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Abstract. In the first part of this paper we review a mathematical model
for the onset and progression of Alzheimer’s disease (AD) that was developed

in subsequent steps over several years. The model is meant to describe the

evolution of AD in vivo. In [1] we treated the problem at a microscopic scale,
where the typical length scale is a multiple of the size of the soma of a single

neuron. Subsequently, in [2] we concentrated on the macroscopic scale, where

brain neurons are regarded as a continuous medium, structured by their degree
of malfunctioning.

In the second part of the paper we consider the relation between the mi-

croscopic and the macroscopic models. In particular we show under which
assumptions the kinetic transport equation, which in the macroscopic model

governs the evolution of the probability measure for the degree of malfunction-

ing of neurons, can be derived from a particle-based setting.
The models are based on aggregation and diffusion equations for β Amyloid,

a protein fragment that healthy brains regularly produce and eliminate. In case
of dementia Aβ monomers are no longer properly washed out and begin to

coalesce forming eventually plaques. Two different mechanisms are assumed

to be relevant for the temporal evolution of the disease: i) diffusion and
agglomeration of soluble polymers of amyloid, produced by damaged neurons;

ii) neuron-to-neuron prion-like transmission.

In the microscopic model we consider basically mechanism i), modelling it
by a system of Smoluchowski equations for the amyloid concentration (describ-

ing the agglomeration phenomenon), with the addition of a diffusion term as

well as of a source term on the neuronal membrane. At the macroscopic level
instead we model processes i) and ii) by a system of Smoluchowski equations

for the amyloid concentration, coupled to a kinetic-type transport equation for

the distribution function of the degree of malfunctioning of the neurons. The
second equation contains an integral term describing the random onset of the

disease as a jump process localized in particularly sensitive areas of the brain.

Even though we deliberately neglected many aspects of the complexity of
the brain and the disease, numerical simulations are in both cases (microscopic

and macroscopic) in good qualitative agreement with clinical data.

1. Introduction

The aim of the present paper is twofold: to provide an overview of the research
carried on in the last few years by several authors in different and variated collabo-
rations on both microscopic and macroscopic mathematical models for Alzheimer’s
disease (AD) in the human brain [1, 12, 2, 10, 11], and to present a new result
about the consistency of the microscopic and the macroscopic model. AD has a
huge social and economic impact [20, 4, 23]. Until 2040 its global prevalence, es-
timated as high as 44 millions in 2015, is expected to double every 20 years [35].
Not by chance AD-related issues belong to the cutting edge of scientific research.
Apart from the classical in vivo and in vitro approaches, there is increasing inter-
est in in silico research, based on mathematical modelling and computer simula-
tions [40, 6, 13, 28, 8, 18, 17].

To cover the diverse facets of the AD in a single model, different spatial and
temporal scales must be taken into account: microscopic spatial scales to describe
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the role of the neurons, macroscopic spatial and short temporal (minutes, hours)
scales for the description of the relevant diffusion processes in the brain, and large
temporal scales (years, decades) for the description of the global development of
AD. In [1, 12] the authors began by attacking the problem at a microscopic scale,
that is by considering as size scale of the model a multiple of the size of the soma of
a single neuron (from 4 to 100 µm). Subsequently, see [2], the authors concentrated
on a macroscopic scale, where they treat brain neurons as a continuous medium,
and structure them by their degree of malfunctioning. Mathematically, the bridge
between the two models is provided using two quite different techniques: through
the so-called homogenisation technique in [10, 11]; and by adapting some arguments
of the modern Boltzmann-type kinetic theory for multi-agent systems in Section 4
of this paper.

Following closely the biomedical literature on the AD, we briefly describe the
processes (both microscopic and macroscopic) which we include in our models.

In the neurons and their interconnections several microscopic phenomena take
place. It is largely accepted that beta amyloid (Aβ), especially its highly toxic
oligomeric isoforms Aβ40 and Aβ42, play an important role in the process of the
cerebral damage (the so-called amyloid cascade hypothesis [22]). In our papers we
focus on the role of Aβ42 in its soluble form, which recently has been suggested
to be the principal cause of neuronal death and eventually dementia [41]. Indeed
nowadays there are several evidences, such as enzyme-linked-immunosorbent assays
(ELISAs) and mass spectrometry analysis, suggesting that the presence of plaques
is not related to the severity of the AD. On the other hand, high levels of soluble
Aβ correlate much better with the presence and degree of cognitive deficits than
plaque statistics. As a matter of fact some authors (see for instance [16]) overturn
the traditional perspective, claiming that large aggregates of Aβ can actually be
inert or even protective to healthy neurons.

At the level of the neuronal membrane, monomeric Aβ peptides originate from
the proteolytic cleavage of a transmembrane glycoprotein, the amyloid precursor
protein (APP). By unknown and partially genetic reasons, some neurons present an
unbalance between produced and cleared Aβ (we refer to such neurons as damaged
neurons). In addition, it has been proposed that neuronal damage spreads in the
neuronal net through a neuron-to-neuron prion-like propagation mechanism [5, 34].

On the other hand, macroscopic phenomena take place at the level of the cere-
bral tissue. The monomeric Aβ produced by damaged neurons diffuses through the
microscopic tortuosity of the brain tissue and undergoes a process of agglomeration,
leading eventually to the formation of long, insoluble amyloid fibrils, which accu-
mulate in spherical deposits known as senile plaques. In addition, soluble Aβ shows
a multiple neurotoxic effect: it induces a general inflammation that activates the
microglia which in turn secretes proinflammatory innate cytokines [15] and, at the
same time, increases intracellular calcium levels [13] yielding ultimately apoptosis
and neuronal death.

The mathematical models which we derive in Sections 2 and 3 do not describe
all the above-mentioned phenomena involved in the pathological process of the AD.
They also neglect as well other additional phenomena, that we do not even mention.
For example, we do not enter the details of the tortuosity of the brain tissue, we
neglect the action of the τ -protein, we simplify the role of the microglia, and neglect
its multifaceted mechanism. In fact, we simply assume that high levels of soluble
amyloid are toxic for neurons at all scales. Our primary goal was to overcome the
fundamental mathematical difficulties and set the basis for a highly flexible model,
which can be easily fine-tuned to include other issues. On the other hand, when we
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work at macroscopic scale we take into account also a neuron-to-neuron prion-like
propagation mechanism ([34, 5]),

The models are minimal but effective: the numerical simulations produce a pos-
teriori images and graphs which are in good qualitative agreement with clinical
findings and confirm the validity of our assumptions. They also capture, at differ-
ent scales, the cerebral damage in the early stage of the Mild Cognitive Impairment
(MCI [33]).

In Section 4 we derive the equation for the progression of AD in the macro-
scopic model from a microscopic description of three main biophysical processes,
among those recalled above. Namely, a prion-like spread of the disease over the
neural network, the poisoning effect of soluble Aβ polymers diffusing in the brain
tissue and stochastic jumps in the level of neuron malfunctioning due to uncon-
trolled causes, such as e.g. external agents or genetic factors. We use mathematical
techniques coming from the modern Boltzmann-type kinetic theory for multi-agent
systems [32], such as microscopic binary interaction schemes and mean-field asymp-
totic limits.

In Section 5 we highlight some shortage of the present approach and we discuss
possible extensions of the models, inspired by future research directions.

2. Mathematical model at the microscopic scale

When aiming at producing mathematical models of biological phenomena we
have to fix preliminarily a spatial scale, as well as a time scale. Thus, we consider
a portion of the cerebral cortex comparable in size to the size of a neuron, and we
omit both the description of intracellular phenomena and clinical manifestations of
the disease at a macroscopic scale, which will be considered instead in the model at
the macroscopic scale. On the other hand, the experimental data of [25, 24] show
that the process of plaques formation takes few days and therefore our temporal
scale is chosen of the order of hours. In particular, no anatomical alteration of the
neurons and of the surrounding cerebral tissue is taken into account.

The portion of cerebral tissue we consider is represented by a bounded smooth
region Ω0 ⊂ R3 (or Ω0 ⊂ R2 in numerical simulations to reduce the computational
complexity). To fix our ideas, we can think that the diameter of Ω0 is of the order
of 10 µm. The neurons are represented by a family of regular regions Ωj such that

(1) Ωj ⊂ Ω0 if j = 1, . . . ,M ;

(2) Ωi ∩ Ωj = ∅ if i 6= j.

We set

Ω := Ω0 \
M⋃
j=1

Ωi.

To describe the evolution of the amyloid in Ω, we consider a vector-valued func-
tion u = (u1, . . . , uN ), where N ∈ N, um = um(τ, x), m = 1, . . . , N , x ∈ Ω is the
space variable and τ ≥ 0 is the time variable. If 1 ≤ m < N − 1 then um(τ, x)
denotes the (molar) concentration at time τ ≥ 0 and point x ∈ Ω of Aβ assem-
blies of polymers of length m. In addition, uN takes into account aggregations of
more than N − 1 monomers. Although uN has a different meaning from the other
um’s, we keep the same letter u in order to avoid cumbersome notations. Clusters
of oligomers of length ≥ N (fibrils) may be thought of as a medical parameter
(the plaques), clinically observable through PIB-PET (Pittsburgh compound B -
PET [30]).

Coherently with this choice of the scales, it is coherent to assume that the diffu-
sion of Aβ in Ω is uniform, and therefore employ the usual Fourier linear diffusion
equation (see, for instance, [29]).
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In addition, we describe the agglomeration phenomena by means of the so-called
finite Smoluchowski system of equations with diffusion. Classical references are [37,
7]; applications of Smoluchowski system to the description of the agglomeration of
Aβ amyloid appeared for the first time in [28].

The production of Aβ in the monomeric form at the level of neuron membranes
is modelled by a an inhomogeneous Neumann condition on ∂Ωj , the boundary of
Ωj , for j = 1, . . . ,M . Finally, a homogeneous Neumann condition on ∂Ω0 is meant
to neglect the neighbouring cerebral regions.

Thus, we are led to the following Cauchy-Neumann problem

(1)


∂τu1 = d1∆xu1 − u1

∑N
j=1 a1,juj

∂νu1 = ψ0 ≡ 0 on ∂Ω0

∂νu1 = ψj on ∂Ωj , j = 1, . . . ,M
u1(x, 0) = U1(x) ≥ 0,

where 0 ≤ ψj ≤ 1 is a smooth function for j = 1, . . . ,M describing the production
of the amyloid near the membrane of the neuron.

We only take into account neurons affected by the disease, i.e. we assume ψj 6≡ 0
for j = 1, . . . ,M . Moreover, to avoid technicalities, we assume that U1 is smooth,
more precisely U1 ∈ C2+α(Ω̄) for some α ∈ (0, 1), and that ∂νU1 = ψj on ∂Ωj ,
j = 0, . . . ,M .

In addition, if 1 < m < N ,

(2)


∂τum = dm∆xum − um

∑N
j=1 am,juj + 1

2

∑m−1
j=1 aj,m−jujum−j

∂νum = 0 on ∂Ω0

∂νum = 0 on ∂Ωj , j = 1, . . . ,M
um(x, 0) = 0,

and

(3)


∂τuN = dN∆xuN + 1

2

∑
j+k≥N,k<N,j<N aj,kujuk

∂νuN = 0 on ∂Ω0

∂νuN = 0 on ∂Ωj , j = 1, . . . ,M
uN (x, 0) = 0,

where dj > 0, j = 1, . . . , N and ai,j = aj,i > 0, i, j = 1, . . . , N (but aN,N = 0).
We assume that the diffusion coefficients dj are small when j is large, since

big assemblies do not move. In fact, the diffusion coefficient of a soluble peptide
scales approximately as the reciprocal of the cube root of its molecular weight
(see [14, 29]).

The form of the coefficients ai,j (the coagulation rates) considered in [28, formula
(13)] rely on sophisticated statistical mechanics considerations (see also [19, 38]). In
our numerical simulations, we use a slightly approximate form of these coefficients,

taking ai,j =
α

ij
where α > 0. In fact, this approximation basically consists in

neglecting logarithmic terms in front of linear ones for large i, j. Concerning the
coefficient aN,N , it is clearly consistent with experimental data to assume aN,N = 0
for large N , which is equivalent to say that large oligomers do not aggregate with
each other.

In our simulations we identify senile plaques with the sets {x ∈ Ω : uN (τ, x) >
c > 0}. The following picture is provided by a numerical implementation of the
model (1), (2), (3). As in clinical observations, plaques grow near a neuron (the
circle in the picture). The picture has been obtained by taking appropriate level
sets of uN (τ, ·).
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IsoValue
0.369043
0.37713
0.385217
0.393304
0.401391
0.409477
0.417564
0.425651
0.433738
0.441825
0.449911
0.457998
0.466085
0.474172
0.482259
0.490345
0.498432
0.506519
0.514606
0.522693

Figure 1. Plaque generated with N = 16, α = 10, U1 ≡ 0, ψ = 0.5.

We notice that our model leads to a smooth shape of the senile plaques (because
of standard regularity properties of diffusion equations), in disagreement with evi-
dences found in vivo. This may be explained by Figure 3 in [8] and related comments
on the role of the microglia.

Besides numerical simulations, the main result obtained in [1] for this model is
the following existence theorem:

Theorem 2.1. For all T > 0 the Neumann-Cauchy problem (1), (2), (3) has a
unique classical positive solution u ∈ C1+α/2,2+α([0, T ]× Ω̄).

3. Mathematical model at the macroscopic scale

We identify now a large portion of the cerebral tissue with a 3-dimensional
region Ω, with diameter of Ω of the order of 10 cm. As for the time scale, a new
phenomenon occurs: two temporal scales are needed to simulate the evolution of
the disease over a period of years, i.e. besides the short (i.e., rapid) τ -scale (whose
unit time coincides with hours) for the diffusion and agglomeration of Aβ [24] that
we used for the microscopic model, we need a long (i.e., slow) t-scale (whose unit
time coincides with several months) to take into account the progression of AD. We
can write the relation between the two scales as ∆t = ε∆τ for a small parameter
ε� 1.

At the macroscopic scale, the boundary vale problem for monomers (1) must
have a different form. Indeed, the information given on the microscale by the
non-homogeneous Neumann boundary condition is transferred into a source term
F appearing in the macroscopic equation. This is due to the fact that at this
scale neurons are reduced to points. Therefore, we have the following macroscopic
equation for monomers:

(4) ∂τu1 = d1∆xu1 − u1

N∑
j=1

a1,juj + F

while the equations in (2) and (3) remain unchanged.
Mathematically, the transition from system (1) to equation (4) has been obtained

by a two-scale homogenisation procedure described in [10] and [11].
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The source term F in (4) will depend on the health state of the neurons. We
model the degree of malfunctioning of a neuron with a parameter a ranging from
0 to 1: a close to 0 stands for “the neuron is healthy” whereas a close to 1 for
“the neuron is dead”. This parameter, although introduced for the sake of math-
ematical modelling (see also [34]), can be compared with medical images from
Fluorodeoxyglucose PET (FDG-PET [27]).

For fixed x ∈ Ω and t ≥ 0, let f(x, a, t) be a probability measure, supported in
[0, 1], that indicates the fraction of neurons close to x with degree of malfunctioning
between a and a + da at time t. From now on, we denote by X[0,1] the space of
probability measures on R that are supported in [0, 1].

Since Aβ monomers are produced by neurons and the production increases if
neurons are damaged, we choose in (4)

(5) F = F [f ] = CF

∫ 1

0

(µ0 + a)(1− a)df(x, a, t).

The small constant µ0 > 0 accounts for the physiologic Aβ production by healthy
neurons, and the factor 1−a for the fact that dead neurons do not produce amyloid.

The progression of AD occurs in the slow time scale t, over decades, and is
determined by the deterioration rate v = v(x, a, t) of the health state of the neurons
through the continuity equation:

(6) ∂tf + ∂a(fv[f ]) = 0.

Here v[f ] indicates that the deterioration rate depends on f itself.
We assume that

(7) v[f ] =

∫ 1

0

G(x, a, b) df(x, b, t) + S(x, a, u1(x, τ), . . . , uN−1(x, τ)).

The notation G takes into account the spreading of the disease by proximity, while
S models the action of toxic Aβ oligomers, ultimately leading to apoptosis. For
instance, we can choose

(8) G(x, a, b) = CG(b− a)+,

and

(9) S = CS(1− a)

(
N−1∑
m=1

mum(x, τ)− U

)+

.

The threshold U > 0 indicates the minimal amount of toxic Aβ needed to damage
neurons, assuming that the toxicity of soluble Aβ-polymers does not depend on m.
In reality length dependence has been observed [31], but, to our best knowledge,
quantitative data are only available for very short molecules (see [31, Table 2]). For
long molecules any analytic expression would be arbitrary.

At this point, we stress that equation (6), by its own nature, fails to describe the
onset of the disease. To describe the onset of AD we assume that in small, randomly
chosen parts of the cerebral tissue, concentrated for instance in the hippocampus,
the degree of malfunctioning of neurons randomly jumps to higher values due to
external agents or genetic factors. This leads to an additional term in the equation
for f ,

∂tf + ∂a (fv[f ]) = J [f ],

where

(10) J [f ] = η

(∫ 1

0

P (t, a∗ → a)f(x, a∗, t) da∗ − f(x, a, t)

)
χ(x, t).
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Here, P (t, a∗ → a) is the probability to jump from the state a∗ to a state a ∈
[0, 1] (obviously, P (t, a∗ → a) = 0 if a < a∗), χ(x, t) describes the random jump
distribution, and η is the jump frequency. For instance we can choose

(11) P (t, a∗ → a) ≡ P (a∗ → a) =


2

1− a∗
if a∗ ≤ a ≤

1 + a∗
2

0 otherwise,

and neglect randomness, taking χ(x, t) ≡ χ(x), concentrated in the hippocampus.
Finally, to model the phagocytic activity of the microglia as well as other bulk

clearance processes [21], we add a term −σmum in equations (2), (3) and (4), where
σm > 0.

We consider a transversal section (i.e. a horizontal planar section) of the brain
that can be compared with radiological imaging (see, e.g., [2, Fig. 1]). For the sake
of simplicity we schematise the section of the brain as a bounded connected region
Ω ⊂ R2, with two inner disjoint “holes” representing the sections of the cerebral
ventricles. Consistently, we assume that the boundary of Ω consists of two disjoint
parts: an outer boundary ∂Ωout and an inner boundary ∂Ωin, i.e. the boundary of
the cerebral ventricles consisting of two disjoint closed simple curves.

Eventually, we are led to the system

(12)



∂tf + ∂a (fv[f ]) = J [f ]

ε∂tu1 = d1∆xu1 − u1

N∑
j=1

a1,juj + F [f ]− σ1u1

ε∂tum = dm∆xum +
1

2

m−1∑
j=1

aj,m−jujum−j

− um
N∑
j=1

am,juj − σmum (2 ≤ m < N)

ε∂tuN =
1

2

∑
j+k≥N
k, j<N

aj,kujuk,

with τ replaced by ε−1t. Since we are interested in longitudinal modelling, we
assume that initially, at t = 0, there is a small uniform distribution of soluble
amyloid u0 = (u0,1, . . . , u0,N ).

Thus system (12) has to be coupled with Cauchy initial data

(13)

{
f(x, a, 0) = f0(x, a) if x ∈ Ω, 0 ≤ a ≤ 1

ui(x, 0) = u0,i(x) if x ∈ Ω, 1 ≤ i ≤ N,

where the u0,i ∈ C1(Ω) are nonnegative functions for i = 1, . . . , N , and f0 ∈
L∞(Ω;X[0,1]) describes the distribution of the disease at time t = 0.

On the outer boundary ∂Ωout we assume vanishing normal polymer flow. There-
fore we impose a homogeneous Neumann condition for the diffusing amyloid poly-
mers:

(14) −dm
ε

∆xum · n = 0 on ∂Ωout, m = 1, . . . , N − 1,

n being the outward normal unit vector to ∂Ωout. Notice that no boundary condi-
tion is required for the concentration uN of the fibrillar amyloid, since its equation
does not feature space dynamics (cf. the last equation in (12)). On the inner bound-
ary ∂Ωin, that is the boundaries of the cerebral ventricles, we model the removal of
Aβ from cerebrospinal fluid (CSF) through the choroid plexus (cf. [21, 36]) by an
outward polymer flow proportional to the concentration of the amyloid. For this,
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we impose a Robin boundary condition of the form:

(15) −dm
ε

∆xum · n = γum on ∂Ωin, m = 1, . . . , N − 1,

with γ > 0 a constant.
An existence and uniqueness theorem for system (12) with Cauchy initial data (13)

and boundary conditions (14) and (15) is proved in [3]. With our choices of P , G
and S in (11), (8) and (9), it reads as follows:

Theorem 3.1. For all T > 0 there exist a unique (N + 1)-ple

(f, u1, · · · , uN ) ∈ L∞(Ω; C([0, T ]; X[0,1]))× C([0, T ]; C1(Ω))N ,

ui ≥ 0 for i = 1, . . . , N , solving (12) in a weak sense in [0, T ], with Cauchy data (13)
and boundary data (14) and (15).

In particular, the first equation in (12) is satisfied in the following weak sense:
for a.e. x ∈ Ω, for φ = φ(x, ·, ·) ∈ D(R× [0, T ]) and for all t ∈ [0, T ]∫ t

0

(∫
(∂sφ+ v∂aφ)df(x, ·, s) +

∫
φdJ(x, ·, s)

)
ds

=

∫
φ(x, ·, t)df(x, ·, t)−

∫
φ(x, ·, 0)df0(x, ·).

Concerning the outputs of the numerical simulation of (12) with Cauchy initial
data (13) and boundary conditions (14) and (15), it is instructive to compare plots
of f , at different times, with FDG-PET images (see e.g. [9]): we create a schematic
image of a transverse section of the brain and attribute different colors (varying
from red to blue) to those parts of the brain where probabilistically the level of
malfunctioning lies in different ranges. As in the FDG-PET, the red corresponds
to a healthy tissue. Here AD originates only from the hippocampus and propa-
gates, at the beginning, along privileged directions (such as those corresponding
to denser neural bundles) mimicked by two triangles. Obviously the details of the
numerical output depend on the choice of the constants used in the mathematical
model. Performing a considerable amount of numerical runs with different values
of the constants in the model, we have reached the conclusion that, at least qual-
itatively, the behaviour of the solutions does not depend on the precise choice of
those constants, as long as their variation is restricted to reasonable ranges.

The constant γ enters the model through condition (15) at the boundary of the
cerebral ventricles. Smaller values of γ mean that less Aβ is removed from the
CSF through the choroid plexus. The comparison of the cases γ = 1 and γ = 0.01
becomes quite clear when we create spatial plots of f (taking into account the
average degree of malfunctioning of the brain in every point) at fixed computational
times t = T . In Figures 2 and 3, where we compare plots of f at, respectively, times
T = 30 and T = 40 for the two different values of γ = 0.01 and γ = 1, AD originates
only from the hippocampus and propagates, at the beginning, along privileged
directions (such as those corresponding to denser neural bundles) mimicked by two
triangles. Two remarks are now in order. First of all, though our images represent
a mean value of brain activity instead of a single patient’s brain activity, still
they show a good agreement with clinical neuroimaging (obviously representing
the specific situation of an individual patient). See, e.g. [26], reproduced also
with permission in [2], Fig. 6. The specificities (both anatomic and physiologic)
of the single patient might account for the discrepancies between the outputs of
our simulations and clinical neuroimaging. Secondly, we notice that if γ becomes
smaller (corresponding to a lower rate of clearance of the amyloid), we observe
a temporal acceleration of the development of the illness; this could indicate the
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potential importance of the removal of Aβ through the choroid plexus to slow down
the temporal development of AD.
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Figure 2. Neuron malfunctioning: γ = 0.01 (left), γ = 1 (right),
T = 30.
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Figure 3. Neuron malfunctioning: γ = 0.01 (left), γ = 1 (right),
T = 40.

Looking for even more realistic images, we take now into account the randomness
of the spatial distribution of the sources of the disease. Therefore we perform some
runs where the AD does not only originate from the hippocampus, but also from
several sources of Aβ randomly distributed in the occipital part of the brain. We
report the outputs of such runs, for γ = 1 and two different values of time T , in
Figure 4. The randomly distributed sources appear as the small blue spots.
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Figure 4. Neuron disease with random sources for γ = 1 at T =
30 (left) and T = 60 (right).

Comparing the random sources case with the one in which AD originates only
in the hippocampus, for the same values of γ = 1 and T = 30, it is clear that the
brain sickness is more advanced when the number of sources is increased.

4. Derivation of the macroscopic equation for the progression of
the disease

While the macroscopic system of Smoluchowski equations in (12) has been ob-
tained from a smaller neuron-size scale through the homogenisation technique de-
scribed in [10, 11], the mesoscopic equation for the distribution f of the disease has
been so far postulated on a mainly heuristic basis. In this section we provide its
derivation from more fundamental particle-based dynamics, by adapting some ar-
guments of the modern Boltzmann-type kinetic theory for multi-agent systems [32].

4.1. Particle-based neuron dynamics. Let τ ≥ 0 be the short (i.e. rapid)
time variable, like in Section 3, and Ω ⊂ Rn (n = 2, 3) a bounded subset of the
physical space representing the brain, or possibly a two-dimensional section of it.
We denote by X ∈ Ω the position of a neuron in the brain and by Aτ ∈ [0, 1] its
degree of malfunctioning at time τ , which we assume to evolve according to the
main biophysical mechanisms mentioned in the Introduction:

• a neuron-to-neuron prion-like transmission of the disease regarded as a
binary interaction with a neighbouring neuron in the point Y ∈ Ω with
degree of malfunctioning Bτ ∈ [0, 1] at time τ . We model the effect of such
a binary interaction by a term of the form

HX,Y G(X, Aτ , Bτ ),

where G : Ω× [0, 1]× [0, 1]→ [0, 1] is a prescribed function which accounts
for the prionic transmission of the disease and HX,Y ∈ {0, 1} is a variable
which describes the structure of the neural network. Specifically, HX,Y = 1
if the neurons in X and Y are connected by a synapse while HX,Y = 0 if
they are not.

Due to the extremely complicated structure of the neural network, we
consider a simple probabilistic description of it by assuming that HX,Y is
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a Bernoulli random variable parameterised by X, Y , in the sense that its
law is

(16) P(HX,Y = 1) = h(X, Y ), P(HX,Y = 0) = 1− h(X, Y )

for a given h : Ω× Ω→ [0, 1] such that h(x, y) = h(y, x) for all x, y ∈ Ω.
On the other hand, as an approximation we explicitly disregard the vari-

ability in time of the connections among the neurons;
• the poisoning effect of soluble Aβ polymers diffusing in the brain tissue,

which we model by a function

S = S(X, Aτ , u(X, τ)),

where we have set u(x, τ) := (u1(x, τ), . . . , uN−1(x, τ)), x ∈ Ω, for brevity;
• stochastic jumps in the degree of malfunctioning due to uncontrolled causes,

such as external agents or genetic factors, which we model by means of a
random variable Jτ such that

0 ≤ Jτ ≤ 1−Aτ ,

as in no case the new degree of malfunctioning after the jump, i.e. Aτ +Jτ ,
can be greater than 1.

In order to introduce a rule for the time variation of Aτ we assume that in a
short time interval ∆τ > 0 there is a probability proportional to ∆τ that the neuron
undergoes any of the mechanisms mentioned above. Furthermore, we assume that
each mechanism is independent of the others. A simple way to formalise this is to
introduce three independent Bernoulli random variables Tν , Tµ, Tη ∈ {0, 1} such
that

P(Tκ = 1) = κ∆τ, P(Tκ = 0) = 1− κ∆τ, κ = ν, µ, η,

where ν, µ, η > 0 are the frequencies associated to each of the mechanisms above
while the time interval has to be chosen in such a way that ∆τ < 1/max{ν, µ, η}.
Under this assumption we set

(17) Aτ+∆τ = Aτ + TνHX,Y G(X, Aτ , Bτ ) + TµS(X, Aτ , u(X, τ)) + TηJτ .

4.2. Boltzmann-type kinetic description. Let ϕ = ϕ(x, a) : Ω× [0, 1]→ R be
a test function representing any observable quantity that can be computed out of
the microscopic state (X, Aτ ) of a neuron. From (17) we get:

ϕ(X, Aτ+∆τ ) = ϕ(X, Aτ + TνHX,Y G(X, Aτ , Bτ ) + TµS(X, Aτ , u(X, τ)) + TηJτ ),

whence, averaging both sides and computing first the mean with respect to the
variables Tν , Tµ, Tη,

〈ϕ(X, Aτ+∆τ )〉 = 〈ϕ(X, Aτ )〉+ ∆τ
[
ν 〈ϕ(X, Aτ +HX,Y G(X, Aτ , Bτ ))〉

+ µ 〈ϕ(X, Aτ + S(X, Aτ , u(X, τ)))〉
+ η 〈ϕ(X, Aτ + Jτ )〉

− (ν + µ+ η) 〈ϕ(X, Aτ )〉
]

+ o(∆τ),

(18)

where 〈·〉 denotes the average. Furthermore, using (16) to compute the mean with
respect to HX,Y in the first term in brackets at the right-hand side, we obtain

〈ϕ(X, Aτ +HX,Y G(X, Aτ , Bτ ))〉
= 〈ϕ(X, Aτ + G(X, Aτ , Bτ ))h(X, Y )〉

+ 〈ϕ(X, Aτ )(1− h(X, Y ))〉 ,
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hence (18) specialises in

〈ϕ(X, Aτ+∆τ )〉 − 〈ϕ(X, Aτ )〉
∆τ

= ν
〈(
ϕ(X, Aτ + G(X, Aτ , Bτ ))− ϕ(X, Aτ )

)
h(X, Y )

〉
+ µ 〈ϕ(X, Aτ + S(X, Aτ , u(X, τ)))〉
+ η 〈ϕ(X, Aτ + Jτ )〉 − (µ+ η) 〈ϕ(X, Aτ )〉+ o(1).

In the limit ∆τ → 0+ this produces the continuous-in-time master equation

d

dτ
〈ϕ(X, Aτ )〉 = ν

〈(
ϕ(X, Aτ + G(X, Aτ , Bτ ))− ϕ(X, Aτ )

)
h(X, Y )

〉
+ µ 〈ϕ(X, Aτ + S(X, Aτ , u(X, τ)))− ϕ(X, Aτ )〉
+ η 〈ϕ(X, Aτ + Jτ )− ϕ(X, Aτ )〉 .

(19)

Let us now introduce the probability density function

g = g(x, a, τ) : Ω× [0, 1]× R+ → R+

of the microscopic state (X, Aτ ), i.e. g(x, a, τ) dx da is the fraction of neurons
which at time τ are in the infinitesimal volume dx centred at x ∈ Ω with a degree
of malfunctioning in [a, a+da]. In the spirit of a Boltzmann-type ansatz, we assume
that the processes (X, Aτ ) and (Y, Bτ ) are independent, so that their joint law is
g(x, a, τ)g(y, b, τ), cf. the next Remark 4.1. Moreover, we denote by p(τ, j|x, a),
0 ≤ j ≤ 1− a, the law of Jτ conditioned to (X, Aτ ), which is such that

(20)

∫ 1−a

0

p(τ, j|x, a) dj = 1, ∀x ∈ Ω, a ∈ [0, 1], τ ≥ 0.

In view of these positions, we compute explicitly the remaining averages in (19) as:

d

dτ

∫ 1

0

∫
Ω

ϕ(x, a)g(x, a, τ) dx da

= ν

∫ 1

0

∫ 1

0

∫
Ω

∫
Ω

(ϕ(x, a∗)− ϕ(x, a))h(x, y)g(x, a, τ)g(y, b, τ) dx dy da db

+ µ

∫ 1

0

∫
Ω

(ϕ(x, a∗∗)− ϕ(x, a))g(x, a, τ) dx da

+ η

∫ 1

0

∫
Ω

∫ 1−a

0

(ϕ(x, a∗∗∗)− ϕ(x, a))p(τ, j|x, a)g(x, a, τ) dj dx da,

(21)

where the starred variables denote the state of the neuron after one of the three
types of interactions according to (19):

a∗ = a+ G(x, a, b) (prion-like transmission of the disease)

a∗∗ = a+ S(x, a, u(x, τ)) (poisoning by Aβ polymers)

a∗∗∗ = a+ j (stochastic jumps).

(22)

Equations (21), (22) provide the Boltzmann-type kinetic description of the mi-
croscopic model formulated in Section 4.1.

Remark 4.1. Inspired by the discussion set forth in [32, Chapter 1], we observe that
the assumption of stochastic independence of the states (X, Aτ ), (Y, Bτ ) is not
fully justified from the biological point of view, being mostly dictated by the wish
to obtain a closed equation in terms of the sole distribution function g. However,
as it often happens in this type of problems, one needs to mediate between the
high complexity of the biological phenomenon and the possibility to construct a
usable, though necessarily approximated, mathematical model. In this respect,
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the aforesaid assumption should be regarded as a reasonable compromise, which
permits a quite complete description and analysis of the evolution of the system.

4.3. The quasi-invariant degree of malfunctioning limit. As recalled in Sec-
tion 3, the progression of AD occurs in a much slower time scale than that of the
diffusion and agglomeration of Aβ polymers. This implies that the actual time
scale where the macroscopic effects of the progression of AD are observable is much
longer than the τ -scale at which the particle dynamics discussed in Sections 4.1, 4.2
take place. For this reason, as anticipated in Section 3 and inspired by the quasi-
invariant interaction limits introduced in [32, 39], we now define the new time
variable

(23) t := ετ, 0 < ε� 1,

where ε is a dimensionless parameter. Under this scaling, the typical time of a single
particle transition (22), which is O(1) in the τ -scale, becomes much shorter in the
t-scale, precisely O(ε). Simultaneously, we scale by ε also the interactions (22),
considering that the effect of a single transition is attenuated in the longer t-scale.
In particular, we set

a∗ = a+ εG(x, a, b)

a∗∗ = a+ εS(x, a, u(x, τ)).

(24)

As far as the stochastic jumps are concerned, we assume instead that the strength
of a single jump is independent of the time scale, hence we still have a∗∗∗ = a + j
also in the t-scale, but the frequency η of the jumps scales as εη, i.e. single jumps
are rarer, thus less probable, in the longer time scale.

In order to get from (21) an evolution equation in the t-scale, which avoids the
detailed computation of the particle transitions in the unobservable τ -scale, we
introduce the scaled distribution function

f(x, a, t) := g(x, a, t/ε),

which satisfies the relations
∫ 1

0

∫
Ω
f(x, a, t) dx da = 1 and ∂tf = 1

ε∂τg, and, by (21),
the equation

d

dt

∫ 1

0

∫
Ω

ϕ(x, a)f(x, a, t) dx da

=
ν

ε

∫ 1

0

∫ 1

0

∫
Ω

∫
Ω

(ϕ(x, a∗)− ϕ(x, a))h(x, y)f(x, a, t)f(y, b, t) dx dy da db

+
µ

ε

∫ 1

0

∫
Ω

(ϕ(x, a∗∗)− ϕ(x, a))f(x, a, t) dx da

+ η

∫ 1

0

∫
Ω

∫ 1−a

0

(ϕ(x, a∗∗∗)− ϕ(x, a))P (t, j|x, a)f(x, a, t) dj dx da,

(25)

where we have defined P (t, j|x, a) := p(t/ε, j|x, a).
Taking ϕ ∈ C∞(Ω× [0, 1]), with ϕ(·, 0) = ϕ(·, 1) = 0, we expand

ϕ(x, a∗)− ϕ(x, a) = ε∂aϕ(x, a)G(x, a, b) +
ε2

2
∂2
aϕ(x, ã)G2(x, a, b),

ϕ(x, a∗∗)− ϕ(x, a) = ε∂aϕ(x, a)S(x, a, u(x, τ)) +
ε2

2
∂2
aϕ(x, ā)S2(x, a, u(x, τ))
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with ã, ā ∈ (0, 1), then we plug into (21) to get

d

dt

∫ 1

0

∫
Ω

ϕ(x, a)f(x, a, t) dx da

= ν

∫ 1

0

∫ 1

0

∫
Ω

∫
Ω

∂aϕ(x, a)G(x, a, b)h(x, y)f(x, a, t)f(y, b, t) dx dy da db

+ µ

∫ 1

0

∫
Ω

∂aϕ(x, a)S(x, a, u(x, τ))f(x, a, t) dx da

+ η

∫ 1

0

∫
Ω

∫ 1−a

0

(ϕ(x, a∗∗∗)− ϕ(x, a))P (t, j|x, a)f(x, a, t) dj dx da

+R(ε),

where the remainder R is

R(ε) :=
νε

2

∫ 1

0

∫ 1

0

∫
Ω

∫
Ω

∂2
aϕ(x, ã)G2(x, a, b)h(x, y)f(x, a, t)f(y, b, t) dx dy da db

+
µε

2

∫ 1

0

∫
Ω

∂2
aϕ(x, ā)S2(x, a, u(x, τ))f(x, a, t) dx da.

Using that 0 ≤ h(x, y) ≤ 1 and
∫ 1

0

∫
Ω
f(x, a, t) dx da = 1, we see that

|R(ε)| ≤ ε

2

∥∥∂2
aϕ
∥∥
∞

(
ν ‖G‖2∞ + µ ‖S‖2∞

)
.

Therefore, if G and S are bounded, R(ε)→ 0 as ε→ 0+, and we obtain the equation

d

dt

∫ 1

0

∫
Ω

ϕ(x, a)f(x, a, t) dx da

=

∫ 1

0

∫
Ω

∂aϕ(x, a)v[f, u](x, a)f(x, a, t) dx da

+ η

∫ 1

0

∫
Ω

∫ 1−a

0

(ϕ(x, a∗∗∗)− ϕ(x, a))P (t, j|x, a)f(x, a, t) dj dx da

(26)

for

(27) v[f, u](x, a) := ν

∫ 1

0

∫
Ω

G(x, a, b)h(x, y)f(y, b, t) dy db+ µS(x, a, u(x, τ)).

Let us further inspect the last term at the right-hand side of (26). Substituting
j with a∗∗∗ according to (22) yields:∫ 1

0

∫
Ω

∫ 1−a

0

ϕ(x, a∗∗∗)P (t, j|x, a)f(x, a, t) dj dx da

=

∫ 1

0

∫
Ω

∫ 1

a

ϕ(x, a∗∗∗)P (t, a∗∗∗ − a|x, a)f(x, a, t) da∗∗∗ dx da

whence, switching the integrals in a∗∗∗ and a,

=

∫ 1

0

∫
Ω

ϕ(x, a∗∗∗)

(∫ a∗∗∗

0

P (t, a∗∗∗ − a|x, a)f(x, a, t) da

)
dx da∗∗∗.
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On the whole (26) rewrites as

d

dt

∫ 1

0

∫
Ω

ϕ(x, a)f(x, a, t) dx da

=

∫ 1

0

∫
Ω

∂aϕ(x, a)v[f, u](x, a)f(x, a, t) dx da

+ η

∫ 1

0

∫
Ω

ϕ(x, a)

(∫ a

0

P (t, a− a∗|x, a∗)f(x, a∗, t) da∗ − f(x, a, t)

)
dx da,

which can be finally recognised as a weak form of

∂tf + ∂a(fv[f, u]) = J [f ].

This equation is a balance law with non-local transport velocity given by (27).
The term J [f ] at the right-hand side is the jump operator

J [f ](t, x, a) := η

(∫ a

0

P (t, a− a∗|x, a∗)f(x, a∗, t) da∗ − f(x, a, t)

)
,

which, owing to (20), is such that
∫ 1

0

∫
Ω
J [f ](t, x, a) dx da = 0. Denoting the

probability law of the jumps as P (t, a∗ → a|x) we see that it is the term modelled
in (10), with the dependence on the spatial distribution of the jumps hidden in the
dependence of P on x.

Remark 4.2. If we assume that the neural network is composed by an extremely
large number of neurons, which are connected mainly with other close neurons, we
can take the probability h as h(x, y) = χB1/N (x)(y), where N is the total number of

neurons and B1/N (x) ⊂ Ω ⊂ Rn is the ball centred in the point x with radius 1/N .

If we suppose also ν ∝ Nd (i.e. the more the neurons the more frequent the prionic
transmission of the disease among them) then in the limit N →∞ we obtain that
νh(x, y)→ δ0(y − x) and

v[f, u](x, a) =

∫ 1

0

G(x, a, b)f(x, b, t) db+ µS(x, a, u(x, τ)),

which is indeed the form of v postulated in (7).
Notice that, in general, v depends on contributions from multiple time scales, in

fact the prionic transmission of the disease (first term at the right-hand side of the
formula above) takes place in the slower t-scale while the poisoning of the neurons
by Aβ polymers (second term at the right-hand side of the formula above) takes
place in the faster τ -scale.

5. Discussion

There are two main features of our macroscopic model that deserve to be high-
lighted: first of all, as we showed above, it derives mathematically from a micro-
scopic model we carefully developed relying on an accurately selected set of phe-
nomena described in biomedical literature. This has been possible also thanks to
the interdisciplinary character of our team, including mathematicians and medical
doctors. Secondly, the model is characterised by a high level of flexibility, which
potentially allows one to simulate different working hypotheses and compare them
with clinical data. In fact, the model provides a flexible tool to test alternative con-
jectures on the evolution of the disease. Up to now we have chosen some specific
aspects of the illness, such as aggregation, diffusion and removal of Aβ, possible
spread of neuronal damage in the neural pathway, and, to describe the onset of
AD, a random neural deterioration mechanism. Some mathematical results have
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been obtained, and numerical simulations have been compared with clinical data.
Although we have restricted ourselves to a 2-dimensional rectangular section of the
brain, the results are in good qualitative agreement with the spread of the illness
in the brain at various stages of its evolution. In particular, the model captures the
cerebral damage in the early stage of MCI.

There are several research issues that we would like to address in the future.
As mentioned in the Introduction, the main shortage of the present model is the
complete omission of the action of the τ protein and the microglia (in this context
we mention a mathematical model proposed in [18]). The mechanisms related to
the presence of the two substances should eventually be considered in a subsequent
evolution of this model, both to obtain optimal quantitative agreement with clinical
data and also to investigate the possible formation of patterns in the distribution
of the level of malfunctioning of the brain.

From a numerical point of view, simulations should become more realistic, in
a 3-dimensional domain which matches the geometric characteristics of the brain.
Moreover, a certain sensitivity of the numerical output to the value of the constant γ
in (15), which models the removal of Aβ through the choroid plexus, spontaneously
leads to the question whether dialysis-mechanisms can be introduced to enhance
Aβ-removal artificially. Most probably, a serious answer to this question requires,
in addition to a detailed comparison with clinical data, a more refined modelling of
the clearance of soluble Aβ by the cerebral fluid.

In [1] and [2] the reader can find an exhaustive discussion of the literature on
mathematical models for AD. Besides that, in the recent paper [17] a large system
of reaction-diffusion equations is proposed as a macroscopic model which takes into
account many of the processes which possibly play a role in the development of
AD. In addition the paper contains some simulations of medical treatments. The
authors do not consider the onset of AD, and model the action of the β-amyloid in
a way which is quite different from our approach. In a forthcoming paper we shall
compare both approaches.
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