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In this article we propose a mathematical model for the onset and progression of Alzheimer’s disease based
on transport and diffusion equations. We regard brain neurons as a continuous medium and structure them
by their degree of malfunctioning. Two different mechanisms are assumed to be relevant for the temporal
evolution of the disease: i) diffusion and agglomeration of soluble polymers of amyloid, produced by dam-
aged neurons and ii) neuron-to-neuron prion-like transmission. We model these two processes by a system
of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation
for the distribution function of the degree of malfunctioning of neurons. The second equation contains an
integral term describing the random onset of the disease as a jump process localized in particularly sensitive
areas of the brain. Our numerical simulations are in good qualitative agreement with clinical images of the
disease distribution in the brain which vary from early to advanced stages.

Keywords: Alzheimer’s disease; transport and diffusion equations; Smoluchowski equations; numerical
simulations.

1. Introduction

Alzheimer’s disease (AD) is one of the most common late life dementia, with huge social and economic
impact (Mattson, 2004; Blennow et al., 2006; Hurd et al., 2013). Its global prevalence, about 24 millions
in 2011, is expected to double in 20 years Reitz et al. (2011). In silico research, based on mathematical
modelling and computer simulations (Good & Murphy, 1996; Cruz et al., 1997; Urbanc et al., 1999;
Murphy & Pallitto, 2000; Edelstein-Keshet & Spiross, 2002; Raj et al., 2012; Achdou et al., 2013;

© The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 M. BERTSCH ET AL.

Helal et al., 2013) effectively supplements in vivo and in vitro research. We present a multiscale model
for the onset and evolution of AD which accounts for the diffusion and agglomeration of amyloid-β (Aβ)
peptide (amyloid cascade hypothesis; (Haass & Selkoe, 2007; Karran et al., 2011)), and the spreading of
the disease through neuron-to-neuron transmission (prionoid hypothesis, Braak & Del Tredici, 2011).

Indeed, to cover such diverse facets of AD in a single model, different spatial and temporal scales
must be taken into account: microscopic spatial scales to describe the role of the neurons, macroscopic
spatial and short temporal (minutes, hours) scales for the description of relevant diffusion processes in
the brain and large temporal scales (years, decades) for the description of the global development of AD.
The way in which we combine distinct scales in a single model forms the core and major novelty of the
article.

Following closely the biomedical literature on AD, we briefly describe the processes which we shall
include in our model. In the neurons and their interconnections, several microscopic phenomena take
place. It is largely accepted that beta amyloid (Aβ), especially its highly toxic oligomeric isoforms
Aβ40 and Aβ42, play an important role in the process of the cerebral damage (the so-called amyloid
cascade hypothesis; Karran et al., 2011). In this note we, focus on the role of Aβ42 in its soluble form,
which recently has been suggested to be the principal cause of neuronal death and eventually dementia
(Walsh & Selkoe, 2007). At the level of the neuronal membrane, monomeric Aβ peptides originate
from the proteolytic cleavage of a transmembrane glycoprotein, the amyloid precursor protein (APP).
By unknown and partially genetic reasons, some neurons present an unbalance between produced and
cleared Aβ (we refer to such neurons as damaged neurons). In addition to this, it has been proposed
that neuronal damage spreads in the neuronal net through a neuron-to-neuron prion-like propagation
mechanism (Braak & Del Tredici, 2011; Raj et al., 2012).

On the other hand, macroscopic phenomena take place at the level of the cerebral tissue. The
monomeric Aβ produced by damaged neurons diffuses through the microscopic tortuosity of the brain
tissue and undergoes a process of agglomeration, leading eventually to the formation of long, insolu-
ble amyloid fibrils, which accumulate in spherical deposits known as senile plaques. Moreover, soluble
Aβ shows a multiple neurotoxic effect: it induces a general inflammation that activates the microglia
(the resident immune cells in the central nervous system) which in turn secretes proinflammatory innate
cytokines (Griffin et al., 1998) and, at the same time, increases intracellular calcium levels (Good &
Murphy, 1996) yielding ultimately apoptosis and neuronal death.

The model we present is a conceptual interdisciplinary construction based on clinical and experimental
evidence, yielding in particular numerical simulations and related graphs, that can be compared with time-
dependent trajectories of AD biomarkers (see e.g. Jack et al., 2010, 2013). In particular, Fig. 2 fits the
core of the model proposed in Jack et al. (2010) for the temporal progression of the abnormalities in AD
biomarkers, which identifies two subsequent periods:

− a first period of β-amyloidosis characterized prevalently by reductions in cerebrospinal fluid (CSF)
Aβ42 and increased amyloid plaque formation (biomarkers of this first period in our model correspond
to CSF-Aβ42 and PIB-PET, Pittsburgh compound B - Positron Emission Tomography);

− a second one characterized by neuronal dysfunction and neurodegeneration (for this period, we only
take into account the structural magnetic resonance imaging (MRI)).

Of particular medical interest is the initial stage of the second period, which is commonly referred to
as mild cognitive impairment (MCI): see, e.g. Petersen et al. (2009).
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2. Mathematical model

Highly toxic oligomeric isoforms of beta amyloid, Aβ40 and Aβ42, cause cerebral damage. Here we restrict
our attention to Aβ42 (shortly Aβ in the sequel) in soluble form, generally considered the principal cause of
neuronal death and dementia (Walsh & Selkoe, 2007). Monomeric Aβ peptides originate from proteolytic
cleavage of a transmembrane glycoprotein, the APP. In AD, neurons progressively present an unbalance
between produced and cleared Aβ, but the underlying mechanism is still largely unknown. On the other
hand, it was proposed that neuronal damage spreads in the neural pathway through a neuron-to-neuron
prion-like propagation mechanism (Braak & Del Tredici, 2011; Raj et al., 2012).

Soluble Aβ diffuses through the microscopic tortuosity of the brain tissue and undergoes an agglom-
eration process. Eventually, this leads to the formation of long, insoluble fibrils, accumulating in spherical
deposits known as senile plaques. Soluble Aβ has a multiple neurotoxic effect (Good & Murphy, 1996;
Griffin et al., 1998). In our model, we do not enter the details of the brain tissue, we neglect the action of the
τ -protein, we simplify the role of microglia and neglect its multifaceted mechanism (see, e.g. Edelstein-
Keshet & Spiross, 2002; Quinlan & Straughan, 2005). We simply assume that high levels of soluble
amyloid are toxic for neurons.

We identify a portion of the cerebral tissue with a three-dimensional region � and x ∈ � indicates
a generic point. Two temporal scales are needed to simulate the longitudinal evolution of the disease
over a period of years: a short (i.e. rapid) s-scale (unit time coincides with hours) for the diffusion and
agglomeration of Aβ Meyer-Luehmann et al. (2008) and a long (i.e. slow) t-scale (unit time coincides
with several months) for the progression of AD, so �t = ε�s for a small constant ε � 1.

We denote the molar concentration of soluble Aβ polymers of length m at point x and time s by um(x, s),
with 1 ≤ m < N . That of clusters of oligomers of length ≥ N (fibrils) is denoted by uN(x, s) and may be
thought as a medical parameter (the plaques), clinically observable through PIB-PET (Nordberg, 2008).

To model the aggregation of Aβ m-polymers (1 < m < N) we follow Achdou et al. (2013),

[variation in (short) time] = [diffusion] + [agglomeration],

which, in mathematical terms, leads to the Smoluchowski equation with diffusion:

∂sum = dm∇2um +
[

1

2

m−1∑
j=1

aj,m−jujum−j − um

N∑
j=1

am,juj

]
. (2.1)

where dm > 0, m = 1, . . . , N , and ai,j = aj,i > 0, i, j = 1, . . . , N (giving the factor 1
2 in (2.1)).

We refer to Franchi & Tesi (2012) and Achdou et al. (2013) for an extensive discussion of (2.1).
For reasons related to the model, we can assume that the diffusion coefficients dm are small when m
is large, since big assemblies do not move. In fact, the diffusion coefficient of a soluble peptide scales
approximately as a reciprocal of the cube root of its molecular weight (see Goodhill, 1997 and also
Nicholson & Syková, 1998).

Applications of the Smoluchowski equation to the description of the agglomeration of Aβ amyloid
appear in Murphy & Pallitto (2000). In this article, the authors compare experimental data, obtained
in vitro, with numerical simulations based on the Smoluchowski equation (without diffusion) in order
to describe the process leading to insoluble fibril aggregates from soluble amyloid. The form of the
coefficients ai,j (the coagulation rates) we use has been considered in vitro by Murphy & Pallitto (see
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Murphy & Pallitto, 2000 Pallitto & Murphy, 2001). According to formula (13) in Murphy & Pallitto
(2000), the coagulation rates in silico in our equations take the form

ai,j = const.
1

i + j
·
(

ln(i/d) + νi

i
+ ln(j/d) + νj

j

)
, (2.2)

where i, j are the lengths of the fibrils, d is their diameter, and νi = 0.312 + 0.565(i/d)−1 − 0.1(i/d)−2.
The physical arguments leading to formula (2.2) rely on sophisticated statistical mechanics

considerations (see also Tomsky & Murphy, 1992).
Since d can be assumed very small, without loss of generality we can assume νi = ν for = 1, . . . , N−1.

Thus we can replace (2.2) by

ai,j = const.
1

i + j
·
(

ln(i/d) + ν

i
+ ln(j/d) + ν

j

)
= 1

ij
· (ν + | ln d| + O(ln N)

)
. (2.3)

Since N is finite, in our numerical simulations we use a slightly approximate form of these coefficients,
taking

ai,j = α
1

ij
, where α > 0. (2.4)

Smoluchowski equations with diffusion have already been considered in the literature (without ref-
erence to Aβ amyloid and AD) with diverse boundary conditions: see, for instance, Drake (1972) for
a general introduction, and Wrzosek (1997); Amann (2000); Amann & Weber (2001); Laurençot &
Mischler (2002); Amann & Walker (2005).

Neurons produce Aβ monomers, whence the equation for u1 contains a source term F :

∂su1 = d1∇2u1 − u1

N∑
j=1

a1,juj + F . (2.5)

Since fibrils are assumed not to move, the equation for uN has no diffusion term and takes the form (see
(4) in Achdou et al., 2013):

∂suN = 1

2

∑
j+k≥N
k, j<N

aj,kujuk . (2.6)

It is coherent with experimental data to assume aN ,N = 0 for large N . This is equivalent to saying that
large oligomers do not aggregate with each other.

The justification of the condition j, k < N in (2.6) requires a few more words. In fact, we must
remember that the meaning of uN differs from that of um, m < N , as well as the identity

1

2

∑
j+k≥N ,k<N ,j<N

aj,kujuk = 1

2

∑
j+k≥N

aj,kujuk − uN

N∑
j=1

aN ,juj. (2.7)



ALZHEIMER’S DISEASE: A MATHEMATICAL MODEL FOR ONSET AND PROGRESSION 5

The idea is that uN should describe the sum of the densities of all the ‘large’ assemblies. We assume that
large assemblies exhibit all the same coagulation properties and do not coagulate with each other. Let us
briefly show how (2.6) is obtained: we start by writing the exact Smoluchowski equation for all m ≥ 1
using ũm instead of um in order to avoid confusion, i.e. nothing but the PDE in (2.1) with m ranging from
2 to ∞. We have

∂

∂t
ũm = dm∇2ũm − ũm

N∑
j=1

am,j ũj + 1

2

m−1∑
j=1

aj,m−j ũj ũm−j, (2.8)

where, coherently with our assumptions, we assume

i) dm = dN for m ≥ N ;

ii) am,j = aN ,j for m ≥ N . In particular, if m, j ≥ N , am,j = aN ,j = aN ,N = 0.

Therefore, if m ≥ N , (2.8) becomes

∂

∂t
ũm = dN∇2ũm − ũm

N−1∑
j=1

aN ,j ũj + 1

2

m−1∑
j=1

aj,m−j ũj ũm−j, (2.9)

Now we sum up (2.9) for m ≥ N , and we set for a while v := ∑
m≥N ũm. We want to show precisely that

v satisfies (2.6) (satisfied by uN ). By i), we have

∂v

∂t
= dN∇2v −

∑
m≥N

ũm

N−1∑
j=1

aN ,j ũj + 1

2

∑
m≥N

m−1∑
i=1

ai,m−iũiũm−i

:= dN∇2v − I1 + 1

2
I2.

It is clear that

I1 =
∑
m≥N

ũm

N−1∑
j=1

aN ,j ũj = v
N−1∑
j=1

aN ,j ũj,

which is precisely the second term in (2.7), since aN ,N = 0. As for I2, if we set j := i and k := m − i, we
obtain the first term in (2.7). Finally, if set um = ũm for m < N and uN = v we recover the PDE in (2.6),
as desired.

We model the degree of malfunctioning of a neuron with a parameter a ranging from 0 to 1: a close
to 0 stands for ‘the neuron is healthy’, whereas a close to 1 for ‘the neuron is dead’. This parameter,
although introduced for the sake of mathematical modelling (see also Raj et al., 2012), can be compared
with medical images from Fluorodeoxyglucose PET (FDG-PET Mosconi et al., 2010).

Given x ∈ �, t ≥ 0, and a ∈ [0, 1],

f (x, a, t) da
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indicates the fraction of neurons close to x with degree of malfunctioning at time t between a and a + da.
The progression of AD occurs at the long time scale t, over decades, and is determined by the deterioration
rate, v = v(x, a, t), of the health state of the neurons:

∂t f + ∂a(fv[f ]) = 0. (2.10)

Here v[f ] indicates that the deterioration rate depends on f itself. The onset of AD will be included in a
subsequent step.

We assume that

v[f ] =
∫∫

�×[0, 1]
K(x, a, y, b)f (y, b, t) dy db + S(x, a, u1(x, s), . . . , uN−1(x, s)). (2.11)

The integral term describes the possible prion-like propagation of AD through the neural pathway.
Malfunctioning neighbours are harmful for a neuron’s health state, while healthy ones are not:

K(x, a, y, b) ≥ 0 ∀ x, y ∈ �, a, b ∈ [0, 1],
K(x, a, y, b) = 0 if a > b.

Typically

K(x, a, y, b) = G(x, a, b)H(x, y)

with, e.g.

G(x, a, b) = CG(b − a)+, H(x, y) = h(|x − y|),

where (·)+ denotes the positive part (x+ := max{0, x}), while h(r) is a nonnegative and decreasing
function, which vanishes at some r = r0 and satisfies

∫
|y|<r0

h(|y|) dy = 1. In the limit r0 → 0,
(2.11) reduces to

v[f ] =
∫ 1

0
G(x, a, b)f (x, b, t) db + S(x, a, u1(x, s), . . . , uN−1(x, s)). (2.12)

Since we aim at a minimal effective model, we avoid precise assumptions on the underlying biological
processes expressed by K.

The term S ≥ 0 in (2.11) and (2.12) models the action of toxic Aβ oligomers, ultimately leading to
apoptosis. For example

S = CS(1 − a)

(
N−1∑
m=1

mum(x, s) − U

)+

(2.13)

The threshold U > 0 indicates the minimal amount of toxic Aβ needed to damage neurons, assuming
that the toxicity of soluble Aβ-polymers does not depend on m. In reality length dependence has been
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observed Ono et al. (2009), but, to our best knowledge, quantitative data are only available for very short
molecules (see Ono et al., 2009, Table 2). For long molecules, any analytic expression would be arbitrary.

Since Aβ monomers are produced by neurons and the production increases if neurons are damaged,
we choose in (2.5)

F = F[f ] = CF

∫ 1

0
(μ0 + a)(1 − a)f (x, a, t) da. (2.14)

The small constant μ0 > 0 accounts for Aβ production by healthy neurons (dead neurons do not produce
amyloid).

To describe the onset of AD we assume that in small, randomly chosen parts of the cerebral tissue,
concentrated for instance in the hippocampus, the degree of malfunctioning of neurons randomly jumps
to higher values due to external agents or genetic factors. This leads to an additional term in the equation
for f ,

∂t f + ∂a (fv[f ]) = J[f ],

where

J[f ] = η

(∫ 1

0
P(t, a∗ → a)f (x, a∗, t) da∗ − f (x, a, t)

)
χ(x, t). (2.15)

P(t, a∗ → a) is the probability to jump from state a∗ to state a ∈ [0, 1] (obviously, P(t, a∗ → a) = 0
if a < a∗), χ(x, t) describes the random jump distribution, and η is the jump frequency. In most of our
numerical tests we choose

P(t, a∗ → a) ≡ P(a∗ → a) =
⎧⎨
⎩

2

1 − a∗
if a∗ ≤ a ≤ 1+a∗

2

0 otherwise,

that is we neglect randomness and we set χ(x, t) ≡ χ(x) concentrated in the hippocampus. For a
simulation with a random jump distribution, see Fig. 10.

To model the phagocytic activity of the microglia as well as other bulk clearance processes Iliff et al.
(2012), we add to (2.1) and (2.5) a term −σmum, where σm > 0. This leads to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t f + ∂a (fv[f ]) = J[f ]

ε∂tu1 = d1∇2u1 − u1

N∑
j=1

a1,juj + F[f ] − σ1u1

ε∂tum = dm∇2um + 1

2

m−1∑
j=1

aj,m−jujum−j

− um

N∑
j=1

am,juj − σmum (2 ≤ m < N)

ε∂tuN = 1

2

∑
j+k≥N
k, j<N

aj,kujuk ,

(2.16)
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where v[f ] is given by (2.11) or (2.12) (with s replaced by ε−1t), F[f ] by (2.14), and J[f ] by (2.15). Since
we are interested in longitudinal modelling, we assume that initially, at t = 0, the brain is healthy, with
a small uniform distribution of soluble amyloid.

3. Problem setting and discretization of the equations

In this section, we detail the structure of the domain and the boundary conditions which we will use, in
Section 4, to produce numerical simulations. We also discuss the discretization of the equations (2.16).

3.1 Physical domain and boundary conditions

We consider the two-dimensional transverse section of the brain illustrated in Fig. 1. Since approximating
a real brain section is a quite complicated issue, for the sake of simplicity we schematize it as a box � ⊂ R

2,
� = [0, Lx]×[0, Ly], with two inner rectangular holes representing the sections of the cerebral ventricles.
We also identify, close to the front part of the ventricles, the two sections of the hippocampus, which we
represent as two small circles. Unlike the cerebral ventricles, the sections of the hippocampus are meant
as actual portions of the domain �, not as holes.

On the outer boundary of �, say ∂�out, we assume vanishing normal polymer flow. Therefore, we
impose a homogeneous Neumann condition for the diffusing amyloid polymers:

−dm

ε
∇um · n = 0 on ∂�out, m = 1, . . . , N − 1, (3.1)

Fig. 1. Left: A real transverse section of the brain (reproduced from Miller, 2006 with kind permission of the publisher). Right:
Two-dimensional schematization for numerical purposes. Black dots are the internal nodes of the numerical grid, where discretized
equations are solved, while white dots are boundary nodes, where boundary conditions are imposed.
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n being the outward normal unit vector to ∂�out. Notice that no boundary condition is required for the
concentration uN of the fibrillar amyloid, since its equation does not feature space dynamics (cf. the last
equation in (2.16)).

On the inner boundary of �, say ∂�in, that is the boundaries of the cerebral ventricles, we model the
removal of Aβ from cerebrospinal fluid (CSF) through the choroid plexus (cf. Iliff et al., 2012; Serot
et al., 2012) by an outward polymer flow proportional to the concentration of the amyloid. For this, we
impose a Robin boundary condition of the form:

−dm

ε
∇um · n = βum on ∂�in, m = 1, . . . , N − 1, (3.2)

with β > 0 a constant.
We discretize � by means of a two-dimensional structured orthogonal grid, whose points have coor-

dinates xi,j = (xi, yj) = (i�x, j�y) with �x = Lx/Nx, �y = Ly/Ny, Nx, Ny being the numbers of
discretization points in the x and y-direction, respectively, and i = 0, . . . , Nx, j = 0, . . . , Ny. See Fig. 1.
We also introduce a time lattice tn = n�t, n = 0, 1, 2, . . . .

Letting (um)n
i,j ≈ um(xi,j, tn) denote an approximation of the concentration of the m-polymers of

amyloid in the point xi,j ∈ � at time tn, on the numerical grid the Neumann boundary condition (3.1)
becomes simply:

(um)n
0,j = (um)n

1,j

(um)n
Nx ,j = (um)n

Nx−1,j

}
j = 1, . . . , Ny − 1

(um)n
i,0 = (um)n

i,1

(um)n
i,Ny

= (um)n
i,Ny−1

}
i = 1, . . . , Nx − 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

m = 1, . . . , N − 1.

Concerning the Robin boundary condition (3.2), we discretize the components of the gradient via the
forward Euler formula, then we take into account the orientation of the vector n as indicated in Fig. 1 to
find:

− along the left boundary of each cerebral ventricle

(um)n
ib ,j = (um)n

ib−1,j

1 + εβ�x/dm
,

where ib ∈ {0, . . . , Nx} denotes the grid index in the x-direction such that xib = ib�x is the abscissa
of the boundary;

− along the right boundary of each cerebral ventricle

(um)n
ib ,j = (um)n

ib+1,j

1 + εβ�x/dm
;

− along the lower boundary of each cerebral ventricle

(um)n
i,jb

= (um)n
i,jb−1

1 + εβ�y/dm
,
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where jb ∈ {0, . . . , Ny} denotes the grid index in the y-direction such that yjb = jb�y is the ordinate
of the boundary;

− along the upper boundary of each cerebral ventricle

(um)n
i,jb

= (um)n
i,jb+1

1 + εβ�y/dm
.

3.2 Discretization of the Smoluchowski equations

In order to approximate the equations for the um’s, m = 1, . . . , N − 1, we use a fractional step procedure
in time: first we solve the diffusion and reaction parts, then we add the coagulation and possibly the
source (for u1) parts.

Adopting a Finite Difference discretization of the Laplace operator ∇2 we obtain the scheme:

⎧⎪⎪⎨
⎪⎪⎩

(um)∗
i,j = (um)n

i,j + �t
ε

(
dm

(um)n
i−1,j−2(um)n

i,j+(um)n
i+1,j

�x2 + dm
(um)n

i,j−1−2(um)n
i,j+(um)n

i,j+1

�y2 − σm(um)n
i,j

)

(um)n+1
i,j = (um)∗

i,j + �t
ε

(
1
2

m−1∑
h=1

ah,m−h(uh)
∗
i,j(um−h)

∗
i,j − (um)∗

i,j

N∑
h=1

am,h(uh)
∗
i,j

)
,

where (um)∗
i,j denotes the temporary solution computed after the first fractional time step. For an alternative

Finite Element discretization of Smoluchowski equations see e.g. Achdou et al. (2013).
The scheme above applies to all inner nodes xi,j of the numerical grid (that means 1 ≤ i ≤ Nx − 1,

1 ≤ j ≤ Ny − 1 excluding furthermore the indexes ib, jb identifying the inner boundary ∂�in) and to the
Aβ m-polymers with m = 2, . . . , N − 1. Because of the adopted approximation of the diffusion part,
the following constraint on the time and space steps has to be enforced for the stability of the numerical
scheme:

�t ≤ ε

4
· min{�x2, �y2}

max
1≤m≤N−1

dm
. (3.3)

For m = 1 the equation is discretized in a similar way but for the addition of the source term F . We
refer the reader to the next subsection for discretization methods of the integral contained in it.

Finally, for m = N the equation is actually an ODE, which we approximate by the explicit Euler
formula:

(uN)n+1
i,j = (uN)n

i,j + �t

2ε

∑
h+k≥N
h, k<N

ah,k(uh)
n
i,j(uk)

n
i,j.

3.3 Discretization of the equation for f

In the interval [0, 1], which constitutes the domain of the variable a, we introduce a Finite Volume partition
made of Na cells of the form [ak−1/2, ak+1/2] with central point ak = (

k − 1
2

)
�a, where �a = 1

Na
. The

cell index k runs from 1 to Na. Then we discretize the first equation in (2.16) using again a fractional step
procedure in time.
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First, we solve the homogeneous transport part by means of the push-forward scheme introduced by
e.g. Piccoli & Tosin (2011); Tosin & Frasca (2011), which is particularly suited to deal with non-local
fluxes. Denoting f n

i,j,k ≈ f (xi,j, ak , tn), we have:

f ∗
i,j,k = f n

i,j,k − �t

�a

(
f n
i,j,k|vn

i,j,k| − f n
i,j,k−1(v

n
i,j,k−1)

+ − f n
i,j,k+1(v

n
i,j,k+1)

−) , (3.4)

where vn
i,j,k ≈ v(xi,j, ak , tn) indicates an approximation of the deterioration rate of the neurons and (·)− is

the negative part (x− := max{0, −x}). Here, we compute vn
i,j,k by approximating the integral contained

in the expression (2.12) via a zeroth order Euler formula and then adding the expression (2.13):

vn
i,j,k =

Na∑
h=1

G(xi,j, ak , ah)f
n

i,j,h�a + CS(1 − ak)

(
N−1∑
m=1

m(um)n
i,j − U

)+

.

If the form G(x, a, b) = CG(b − a)+ is used then in the formula above, we simply have G(xi,j, ak , ah) =
CG(ah − ak)

+.
The stability of the scheme (3.4) requires that the grid steps �a, �t be linked by the following CFL

condition:

�t ≤ �a

max
i, j, k

|vn
i,j,k|

. (3.5)

Second, we update the values f ∗
i,j,k by including the jump process:

f n+1
i,j,k = f ∗

i,j,k + η�t

(
Na∑

h=1

Pk
hf ∗

i,j,h�a − f ∗
i,j,k

)
χ n

i,j,

where we have denoted Pk
h := P(ah → ak) and χ n

i, j := χ(xi,j, tn).

3.4 Final choice of the time step

On the whole, the time step of the complete numerical scheme has to comply with both the parabolic and
the hyperbolic constraints (3.3), (3.5), respectively. Therefore, it is ultimately chosen as:

�t ≤ min

⎧⎨
⎩ε

4
· min{�x2, �y2}

max
1≤m≤N−1

dm
,

�a

max
i, j, k

|vn
i,j,k|

⎫⎬
⎭

at each time iteration of the numerical scheme.

3.5 Computing physiological indicators

Several macroscopic (aggregate) quantities can be computed out of the results of model (2.16). In
Section 4, the outputs of the simulations will be discussed in terms of a few of such quantities, which can
be directly compared with real clinical images and known qualitative time evolution of AD.
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The macroscopic distribution of neuron malfunctioning A = A(x, t) is computed over the cerebral
domain � as the local average of the degree of malfunctioning a:

A(x, t) :=
∫ 1

0
af (x, a, t) da,

which is numerically approximated as

A(xi,j, tn) ≈ An
i,j =

Na∑
k=1

akf n
i,j,k .

Following Jack et al. (2013), we relate then the ‘local brain atrophy’ φ(x, t) to the average neuron
malfunctioning A as:

φ(x, t) := max

{
0,

A(x, t) − A0

1 − A0

}
,

A0 ∈ (0, 1) being a threshold of malfunctioning over which the brain is considered locally atrophic. The
corresponding numerical approximation is

φn
i,j = max

{
0,

An
i,j − A0

1 − A0

}
.

Next we define the ‘global brain atrophy’ in time � = �(t) as the average of φ over the whole domain
�, i.e.

�(t) := 1

|�|
∫

�

φ(x, t) dx,

|�| denoting the area of �, which is numerically approximated as

�n := 1

|�|
Nx−1∑
i=0

Ny−1∑
j=0

φn
i,j�x�y,

In this formula, we conventionally consider φn
i,j = 0 if the grid point xi,j does not belong to the domain

�, i.e. if it is a point inside the cerebral ventricles.
The ‘total concentration of soluble amyloid’ US = US(t) in the brain occipital region, to be related

to the Aβ concentration found in the CSF by clinical exams (Aβ), is given by:

US(t) := 1

|�̂|
∫

�̂

N−1∑
m=1

mum(x, t) dx,

where �̂ ⊂ � is a subdomain located in the bottom part of �, entirely contained in the region below
the cerebral ventricles. Assuming for simplicity that it is a rectangle as well, whose grid coordinates are
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comprised between two indexes 0 < î1 < î2 < Nx in the x-direction and between j = 0 and j = ĵ > 0 in
the y-direction, we obtain the numerical values of US as:

Un
S := 1

|�̂|
î2−1∑
i=î1

ĵ−1∑
j=0

N−1∑
m=1

m(um)n
i,j�x�y = 1

(î2 − î1)ĵ

î2−1∑
i=î1

ĵ−1∑
j=0

N−1∑
m=1

m(um)n
i,j,

where we have used that |�̂| = (î2 − î1)ĵ�x�y.
Finally, the ‘average quantity of brain Aβ deposits’ in time is:

UN(t) := 1

|�|
∫

�

NuN(x, t) dx,

which is naturally discretized as

UN(tn) ≈ Un
N = 1

|�|
Nx−1∑
i=0

Ny−1∑
j=0

N(uN)n
i,j�x�y

by letting conventionally (uN)n
i,j = 0 if xi,j �∈ � (inside the cerebral ventricles).

4. Numerical results

To begin with, we provide a typical output of the numerical simulations. In Fig. 2, we plot the evolution
of three crucial biomarkers of AD (as a function of the computational time):

− the CSF Aβ42 (purple dashed curve);

− the average quantity of brain Aβ42 deposits (red solid curve);

− the global brain atrophy (blue dash-dot curve).

All curves are normalized to their maxima. The values of the constants used in the simulation are specified
in the figure caption.

The level of Aβ42-deposition (red solid curve) grows rapidly, reaches its maximum and then stabilizes.
The purple dashed curve, corresponding to CSF-Aβ42, decreases after having reached a peak. The blue
dash-dot curve corresponds to the brain atrophy and increases in time as expected. The graphs in Fig. 2
can be well illustrated by the following quote from Jack et al. (2010):

The initiating event in AD is related to abnormal processing of β-amyloid peptide, ultimately leading
to formation of Aβ plaques in the brain. This process occurs while individuals are still cognitively
normal. Biomarkers of brain β-amyloidosis are reductions in CSF Aβ42 and increased amyloid
PET tracer retention. After a lag period, which varies from patient to patient, neuronal dysfunction
and neurodegeneration become the dominant pathological processes. Biomarkers of neuronal injury
and neurodegeneration are increased CSF tau and structural MRI measures of cerebral atrophy.
Neurodegeneration is accompanied by synaptic dysfunction, which is indicated by decreased fluo-
rodeoxyglucose uptake on PET. We propose a model that relates disease stage to AD biomarkers
in which Aβ biomarkers become abnormal first before neurodegenerative biomarkers and cognitive
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Fig. 2. Graph for the following constants: β = 1, D = 0.01, α = 10, ε = 0.1, T = 100, N = 50, CG = 0.1, CS = 0.001,
CF = 10, r0 = 0.0, U = 0.1, μ0 = 0.01, η = 1 and σm = 1/m.

symptoms, and neurodegenerative biomarkers become abnormal later and correlate with clinical
symptom severity.

The plots we obtain should be compared with the clinical graphs in Bateman et al. (2012), Jack et al.
(2013), Yau et al. (2015), and with the data of Fleisher et al. (2012) and Reiman et al. (2012). For the
reader’s convenience, we reproduce here a picture from Jack et al. (2013), see Fig. 3, and a picture from
Yau et al. (2015), see Fig. 4.

There is a satisfactory agreement between the plots of the qualitative temporal behaviour of the
biomarkers and those obtained from clinical data. Observe that not only the shapes of the curves are
comparable (CSF Aβ corresponds to CSF Aβ42, brain Aβ deposits correspond to Amyloid PET and
global brain atrophy corresponds to MRI + FDG PET) but also the temporal order of the events is in good
agreement with clinical data.

Obviously the details of the numerical output depend on the choice of the constants used in the
mathematical model. Performing a considerable amount of numerical runs with different values of the
constants in the model, we have reached the conclusion that, at least qualitatively, the behaviour of the
solutions does not depend on the precise choice of those constants, as long as their variation is restricted
to reasonable ranges. In other words, the values of the constants taken in Fig. 2 can be considered as an
indication for the order of magnitude. For example, the longitudinal graphs of the biomarkers CFS-Aβ,
brain Aβ deposits and brain atrophy are — in this sense — qualitatively stable under variations of CS ,
CF , CG and α.

It is particularly instructive to consider the constants U in (2.13) and β in (3.2). We recall that U
is a threshold value for the minimal amount of toxic Aβ necessary to damage neurons (see (2.13)). In
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Fig. 3. Fig. 6 reproduced from Jack et al. (2013) with kind permission of the publisher.

Fig. 4. Fig. 4 reproduced from Yau et al. (2015) with kind permission of the publisher.

Fig. 2 we have used the value U = 0.1, but if we make it considerably larger, e.g. U = 1 (the remaining
constants are unchanged), then the threshold becomes so high that the illness does not develop at all.

The constant β enters the model through condition (3.2) at the boundary of the cerebral ventricles.
Smaller values of β mean that less Aβ is removed from the CSF through the choroid plexus. Fig. 5 shows
what happens if we change it into β = 0.01: the three curves are moved to the left and become steeper:
the illness starts earlier and develops faster. Recalling that in Figs. 2 and 5 we have plotted values which
are normalized with respect to their maximal values, one could wonder how the latter ones depend on β.
It turns out that the maximal values of CSF Aβ and the brain atrophy are essentially independent of β.
The Aβ deposits (the plaques), however, increase by a factor 6 if β is changed from 1 to 0.01. This result
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Fig. 5. Graph for the following constants: β = 0.01, D = 0.01, α = 100, ε = 0.1, T = 100, N = 50, CG = 0.1, CS = 0.001,
CF = 10, r0 = 0.0, U = 0.1,μ0 = 0.01, η = 1 and σm = 1/m.

is compatible with our modelling Ansatz (in accordance with the medical literature) that plaques are not
toxic (even healthy brains may contain plaques).

The comparison of the cases β = 1 and β = 0.01 becomes even clearer when we create spatial plots of
f and of the distribution and density of the cerebral plaques at fixed computational times t = T . The plots
of f at different times are meant to be compared with FDG-PET images (see e.g. Fleisher et al., 2012).
More precisely, we take a schematic image of a transverse section of the brain and attribute different
colours to those parts of the brain where probabilistically the level of malfunctioning lies in different
ranges. As in the FDG-PET, the red corresponds to a healthy tissue. Here, AD originates only from the
hippocampus and propagates, at the beginning, along privileged directions (such as those corresponding
to denser neural bundles) mimicked by two triangles.

In Figs. 6 and 7 we compare plots of f at, respectively, times T = 34 and T = 52 for the two different
values of β = 0.01 and β = 1. Figures 6 and 7 do not only confirm the temporal acceleration of the
development of the illness for smaller values of β but also show that the spatial pattern and heterogeneity
become less evident as β becomes smaller. Since experimental data suggest a strong spatial heterogeneity
of the illness, this could indicate the potential importance of the removal of Aβ through the choroid plexus
to slow down the temporal development of AD.

In Fig. 8, we plot the plaques’ distribution for the two different values of β = 0.01 and β = 1 and at
T = 52. This figure confirms the strong increase of the plaques when β becomes smaller.

We stress that, though our images represent ‘a mean value’ of brain activity instead of a single patient’s
brain activity, still they show a good agreement with clinical neuroimaging: compare Figs. 6 and 7 with
Fig. 9 below.
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Fig. 6. Neuron malfunctioning: β = 0.01 (left), β = 1 (right), T = 34.

Fig. 7. Neuron malfunctioning: β = 0.01 (left), β = 1 (right), T = 52.

Looking for more realistic images, we have to take into account randomness of the spatial distribution
of the sources of the disease. For example, we have performed some runs where the AD does not only
originate from the hippocampus but also from several sources of Aβ randomly distributed in the occipital
part of the brain. We report the outputs of such runs in Fig. 10. The random distributed sources appear as
the small blue spots.
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Fig. 8. Density of plaques for β = 0.01 (left), β = 1 (right), T = 52.

Fig. 9. FDG -PET images showing patterns of metabolic activity: an elderly individual with no dementia (left) and with AD (right).
Reproduced from Miller (2006) with permission.

5. Discussion and future research directions

We have presented a new mathematical model for the onset and evolution of AD. The model is character-
ized by a high level of flexibility, which potentially allows one to simulate different modelling hypotheses
and compare them with clinical data. In fact, the model provides a flexible tool to test in the future alter-
native hypotheses on the evolution of the disease. In this article, we have chosen some specific aspects of
the illness, such as the aggregation, diffusion and removal of Aβ, the possible spread of neuronal dam-
age in the neural pathway, and, to describe the onset of AD, a random neural deterioration mechanism.
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Fig. 10. Neuron disease with random sources with β = 1 at T = 47.

Numerical simulations are compared with clinical data and, although oversimplified and restricted to a
two-dimensional rectangular section of the brain, they are in good qualitative agreement with the spread
of the illness in the brain at various stages of its evolution. In particular, our model captures the cerebral
damage in the early stage of MCI.

There are multiple future research developments in quite different directions, each of which requires
substantial research efforts. We mention some of them.

Further development of the model is needed and should be carefully guided by clinical data. The
constants appearing in the equations should be well calibrated to optimize quantitative agreement with
clinical data. Simulations should become more realistic, in a three-dimensional domain which matches
the geometric characteristics of the brain.

The true challenge in AD research is a breakthrough which allows one to develop effective therapies
to stop or slow down the evolution of AD, possibly in an early stage of the illness. Also effective
mathematical models can give a contribution in this direction. For example, a certain sensibility of the
numerical output to the value of the constant β in (3.2), which models the removal of Aβ through the
choroid plexus, spontaneously leads to the question whether dialysis mechanisms can be introduced to
enhance Aβ-removal artificially. Most probably, a serious answer to this question requires, in addition
to a detailed comparison with clinical data, a more refined modelling of the removal which takes into
account the transport of soluble Aβ by the cerebral fluid.

Finally, some mathematical effort is necessary to check the mathematical correctness (well posedness)
of the model.
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