more, quoting Haass and Selkoe (2007), the idea that large aggregates
of a disease causing protein can actually be inert or even protective to neurons has been
supported by work on other protein folding disorders. Therefore, in the present work,
we are interested in considering the early stage of AD when small amyloid fibrils are
free to move and to coalesce in the brain.

In addition, we discard deliberately fibril fragmentation, which can be considered
as a secondary process in the mechanism of amyloid self-assembly (Knowles et al.
2009; Xue et al. 2008), especially when oligomers of small size are involved.

It is natural to describe the agglomeration phenomenon by means of the so-called
Smoluchowski equations (classical references are Smoluchowski (1917) and Drake
(1972); further recent references related to the present paper are listed below).

Since the fibrils at this stage are relatively small, diffusion also plays a key role in
the description of the behaviours of the fibrils, as recently discussed e.g. in Meyer-
Luhmann (2004); Meyer-Luehmann et al. (2008).

When attempting to produce a mathematical model, we have to fix a spatial scale
once and for all. Thus, we consider a portion of the hippocampus or of the cerebral
cortex (the regions of the brain mainly affected by AD) whose size is comparable
to a multiple of the size of a neuron, and we avoid the description of intracellular
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1372 Y. Achdou et al.

phenomena, as well as of the clinical manifestations of the disease at a macroscopic
scale (see some additional comments on this in the final section).

With this choice of scale, it is coherent to assume that the diffusion is uniform,
and therefore to model it by the usual Fourier linear diffusion equation. Indeed, if one
considers a large (i.e. macroscopic) portion of the brain tissue, it has been recently
proved that the diffusion of the amyloid is affected by the metabolic activity and
therefore may change from one region to another according to the neuronal activity
(Bero et al. 2011). On the contrary, since we focus on a small portion of the celebral
tissue (typically the affected areas are the hippocampus or of the cerebral cortex),
linear diffusion appears to be the most appropriate (see, for instance, Nicholson and
Sykov (1998)).

Moreover, we assume that “large” assemblies do not aggregate with each other.
This assumption is related to technical aspects of the model (basically, it is meant to
prevent blow-up phenomena for solutions at a finite time), but also it is coherent with
experimental data (see below).

The portion of cerebral tissue we consider is represented by a bounded smooth
region �0 ⊂ R

3 (since only qualitative information is desired we shall take �0 ⊂ R
2

in our simulations for keeping the computing effort small enough), whereas the neurons
are represented by a family of regular regions � j such that

(1) � j ⊂ �0 if j = 1, . . . ,M ;
(2) �i ∩� j = ∅ if i �= j .

We set

� := �0 \
M⋃

j=1

�i .

From the mathematical point of view, we will consider a vector-valued function
u = (u1, . . . , uN ), where N ∈ N and u j = u j (t, x), t ∈ R, t ≥ 0 (the time), and
x ∈ �:

• if 1 ≤ j < N − 1, then u j (t, x) is the (molar) concentration at the time t at the
point x of an Aβ assembly of j monomers;

• uN takes into account aggregations of more than N − 1 monomers. Although uN

has a different meaning from the other um’s, we keep the same letter u in order to
avoid cumbersome notations.

The production of Aβ in the monomeric form at the level of neuron membranes
is modeled by a non homogeneous Neumann condition on ∂� j , the boundary of � j ,
for j = 1, . . . ,M . Finally, an homogeneous Neumann condition on ∂�0 is meant to
artificially isolate our portion of tissue from its environment.

Thus, we are lead to the following Cauchy–Neumann problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t u1 = d1�x u1 − u1

∑N
j=1 a1, j u j

∂u1
∂ν

= ψ0 ≡ 0 on ∂�0
∂u1
∂ν

= ψ j on ∂� j , j = 1, . . . ,M

u1(x, 0) = U1(x) ≥ 0,

(1)
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A qualitative model for aggregation and diffusion 1373

where 0 ≤ ψ j ≤ 1 is a smooth function for j = 1, . . . ,M , describing the production
of the amyloid near the membrane of the neuron.

Indeed, the production of Aβ is not uniformly distributed on the membrane of the
neuron. Indeed, it has been observed that the plaque accumulates near the axon’s out-
growth, in angular position with respect to the neuron’s soma. A possible explanation
of this phenomenon is that pathological changes in APP processing are concentrated in
axons and synapses, since APP is normally transported within axons and its cleavage
is regulated by sinaptic inputs (Mattson 2004).

In the mathematical model, this localization of the production is expressed by means
of the choice of the functions ψ j . Indeed, the ψ j ’s are not constant or bounded away
from zero on all the ∂� j ’s (that would correspond to a uniform production of amyloid
on the neuron membranes), but are identically zero except for a small portion of the
boundary of the set � j , that represents the portion of the membrane involved in the
production of the amyloid. We refer to the introduction of Sect. 5 for a discussion
related to the numerical simulation.

We only take into account neurons affected by the disease, i.e. we assume ψ j �≡ 0
for j = 1, . . . ,M . Moreover, to avoid technicalities, we assume that U1 is smooth,
more precisely U1 ∈ C2+α(�̄) for some α ∈ (0, 1), and that ∂U1

∂ν
= ψ j on ∂� j , j =

0, . . . ,M .
In addition, if 1 < m < N ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t um = dm�x um − um

∑N
j=1 am, j u j + 1

2

∑m−1
j=1 a j,m− j u j um− j .

∂um
∂ν

= 0 on ∂�0
∂um
∂ν

= 0 on ∂� j , j = 1, . . . ,M

um(x, 0) = 0,

(2)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t uN = dN�x uN + 1

2

∑
j+k≥N ,k<N , j<N a j,ku j uk .

∂uN
∂ν

= 0 on ∂�0
∂uN
∂ν

= 0 on ∂� j , j = 1, . . . ,M

uN (x, 0) = 0,

(3)

where d j > 0, j = 1, . . . , N and ai, j = a j,i > 0, i, j = 1, . . . , N (but aN ,N = 0).
For reasons related to the model, we can assume that the diffusion coefficients d j

are small when j is large, since big assemblies do not move. In fact, the diffusion
coefficient of a soluble peptide scales approximately as a reciprocal of the cube root
of its molecular weight (see Goodhill (1997) and also Nicholson and Sykov (1998)).

The justification of the condition j, k < N in (3) requires a few more words. In
fact, we must remember that the meaning of uN differs from that of um,m < N , as
well as the identity

1

2

∑

j+k≥N ,k<N , j<N

a j,ku j uk = 1

2

∑

j+k≥N

a j,ku j uk − uN

N∑

j=1

aN , j u j . (4)

123

Author's personal copy



1374 Y. Achdou et al.

The idea is that uN should describe the sum of the densities of all the “large” assem-
blies. We assume that large assemblies exhibit all the same coagulation properties and
do not coagulate with each other.

Let us briefly show how (3) is obtained: we start by writing the exact Smoluchowski
equation for all m ≥ 1 using ũm instead of um in order to avoid confusion, i.e. nothing
but the PDE in (2) with m ranging from 2 to ∞. We have

∂

∂t
ũm = dm�x ũm − ũm

∞∑

j=1

am, j ũ j + 1

2

m−1∑

j=1

a j,m− j ũ j ũm− j , (5)

where, coherently with our assumptions, we assume

(i) dm = dN for m ≥ N ;
(ii) am, j = aN , j for m ≥ N . In particular, if m, j ≥ N , am, j = aN , j = aN ,N = 0.

Therefore, if m ≥ N , (5) becomes

∂

∂t
ũm = dN�x ũm − ũm

N−1∑

j=1

aN , j ũ j + 1

2

m−1∑

j=1

a j,m− j ũ j ũm− j , (6)

Now we sum up (6) for m ≥ N , and we set for a while v := ∑
m≥N ũm . We want

to show precisely that v satisfies the Eq. (3) (satisfied by uN ). By i), we have

∂v

∂t
= dN�xv −

∑

m≥N

ũm

N−1∑

j=1

aN , j ũ j + 1

2

∑

m≥N

m−1∑

i=1

ai,m−i ũi ũm−i

: = dN�xv − I1 + 1

2
I2.

It is clear that

I1 =
∑

m≥N

ũm

N−1∑

j=1

aN , j ũ j = v

N−1∑

j=1

aN , j ũ j ,

that is precisely the second term in (4), since aN ,N = 0.
As for I2, if we set j := i and k := m − i , we obtain the first term in (4). Finally,

if set um = ũm for m < N and uN = v we recover the PDE in (3), as desired.
The diffusion-agglomeration system described above has been already considered

in the literature (without reference to Aβ amyloid and to Alzheimer’s disease) with
homogeneous boundary Neumann conditions (see for instance Laurençot and Mischler
(2002); Mischler and Ricard (2003); Amann (2000); Wrzosek (1997); Amann and
Weber (2001); Amann and Walker (2005) and, for a numerical approach, Filbet and
Laurençot (2004a,b); Bourgade and Filbet (2008)). Non-homogeneous boundary data
on ∂� j , j = 1, . . . , N , i.e. on the external membrane of the neurons, are crucial
here, since they model the production of Aβ-monomers at the level of the membrane
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A qualitative model for aggregation and diffusion 1375

itself. This, in turn, is an essential aspect of the phenomenon in vivo. Obviously, the
non-homogeneous Neumann boundary conditions prohibits mass conservation; thus,
some estimates provided in the literature in the homogeneous case fail to hold and we
have to adapt the techniques of Wrzosek (1997) to our situation, relying on a repeated
use of the classical parabolic maximum principle.

Usually, mathematical and physical literature refers to the equations appearing
in (1), (2) and (3) as to a finite discrete Smoluchowski type system with diffusion.
Originally, in Smoluchowski (1917), Smoluchowski introduced a system of infinite
discrete differential equations (without diffusion) for the study of rapid coagulation of
aerosols. Smoluchowski’s theory was successively extended to cover different physical
situations, and, in particular, a class of corresponding integro-differential equations
was introduced for the study of the physics of clouds, where sums are replaced by
integrals. We refer to Drake (1972) for a exhaustive historical account. We restrict
ourselves to a finite discrete system since our model can be reduced to the study of
only three kinds of particles with completely different bio-physical properties:

• Monomers, that are produced by neuronal membranes. Mathematically, this means
that the diffusion-coagulation equation is coupled with non-homogeneous Neu-
mann boundary conditions.

• Soluble oligomers, that diffuse in the brain and coagulate to form larger assemblies.
Mathematically, this means that the diffusion-coagulation equation is coupled with
homogeneous Neumann boundary conditions.

• Long fibrils, characterized by a very low diffusion, that do not coagulate with each
other.

Applications of Smoluchowski equation to the description of the agglomeration of
Aβ amyloid appear in Murphy and Pallitto (2000). In this paper, the authors compare
experimental data, obtained in vitro, with numerical simulations based on Smolu-
chowski equation (without diffusion) in order to describe the process leading to insol-
uble fibril aggregates from soluble amyloid. The form of the coefficients ai, j (the
coagulation rates) considered in Murphy and Pallitto (2000)—that is based on end-
to-end association, consistently with our choice of restricting ourselves to primary
structures—is stated in formula (13) therein (see also the comments following the for-
mula). The physical arguments leading to formula (13) in Murphy and Pallitto (2000)
rely on sophisticated statistical mechanics considerations (see also Hill (1983), Tom-
sky and Murphy (1992)).

In our numerical simulations, we use a slightly approximate form of these coeffi-
cients, taking

ai, j = α
1

i j
, where α > 0. (7)

In fact, this approximation basically consists of neglecting logarithmic terms in front
of linear ones for large i, j . It is clearly coherent with experimental data to assume
aN ,N = 0 for large N . This is equivalent to saying that large oligomers do not aggregate
with each other.

We stress again that the present model only takes into account the evolution of the
Aβ, and ignores the role played by the microglia in neuronal death and in the formation
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1376 Y. Achdou et al.

of senile plaques. For these aspects, we refer for instance to Meyer-Luehmann et al.
(2008) and Edelstein-Keshet and Spiross (2002). In particular, if we identify senile
plaques in our model with the sets {x : uN (t, x) > c > 0}, our model leads to smooth
shape of senile plaques, see the numerical simulations in Sect. 5, in disagreement with
evidences found in vivo. This may be explained by Fig. 3 in Edelstein-Keshet and
Spiross (2002) and related comments on the role of the microglia.

3 Rigorous mathematical results

We keep now the notations of the previous Section. Let g ∈ C2+α(�̄) be such that

∂g

∂ν
= 0 on ∂�0

and

∂g

∂ν
= ψ j on ∂� j , j = 1, . . . ,M.

Set now v1 := u1 − g, vm := um for m > 1. Equations (1), (2), (3) become

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂t v1 = d1�xv1 − v1

(
a1,1v1 + ∑N

j=2 a1, jv j + 2a1,1g
)

+d1�x g − a1,1g2 − g
∑N

j=2 a1, jv j
∂v1
∂ν

= 0 on ∂�0
∂v1
∂ν

= 0 on ∂� j , j = 1, . . . ,M
v1(x, 0) = U1(x)− g(x), x ∈ �,

(8)

whereas when 1 < m < N
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂t vm = dm�xvm − vm

(∑N
j=1 am, jv j + am,1g

)

+ 1
2

∑m−1
j=1 a j,m− jv jvm− j + a1,m−1gvm−1.

∂vm
∂ν

= 0 on ∂�0
∂vm
∂ν

= 0 on ∂� j , j = 1, . . . ,M
vm(x, 0) = 0,

(9)

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t vN = dN�xvN + 1

2

∑
j+k≥N a j,kv jvk

+g
(
a1,N−1vN−1 + a1,NvN

)
∂vN
∂ν

= 0 on ∂�0
∂vN
∂ν

= 0 on ∂� j , j = 1, . . . ,M
vN (x, 0) = 0.

(10)

Proposition 3.1 There exists τmax > 0 such that problem (8)–(10) has a local classi-
cal maximal solution v ∈ C1+α/2,2+α([0, τ ] × �̄) for every τ ∈ (0, τmax). Therefore,
the same assertion holds for problem (1)–(3).
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A qualitative model for aggregation and diffusion 1377

Proof We apply Theorem 1 p. 111 (Rothe 1984) (see also Theorem 7.1 in the
Appendix). ��
Proposition 3.2 If u = (u1, . . . , uN ) is a solution of problems (1)–(3), then um > 0
in (0, τmax)× �̄ for m = 1, . . . , N.

Proof Let us argue by induction on m. If m = 1, by the comparison theorem Theorem
3 p.123 of Rothe (1984) (see also Theorem 7.2 in the Appendix), we obtain that either
u1 ≡ 0, or u1 > 0. But u1 cannot vanish identically, since it satisfies non-homogeneous
Neumann boundary conditions on ∂� j , j = 1, . . . , N , and therefore u1 > 0. Suppose
now that there exists m < N such that u1 > 0, . . . , um−1 > 0. Set

Fm(x, t, y) := −y
N∑

j=1

am, j u j (x, t)+ 1

2

m−1∑

j=1

a j,m− j u j (x, t)um− j (x, t).

By the induction hypothesis, Fm(x, t, 0) ≥ 0. Again, we can apply the comparison
theorem to conclude that um ≥ 0, and that either um vanishes identically, or um > 0.
Suppose now by contradiction um ≡ 0. Replacing in (2), we obtain that u j um− j ≡ 0
for j = 1, . . . ,m, contradicting the induction hypothesis.

The same argument applies for m = N . This achieves the proof. ��
Remark 3.3 The existence of a positive solution, which could sound quite obvious
from a biomedical point of view, is the fundamental mathematical requirement to be
satisfied for our model to be considered sustainable.

Proposition 3.4 We have τmax = +∞.

Proof Suppose by contradiction τmax < +∞. Then, by Theorem 1 of Rothe (1984)
(see also Theorem 7.1 in the Appendix)

lim
t→τmax

‖u(·, t)‖(L∞(�))N = +∞.

Thus, we have to show that there exists C > 0 such that

‖u(·, t)‖(L∞(�))N ≤ C for t ∈ (0, τmax).

We argue by induction on the components of u. Let g ∈ C2(�̄) be such that

∂g

∂ν
= 1 on ∂�0

and

∂g

∂ν
= 1 on ∂� j , j = 1, . . . ,M.
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1378 Y. Achdou et al.

Without loss of generality, we may assume g ≥ 0. We set C := max�̄ d1|�x g|, u0 :=
g + Ct and v1 := u1 − u0. We have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂t v1 = d1�xv1 − v1

(∑N
j=2 a1, j u j + 2a1,1u0

)

−a1,1v
2
1 + d1�x u0 − ∂u0

∂t − a1,1u2
0 − u0

∑N
j=2 a1, j u j

∂v1
∂ν

= −1 on ∂�0
∂v1
∂ν

= ψ j − 1 ≤ 0 on ∂� j , j = 1, . . . ,M
v1(x, 0) = U1(x)− g(x), x ∈ �.

(11)

Set h := −( ∑N
j=2 a1, j u j + 2a1,1u0

) ≤ 0. Then

d1�xv1 − ∂

∂t
v1 + hv1

= a1,1v
2
1 − d1�x u0 + C + a1,1u2

0 + u0

N∑

j=2

a1, j u j

≥ −d1�x u0 + C ≥ 0.

By the parabolic maximum principle (Protter and Weinberger 1984, Theorem 7,
p. 174), either v1 ≤ 0 in [0, τ ] with τ < τmax, or its maximum on [0, τ ] is attained
on the parabolic boundary of [0, τ ] × �̄. But the maximum cannot be attained on
(0, τ ]×∂� by the parabolic boundary point lemma (Hopf’s principle: see again Protter
and Weinberger (1984), Theorems 6 and 7 p. 174), since ∂v1

∂ν
≤ 0 on (0, τ ]×∂�. Thus

v1 ≤ max{0,U1 − g} ≤ U1,

and

0 ≤ u1 ≤ U1 + u0 ≤ max
�̄
(U1 + g + Cτmax).

This proves that u1 is bounded in [0, τmax).
Suppose now

‖u j (·, t)‖(L∞(�))N ≤ C j for t ∈ (0, τmax)

j = 1, . . . ,m − 1. If we choose C ≥ d1 max�̄ |�x u0| + 1
2

∑m−1
j=1 a j,m− j C j Cm− j ,

u0 := g + Ct (where g is as above) and vm := um − u0,we have
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A qualitative model for aggregation and diffusion 1379

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t vm = dm�xvm − vm

∑N
j=1 am, j u j

+dm�x u0 − ∂u0

∂t
− u0

∑N
j=1 am, j u j

+ 1
2

∑m−1
j=1 a j,m− j u j (x, t)um− j (x, t),

∂vm
∂ν

= −1 on ∂�0
∂vm
∂ν

= −1 on ∂� j , j = 1, . . . ,M
vm(x, 0) = −g(x), x ∈ �.

(12)

Set h := −∑N
j=1 am, j u j ≤ 0. Then

dm�xvm − ∂

∂t
vm + hvm

= −dm�x u0 + ∂u0

∂t
+ u0

N∑

j=1

am, j u j

−1

2

m−1∑

j=1

a j,m− j u j (x, t)um− j (x, t)

≥ C − dm�x u0 − 1

2

m−1∑

j=1

a j,m− j u j (x, t)um− j (x, t)

≥ C − dm |�x u0| − 1

2

m−1∑

j=1

a j,m− j C j Cm− j

≥ 0,

and we can conclude as above.
Finally, the case m = N can be treated in an almost analogous way (here h ≡ 0).

��

We prove now a few asymptotic estimates. Their purpose is not inconsistent with
the choice of modeling the early stage of the disease, but is due to different choices of
the time scale. Roughly speaking, following Meyer-Luehmann et al. (2008), we can
think of an observation interval in vivo of few weeks (the early stage of the disease),
whereas the crucial interval from the onset of the disease up to the formation of senile
plaques can be of the order of hours. Since we want to describe in full detail the very
early stage of the disease, in the mathematical model we have to represent the period
of few hours by an interval of unitary (say) length. Thus, the observation interval
of weeks turns out to be a very long interval in the “mathematical time”. Since we
see, from the numerical simulation, that the biological parameters we are tracing (for
instance the concentrations of different polymers) tend asymptotically to stabilize,
from the modeling point of view such a long interval can be identified, for sake of
simplicity, with an infinite interval.
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Proposition 3.5 For any T > 0 we have

λT := inf
(T,∞)×� uN > 0. (13)

Moreover

φN (t) :=
ˆ

�

uN (t, x) dx → � ∈ (0,∞] as t → ∞. (14)

Proof First of all, we notice that

dN�uN − ∂uN

∂t
≤ 0,

so that the maximum principle applies to −uN (Protter and Weinberger (1984), Chapter
3, Theorems 5 and 6). On the other hand, by Lemma 3.2, min�̄ uN (T, ·) > 0. Take
now t > T arbitrary. Again, the parabolic maximum principle yields that the minimum
of uN on [T, t] × �̄ is attained at the time T . Indeed, it cannot be attained at point
of ∂�, by Protter and Weinberger (1984), Chapter 3, Theorem 6, since the normal
derivative of uN vanishes on the boundary of �. Then, by Protter and Weinberger
(1984), Chapter 3, Theorem 5, it must coincide with the minimum at t = T , so that
min[T,t]×�̄ uN = min�̄ uN (T, ·) > 0 and (13) follows.

As for (14), it is easy to see that φN is a continuously differentiable function If
t > 1, integrating (3) on �, and using the divergence theorem we get

φ′
N (t) = dN

ˆ

�

�uN dx + 1

2

∑

j+k≥N , j<N ,k<N

a j,k

ˆ

�

u j uk dx

= 1

2

∑

j+k≥N , j<N ,k<N

a j,k

ˆ

�

u j uk dx > 0. (15)

Then the assertion follows. ��
Remark 3.6 Since, in our model, uN (t, ·) describes the plaques, then (13) states basi-
cally that plaques form extraordinarily quickly. This corresponds to the experimental
evidences presented in Meyer-Luehmann et al. (2008).

Proposition 3.7 If we set

(t) :=
N−1∑

m=1

ˆ

�

mum(t, x) dx

(in other words, is the total mass of soluble oligomers), then there exists a > 0 such
that for t > 1we have
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(t) ≤ e−aλ1(t−1)(1)+
d1

∑M
j=1

´
∂� j

ψ j dHn−1

aλ1|�| (1 − e−aλ1(t−1)). (16)

Remark 3.8 Here Hn−1 is the (n − 1)-dimensional Hausdorff measure concentrated
on ∂� j for j = 1, . . . ,M . In other words, if n = 2, then H1 is the length measure
on the boundaries of the sets� j , and, if n = 3, then H2 is the surface measure on the
boundaries of the sets � j .

Proof If m = 1, . . . , N − 1, we multiply by m the equation for um in (1) and (2) and
we sum up for m = 1, . . . , N − 1. We obtain

∂

∂t

N−1∑

m=1

mum = �x

N−1∑

m=1

dmmum

−
N−1∑

m=1

N∑

j=1

mam, j umu j + 1

2

N−1∑

m=2

m−1∑

j=1

ma j,m− j u j um− j

≤ �x

N−1∑

m=1

dmmum −
N−1∑

m=1

mam,N umuN . (17)

Now, integrating (17) for x ∈ �, keeping in mind the boundary conditions on ∂�, we
get, by the divergence theorem,

∂

∂t

ˆ

�

N−1∑

m=1

mum dx ≤ d1

M∑

j=1

ˆ

∂� j

ψ j dHn−1

−
N−1∑

m=1

ˆ

�

mam,N umuN dx . (18)

Set now a := min{am,N ,m = 1, . . . , N − 1} > 0. By (13), if t > 1, from (18) we
have

∂

∂t

ˆ

�

N−1∑

m=1

mum dx ≤ d1

M∑

j=1

ˆ

∂� j

ψ j dHn−1 − aλ1

ˆ

�

N−1∑

m=1

mum dx, (19)

and then (16) follows. ��
Remark 3.9 The numerical simulations presented below suggest that the estimate (16)
can be considered asymptotically optimal, in the sense that the numerical experiments
show that there exist positive constants �1, . . . , �N−1 such that

ˆ

�

mum(t, x) dx → �m as t → ∞,

for m = 1, . . . , N − 1.
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Alternatively, the following estimate for the total mass of the monomers can be
proved.

Proposition 3.10 If we set

φ1(t) :=
ˆ

�

u1(t, x) dx,

then, for large t,

0 < φ2
1(t) <

d1

a1,1|�| S,

where

S :=
M∑

j=1

S j and S j :=
ˆ
∂� j

ψ j dHn−1.

Proof It is easy to see that φ1 is a continuously differentiable function and that, by
the divergence theorem,

φ′
1(t) = d1

ˆ

�

�u1 dx − a1,1

ˆ

�

u2
1 dx −

N∑

j=2

a1, j

ˆ

�

u1u j dx

= d1

|�|
M∑

j=1

S j − a1,1

ˆ

�

u2
1 dx −

N∑

j=2

a1, j

ˆ

�

u1u j dx

= a1,1

(
S −
ˆ

�

u2
1 dx

)
−

N∑

j=2

a1, j

ˆ

�

u1u j dx . (20)

In particular, by Cauchy–Schwarz inequality,

φ′
1(t) ≤ a1,1

(
S − φ2

1(t)
)

−
N∑

j=2

a1, j

ˆ

�

u1u j dx . (21)

Suppose first φ1(0) >
√

S. Then φ′
1(t) < 0 as long as φ1(t) >

√
S. Set T :=

sup{t > 0;φ1(s) >
√

S, s ∈ [0, t)}. We want to show that T < ∞ and that φ1(t) <√
S in a right neigborhood of T . Suppose by contradiction T = ∞. By Proposition

3.5, for t > 1,

ˆ

�

u1uN dx ≥ λ1φ1(t) ≥ λ1
√

S > 0.
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Therefore φ′
1(t) ≤ −a1,Nλ1

√
S and therefore limt→∞ φ1(t) = −∞, yielding a

contradiction.
Clearly φ1(T ) = √

S, so that φ′
1(T ) ≤ −∑N

j=2 a1, j
´
�u1u j dx < 0, by Lemma

3.2, so that φ1(t) <
√

S in a right neighborhood of T . The same argument yields that
φ1(t) <

√
S when t > T . Indeed, if T1 := sup{t > T ;φ1(s) <

√
S, s ∈ [T, t)} < ∞,

we have φ1(T1) = √
S, φ′

1(T1) < 0, a contradiction.
If φ1(0) <

√
S, it is enough to repeat the last part of the argument.

Finally, if φ1(0) = √
S and φ′

1(0) �= 0, we fall again in one of the previous cases.
Thus, we are left with the case φ1(0) = √

S and φ′
1(0) = 0. Replacing φ′

1(0) = 0 in
(20) and taking into account that um(0, ·) = 0 when m > 1, we obtain that

ˆ

�

u1(0, x)2 dx = S =
⎛

⎝
ˆ

�

u1(0, x) dx

⎞

⎠
2

.

But this is possible only if u1(0, x) ≡ const., that contradicts the Neumann condition
on ∂� j , j = 1, . . . ,M . ��

4 Numerical scheme

The most important simplification made in the numerical simulations below is to
consider bidimensional problems (n = 2). This is certainly not realistic, but it is
enough to obtain qualitative information on the distribution of Aβ.

The model proposed in Sect. 2 takes into account M neurons, so the domain� had
M holes. In order to make the numerical simulations and in particular the description
of the geometry easier, we assume that the neurons are periodically distributed, so the
boundary value problem becomes periodic, and it is enough to focus on a box around
a single neuron.

Therefore, we look for periodic solutions um(t, ·) in the plane, and the physical
domain � is a period perforated by a single disk �1, standing for the neuron. A more
precise description of the geometry of the neuron could be achieved with the method
described below, but it did not seem necessary at this exploratory stage. The production
of the monomers in a small portion of the neuronal membrane is modeled by a non
homogeneous and constant Neumann condition ψ ≥ 0 supported in a small region of
∂�1. Periodicity boundary conditions are imposed on the lateral parts of ∂�.

We have chosen to partition the domain� into periodic unstructured meshes made
of triangles. This makes it possible to complexify the geometry if needed. In particular,
with triangular meshes, one could as well simulate the model described in Sect. 2. Yet,
more complex geometries with several neurons would require finer meshes and an
increased computational cost.

Our strategy is to use piecewise linear finite elements to discretize the spatial varia-
tions of the concentrations, and standard semi-implicit Euler finite difference schemes
for the variations w.r.t. time.

Consider an increasing sequence (tn)n=0,...NT , such that 0 = t0 < t1 < · · · <
tNT = T . Call�tn = tn+1 − tn . Let Th be a family of periodic triangular meshes of the
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domain �. The number h stands for the maximal diameter of the triangles in Th . We
make a regularity assumption, i.e. that the angles of the triangles are bounded from
below by a fixed constant.

The functions x → um(x, ti ), 0 ≤ i ≤ NT , 1 ≤ m ≤ N , will be approxi-
mated by continuous, periodic functions, affine on the triangles of Th . We call Vh the
space

Vh = {v ∈ C0
per(�); v|τ ∈ P1, ∀τ ∈ Th}.

Let (ξi )1≤i≤Nh be the vertices of the triangles of Th . The nodal basis (φi )1≤i≤Nh is
defined by φi (ξ j ) = δi, j ,∀ j, 1 ≤ j ≤ Nh . Let un

m ∈ Vh be the discrete versions of
x → um(x, tn) for m = 1, . . . , N . We expand these functions on the nodal basis of
Vh as follows:

un
m =

Nh∑

i=1

un
m,iφi .

We use a first order semi-implicit time scheme: the diffusion is treated implicitly
whereas the aggregation is treated explicitly. Therefore, at each time step, we need to
solve a system of linear of the form:

(M +�tn A1)U
n+1
1 = M(U n

1 +�tn Fn
1 )+�t Ln+1

1 ,

(M +�tn Am)U
n+1
m = M(U n

m +�tn Fn
m), 2 ≤ m ≤ N − 1,

(M +�tn AN )U
n+1
N = M(U n

N +�tnW n),

where U n
m = (un

m,1, . . . , un
m,Nh

)T ∈ R
Nh ,M is the mass matrix : Mi, j = ´

�
φiφ j , Am

is the stiffness matrix associated with the aggregates of size m : Am,i, j = dm
´
�

∇φi ·
∇φ j , and Fn

m ∈ R
Nh ,W n ∈ R

Nh are the vectors whose coordinates are

Fn
m,i = −un

m,i

(
N−1∑

�=1

am,�u
n
�,i + am,N un

N ,i

)
+ 1

2

m−1∑

�=1

a�,m−�un
�,i u

n
m−�,i ,

and

W n
i = 1

2

∑

j+�≥N ,1≤ j,�<N

a j,�u
n
j,i u

n
�,i ,

and Ln+1
1 is the vector containing the Neumann data, which we do not write explicitly

here. Standard arguments show that this discretization is second order with respect
to the spatial variable x and first order with respect to time. Of course, higher order
semi-implicit time schemes are possible.
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Remark 4.1 Note that the explicit scheme taking account the aggregation has a con-
servative form: indeed, introducing gn

m,i = mun
m,i and F̃n

m,i = m Fn
m,i , we can easily

check that

F̃n
m,i = −am,N un

N ,i g
n
m,i − gn

m,i

N−1∑

�=1

am,�u
n
�,i + m

2

m−1∑

�=1

a�,m−�un
�,i u

n
m−�,i

= −am,N un
N ,i g

n
m,i − J n

m+1/2,i + J n
m−1/2,i

where

J n
m+1/2,i =

m∑

j=1

N−1∑

m− j+1

ja j,kun
j,i u

n
k,i =

m∑

j=1

N−1∑

m− j+1

a j,k

k
gn

j,i g
n
k,i .

Thus the scheme reads

(M +�tn A1)G
n+1
1 = M(Gn

1 −�tn(J
n
3/2 + K n

1 ))+ Ln
1,

(M +�tn Am)G
n+1
m = M(Gn

m −�tn(J
n
m+1/2 − J n

m−1/2 + K n
m)), 2 ≤ m ≤ N − 1,

(M +�tn AN )U
n+1
N = M(U n

N +�tnW n),

where

K n
m,i = am,N un

N ,i g
n
m,i .

Remark 4.2 Proceeding as in Filbet and Laurençot (2004a), it is possible to prove a sta-
bility condition for�tn involving (U n

m)m=1,...,N such that the vectors (U n+1
m )m=1,...,N

have nonnegative entries. For keeping the paper short, we do not discuss this here.
Under this condition, it is also possible to prove that the mass

∑N−1
m=1 m(MU n

m, 1)2
remains smaller than the quantity of monomer injected at the Neumann boundary
between t = 0 and t = tn .

5 Numerical simulation

Our model does not attempt to describe cellular injuries and the subsequent demen-
tia, the most observed clinical stage of the disease that extends over several years.
Therefore, the model we present should be considered reliable only for short (biolog-
ical) times. Indeed it is only meant to describe the early stage of the disease at the
cell level, and, in particular, its onset, which can be extremely quick as pointed out
experimentally in Meyer-Luehmann et al. (2008). On the other hand, as we stressed
above before the asymptotic estimates of Sect. 3, from the modelling point of view,
short “biological times” become large “mathematical times”, i.e. the time is rescaled
in order to emphasize the qualitative behavior of the solutions.
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We stress again that the numerical simulations presented below do not aim at the
quantitative recovery of clinical data (that is far from our current reach), but rather at
producing qualitative outputs that may underline interesting features of the phenom-
ena, in particular asymptotic behaviors, in the light of what discussed above.

In our numerical simulations, we have taken the same diffusion coefficient for the
first N1 polymers (i.e. d1 = d2 = · · · = dN1 := 1), and dm = 0 for m > N1. We have
taken ai, j = α 1

i j for i, j < N
In addition, we have slightly modified the model to more closely fit some clinical

evidences, as follows: we have assumed the existence of a threshold κ > 0 such that

• as long as the global amount of soluble amyloid remains below κ , the production
of Aβ from the membrane is positive;

• when this amount exceeds κ , the neuron dies and consequently the production
stops.

This can be modelled as follows: there exists N0 < N such that the oligomers of
length 1 ≤ m ≤ N0 are soluble (and therefore highly toxic for neurons, as pointed out
in Sect. 1: see for instance, Haass and Selkoe (2007) and Walsh and Selkoe (2007)).
Then we replace the boundary conditions in (2) by

∂u1

∂ν
= ψ j on ∂� j , j = 1, . . . ,M

as long as

N0∑

m=1

ˆ

�

um(t, x) dx < κ,

whereas

∂u1

∂ν
= 0 on ∂� j , j = 1, . . . ,M for t > tκ

where tκ is the first time such that

N0∑

m=1

ˆ

�

um(t, x) dx ≥ κ fort = tκ .

For sake of simplicity, assume N0 = N − 1. Clearly, if

(t) :=
N0∑

m=1

ˆ

�

um(t, x) dx

remains below the threshold κ , then nothing changes in our previous model: we expect
that the concentration of soluble oligomers stabilizes, whereas the concentration of the
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fibrillar form grows, and that we eventually obtain thick plaques. Equation (16) shows
that we can expect this phenomenon if the functionsψ j are “small”. On the other hand,
if(t) reaches the critical value κ at the time tκ (take, for instance, tκ = 1, to use again
(16) without cumbersome modifications), then (t) → 0 exponentially as t → ∞.
Roughly speaking, we can then assume that the averages of u1(t, ·), . . . uN−1(t, ·)
vanish for large t , and therefore that the concentrations themselves vanish for large t .
Then we go back to (15) and we obtain that the average of uN (t, ·) stabilizes for large
t . In other words, the neuron dies, the production of Aβ stops, the concentration of
soluble oligomers quickly vanishes, and the formation of plaques stabilizes.

Our simulations show that for fairly large times, the total amount of short assemblies
(that we can identify with soluble oligomers) remains constant, see Fig. 2, whereas the
amount of amyloid in fibril form blows up. However, we stress that when we consider
uN , i.e. the concentration of the amyloid in the fibrillar form, the qualitative graphs
that we obtain must be interpreted.

In Fig. 1, we show a plaque grown near a neuron. It has been obtained by considering
the higher level sets of uN (t, ·). We have chosen N = 16, N1 = 10 in our simulations.

In Figs. 2 and 3 we show, respectively, the total mass of soluble oligomers of
length 5 for low and high rate of production of Aβ-oligomers. In Fig. 2, the rate of
production of Aβ in the monomeric form is low compared with the critical threshold
κ . The production of the amyloid does not stop, but the total mass stabilizes around a
positive value. On the contrary, in Fig. 3, due to the higher production of monomers, the
neuron dies and the total mass of soluble oligomers vanishes quickly. This corresponds
to the clinical experience of advanced AD. For instance, quoting from Ballard et al.
(2011), “meta-analyses suggest that AD can be differentiated from other dementias by
the detection of lower concentration of Aβ1−42 . . . ”. Moreover, low concentration of
Aβ42 in CSF (Celebral Splinal Fluid) is listed among diagnostic criteria and differential
diagnosis of Alzheimer’s disease from other dementias.

Our simulation thus show that if the concentration of soluble polymers attains the
critical value, then the growth of the fibrils ceases quickly. On the other hand, when the
critical threshold is not attained, the growth goes on for large times, but the rate remains
very small, since only a very small production of monomers is compatible with the
life of neurons. These results are in agreement with the arguments given above.

Fig. 1 Plaque generated with N = 16, N1 = 10, α = 10,U1 ≡ 0, ψ = 0.5, κ = 0.7. Left: full plot. Right
only the set u > 0.3 is presented, to show the shape of the senile plaque
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Fig. 2 Total mass of 5-oligomers with N = 16, N1 = 10, α = 10,U1 ≡ 0, ψ = 0.5, κ = 0.7

Fig. 3 Total mass of 5-oligomers with N = 16, N1 = 10, α = 10,U1 ≡ 0, ψ = 1, κ = 0.7

To be more accurate from the mathematical point of view, one may think of replacing
the average of um(x, ·) on � by its average “near” the membrane ∂�. However,
we think that the implementation of this approach would be technically heavier and
eventually would not yield a better model. This for several reasons, both mathematical
and biological. First of all, our numerical simulation show that um(x, ·) for small m
is concentrated near ∂�. Therefore, its average on a fixed neighborhood of ∂� is
basically proportional (with an absolute proportionality constant) to the average on
all �. In addition, the phenomenon leading ultimately to the neuronal apoptosis is
not a simple contact effect, but involves a delicate sequence of actions “away from
the membrane”, like microglia activation and mobility, and subsequent action of the
astroglia. Incidentally, we have stated that in this elementary model we deliberately
ignore the effect of the glia.
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It seems interesting to look at our results having in mind some comments in Haass
and Selkoe (2007), p. 104. In a (very) rough way, we can summarize these comments as
follows: modern Aβ enzyme-linked-immunosorbent assays (ELISAs) coupled with
western blotting and mass spectrometry suggest that the plaque counting is a poor
measure of the severity of the AD, and that levels of soluble Aβ, including soluble
oligomers, correlate much better with the presence and degree of cognitive deficits
than do simple plaque counts. Even more, “the idea that large aggregates of a disease
causing protein can actually be inert or even protective to neurons has been supported
by work on other protein folding disorders”. These arguments seem to provide a
possible interpretation of the case “below κ”. Indeed, in this case, our model leads to
the formation of senile plaques, but also to a low level of toxic soluble Aβ which is
compatible with the absence of severe injury to neurons.

6 Comments

The aim of this note is not to improve or to simplify the results of Edelstein-Keshet
and Spiross (2002) or of other contributions in biomathematics literature, but rather
to raise the attention onto the important role of Smoluchowski equation in modelling
the evolution of AD at the cell scale. In spite of the large literature concerning Smolu-
chowski equation in mathematics and physics, this equation does not seem to have
been considered adequately in biomedical literature (with the exception of Murphy
and Pallitto (2000)). It is also worth stressing that Smoluchowski equation is used in
Murphy and Pallitto (2000) for modelling agglomeration in vitro. On the contrary, our
model is meant to describe the evolution in vivo, and therefore we have to add the dif-
fusion term, as well as the source term on the neuronal membrane. Since, in numerical
simulation, the presence of the diffusion term makes computations much heavier, one
could wonder whether we can drop this term. Mathematically, dropping the diffusion
would mean, in our model, to take all the diffusion coefficients d j , j = 1, . . . , N ,
to be zero. But then Eq. (16) would yield an exponential decay of the total mass of
the soluble oligomers, also in presence of the production of amyloid by sick but still
alive neurons. In other words, the low level of amyloid in the CSF would be a general
phenomenon, not related to the neuronal loss.

As explicitly stated in the title, we present here an“elementary” model, in the
sense that we focus our attention on aggregation and diffusion of the β-amyloid,
and deliberately ignore other biological phenomena, like the action of astrocytes and
microglia on the diffusion (see again Meyer-Luehmann et al. (2008); Edelstein-Keshet
and Spiross (2002); Quinlan and Straughan (2005)), as well as the interactions between
different isoforms (Aβ40 and Aβ42, see for instance Jan et al. (2008)).

Finally, it is worth stressing that the present model is closely related to the chosen
scale, i.e. the scale of a single neuron. One could alternatively think of different scales
and therefore of different models.

For instance, one could try to model the intra-membranous phenomena ultimately
yielding the production of the toxic Aβ-amyloid. At such a scale, neither aggrega-
tion nor diffusion are relevant, and such an utterly different phenomenon should be
described with totally different models. At the scale chosen in the present work, these
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phenomena only appear through their final output, i.e. the production of the amyloid
monomers that is modelled with a Neumann boundary condition.

Alternatively, one could describe a large portion of cerebral tissue during a longer
time interval. Then other phenomena should be taken into account, like, for instance,
the spreading of the malfunctioning of the Aβ production, the effect of the amyloid
on healthy neurons, and eventually the neuronal death. Again, an utterly different
phenomenon to be (if possible) described with other utterly different models.

Appendix

For the reader’s convenience we collect some known results (see for instance Rothe
(1984) Theorem 1 page 111 and Theorem 3 page 123), taylored according to our
needs, used in the previous sections.

Let

F = F(t, u) : [0,∞[×R
N → R

N

be such that:

• F(·, u) is measurable in [0,∞[ for all u ∈ R
N ;

• F is locally bounded in [0,∞[×R
N ;

• F is locally lipschitz continuous in u uniformly in t ∈ [0, T ] for any T > 0.

Let d1 > 0, . . . , dN > 0 denote the diffusion coefficients.
Let�be an open regular subset of R

n . If F = (F1, . . . , FN ) and u = (u1, . . . , uN ) :
�̄ → R

N , we consider the reaction-diffusion system

∂u j

∂t
= d j�u j + Fj (t, u) for t > 0 and j = 1, . . . , N (22)

together with the boundary condition

∂u j

∂ν
= 0 on ∂�, (23)

and the initial condition

u(0, ·) = u0. (24)

Then the following theorems hold.

Theorem 7.1 Let u0 ∈ C2+α(�̄) for some α ∈ (0, 1) be such that

∂u0

∂ν
= 0 on ∂�.

If for any (t, u) and (τ, v) in a bounded set B ⊂ [0,∞[×R
N we have

|F(t, u)− F(τ, v)| ≤ CB(|t − τ |α/2 + |u − v|),
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then there exist Tmax > 0 and u ∈ C1+α/2,2+α([0, Tmax)× �̄) such that

• u satisfies (22), (23), (24);
• limt→Tmax ‖u(t, ·)‖L∞(�) = ∞.

Theorem 7.2 If u, v ∈ C1,2([0, T ] × �̄) satisfy:

• u(0, ·) ≤ v(0, ·);
• ∂u

∂ν
≤ ∂v

∂ν
in (0, T )× ∂�;

• ∂u j

∂t
− d j�u j − Fj (t, u) ≤ ∂v j

∂t
− d j�v j − Fj (t, v) in � for t ∈ (0, T ) and

j = 1, . . . , N;

then either u ≡ v or u(t, ·) < v(t, ·) in (0, T ] × �̄.
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