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Alzheimer Disease (AD)

Alzheimer disease is characterized pathologically by the formation of senile plaques

composed of β-amyloid peptide (Aβ). Aβ is naturally present in the brain and

cerebrospinal fluid of humans throughout life. By unknown reasons (partially genetic),

some neurons start to present an imbalance between production and clearance of Aβ

amyloid during aging. Therefore, neuronal injury is the result of ordered Aβ
self-association.
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The Smoluchowski Equation

For k ∈ N, let Pk denote a polymer of size k, that is a set of k identical particles

(monomers). As time advances, the polymers evolve and, if they approach each other

sufficiently close, there is some chance that they merge into a single polymer whose

size equals the sum of the sizes of the two polymers which take part in this reaction.

By convention, we admit only binary reactions. This phenomenon is called

coalescence and we write formally

Pk + Pj −→ Pk+j ,

for the coalescence of a polymer of size k with a polymer of size j.

We restrict ourselves to the following physical situation: the approach of two clusters

leading to aggregation is assumed to result only from Brownian movement or diffusion

(thermal coagulation).
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Under these assumptions, the discrete diffusive coagulation equations read

∂ui
∂t

(t, x)− di△xui(t, x) = Qi(u) in [0, T ]× Ω, (1)

with appropriate initial and boundary conditions.

The variable ui(t, x) ≥ 0 (for i ≥ 1) represents the concentration of i-clusters, that

is, clusters consisting of i identical elementary particles, and

Qi(u) = Qg,i(u)−Ql,i(u) i ≥ 1 (2)

with the gain (Qg,i) and loss (Ql,i) terms given by

Qg,i =
1

2

i−1∑

j=1

ai−j,j ui−j uj (3)

Ql,i = ui

∞∑

j=1

ai,j uj (4)

where u = (ui)i≥1.
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A Mathematical Model for the Aggregation and Diffusion

of β-Amyloid Peptide

We define a periodically perforated domain obtained by removing from the fixed

domain Ω (the cerebral tissue) infinitely many small holes of size ǫ (the neurons),

which support a non-homogeneous Neumann boundary condition describing the

production of Aβ by the neuron membranes.

• Let Ω be a bounded open set in R
3 with a smooth boundary ∂Ω.

• Let Y be the unit periodicity cell [0, 1[3 having the paving property.

• Let us denote by T an open subset of Y with a smooth boundary Γ, such that

T ⊂ IntY .

• Set Y ∗ = Y \ T which is called in the literature the solid or material part.

• We define τ(ǫT ) to be the set of all translated images of ǫT of the form ǫ(k + T ),
k ∈ Z

3.

5



Then, Tǫ := Ω ∩ τ(ǫT ).

Introduce now the periodically perforated domain Ωǫ defined by

Ωǫ = Ω \ T ǫ.

We make the following standard assumption on the holes: there exists a ‘security’

zone around ∂Ω without holes, i.e.,

∃ δ > 0 such that dist (∂Ω, Tǫ) ≥ δ. (5)

Therefore, Ωǫ is a connected set.

The boundary ∂Ωǫ of Ωǫ is then composed of two parts:

• the union of the boundaries of the holes strictly contained in Ω:

Γǫ := ∪

{
∂(ǫ(k + T )) | ǫ(k + T ) ⊂ Ω

}
; limǫ→0 ǫ | Γǫ|N−1 =| Γ|N−1

| Ω |N
| Y |N

• the fixed exterior boundary denoted by ∂Ω.
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We introduce the vector-valued function uǫ : [0, T ]× Ωǫ → R
M ,

uǫ = (uǫ
1, . . . , u

ǫ
M) where the variable uǫ

m ≥ 0 (1 ≤ m < M ) represents the

concentration of m-clusters, that is, clusters consisting of m identical elementary

particles (monomers), while uǫ
M ≥ 0 takes into account aggregations of more than

M − 1 monomers.

We assume that the only reaction allowing clusters to coalesce to form larger clusters

is a binary coagulation mechanism, while the movement of clusters leading to

aggregation results only from a diffusion process described by constant coefficients

dm > 0, (m = 1, . . . ,M ).

Under these assumptions, the mathematical model based on the discrete

Smoluchowski equation, describing the aggregation and diffusion of β-amyloid peptide

(Aβ) in the brain affected by Alzheimer’s disease (AD), can be written as a family of

equations in Ωǫ:
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



∂uǫ1
∂t

− div(d1 ∇xu
ǫ
1) + uǫ1

∑M
j=1 a1,ju

ǫ
j = 0 in [0, T ]× Ωǫ

∂uǫ1
∂ν

≡ ∇xu
ǫ
1 · n = 0 on [0, T ]× ∂Ω

∂uǫ1
∂ν

≡ ∇xu
ǫ
1 · n = ǫ ψ(t, x, xǫ ) on [0, T ]× Γǫ

uǫ1(0, x) = U1 in Ωǫ

(6)

where ψ is a given bounded function satisfying the following conditions:

(i) ψ(t, x, xǫ ) ∈ C1(0, T ;B) with B = C1[Ω;C1
#(Y )], where C1

#(Y ) is the subset of C1(RN ) of

Y -periodic functions;

(ii) ψ(t = 0, x, xǫ ) = 0

and U1 is a positive constant such that

U1 ≤ ‖ψ‖L∞(0,T ;B). (7)
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In addition, if 1 < m < M ,





∂uǫm
∂t

− div(dm∇xu
ǫ
m) + uǫm

∑M
j=1 am,ju

ǫ
j = f ǫ in [0, T ]× Ωǫ

∂uǫm
∂ν

≡ ∇xu
ǫ
m · n = 0 on [0, T ]× ∂Ω

∂uǫm
∂ν

≡ ∇xu
ǫ
m · n = 0 on [0, T ]× Γǫ

uǫm(0, x) = 0 in Ωǫ

(8)

where the gain term f ǫ is given by

f ǫ =
1

2

m−1∑

j=1

aj,m−j u
ǫ
j u

ǫ
m−j (9)
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and





∂uǫM
∂t

− div(dM ∇xu
ǫ
M ) = gǫ in [0, T ]× Ωǫ

∂uǫM
∂ν

≡ ∇xu
ǫ
M · n = 0 on [0, T ]× ∂Ω

∂uǫM
∂ν

≡ ∇xu
ǫ
M · n = 0 on [0, T ]× Γǫ

uǫM (0, x) = 0 in Ωǫ

(10)

where the gain term gǫ is given by

gǫ =
1

2

∑

j+k≥M
k<M
j<M

aj,k u
ǫ
j u

ǫ
k. (11)
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Theorem 1. If ǫ > 0, the system (6) - (11) has a unique solution

(uǫ1, . . . , u
ǫ
M ) ∈ C1+α/2,2+α([0, T ]× Ωǫ) (α ∈ (0, 1))

such that

uǫj(t, x) > 0 for (t, x) ∈ (0, T )× Ωǫ, j = 1, . . . ,M .

Our aim is to study the homogenization of the set of Eqs. (6)-(11) as ǫ→ 0, i.e., to

study the behavior of uǫj(1 ≤ j ≤M) as ǫ→ 0 and obtain the equations satisfied by the

limit.

There is no clear notion of convergence for the sequence uǫj(1 ≤ j ≤M) which is

defined on a varying set Ωǫ.

This difficulty is specific to the case of perforated domains. A natural way to get rid of

this difficulty is given by Nguetseng-Allaire two-scale convergence (Allaire 1992;

Nguetseng 1989).
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Homogenization Theory

Passing from a microscopic model to a macroscopic one has always been a common

issue in mathematical modeling. As a matter of fact, while being closer to the actual

physical nature, a mathematical model for a physical system that resolves smaller

scales is usually more complicated and sometimes even virtually impossible to solve.

Moreover, experimental data are often available for macroscale quantities only, but not

for the microscale.

Therefore, for quite a long time, the key issue has been how to formulate laws on a

scale that is larger than the microscale and to justify these laws on the basis of a

microscopic approach.

In practice, one wants to start from differential equations that are assumed to hold on

the microscale and to transform them into equations on the macroscale, by performing

a sort of ’averaging process’. To do that, in the seventies, mathematicians have

developed a new method called homogenization.
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From a mathematical point of view, we have a family of partial differential operators Lǫ

and a family of solutions uǫ which, for given varying set Ωǫ and a source term f , satisfy

Lǫ u
ǫ = f in Ωǫ, (12)

complemented by appropriate boundary conditions.

Assuming that the sequence uǫ converges, in some sense, to a limit u, we look for a

so-called homogenized operator L such that u is a solution of

Lu = f in Ω. (13)

Passing from (12) to (13) is the homogenization process.

The wording is self-explaining: the limit model has no microstructure any more since it

was eliminated by letting its ’size’ ǫ tend to zero.
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Two-Scale Convergence Method

Definition 1. A sequence of functions vǫ in L2([0, T ]× Ω) two-scale converges to

v0 ∈ L2([0, T ]× Ω× Y ) if

lim
ǫ→0

∫ T

0

∫

Ω

vǫ(t, x)φ

(
t, x,

x

ǫ

)
dt dx =

∫ T

0

∫

Ω

∫

Y

v0(t, x, y)φ(t, x, y) dt dx dy (14)

for all φ ∈ C1([0, T ]× Ω;C∞
# (Y )).

The notion of ‘two-scale convergence’ makes sense because of the next compactness

theorem.

Theorem 2. If vǫ is a bounded sequence in L2([0, T ]× Ω), then there exists a function

v0(t, x, y) in L2([0, T ]×Ω× Y ) such that, up to a subsequence, vǫ two-scale converges

to v0.
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The following theorem is useful in obtaining the limit of the product of two two-scale

convergent sequences.

Theorem 3. Let vǫ be a sequence of functions in L2([0, T ]× Ω) which two-scale

converges to a limit v0 ∈ L2([0, T ]× Ω× Y ). Suppose furthermore that

lim
ǫ→0

∫ T

0

∫

Ω

|vǫ(t, x)|2 dt dx =

∫ T

0

∫

Ω

∫

Y

|v0(t, x, y)|
2 dt dx dy (15)

Then, for any sequence wǫ in L2([0, T ]× Ω) that two-scale converges to a limit

w0 ∈ L2([0, T ]× Ω× Y ), we have

lim
ǫ→0

∫ T

0

∫

Ω

vǫ(t, x)wǫ(t, x)φ

(
t, x,

x

ǫ

)
dt dx

=

∫ T

0

∫

Ω

∫

Y

v0(t, x, y)w0(t, x, y)φ(t, x, y) dt dx dy

(16)

for all φ ∈ C1([0, T ]× Ω;C∞
# (Y )).
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The next theorem yields a characterization of the two-scale limit of the gradients of

bounded sequences vǫ.

We identify H1(Ω) =W 1,2(Ω), where the Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) =

{
v|v ∈ Lp(Ω),

∂v

∂xi
∈ Lp(Ω), i = 1, . . . , N

}

and we denote by H1
#(Y ) the closure of C∞

# (Y ) for the H1-norm.

Theorem 4. Let vǫ be a bounded sequence in L2(0, T ;H1(Ω)) that converges weakly to

a limit v(t, x) in L2(0, T ;H1(Ω)).

Then, vǫ two-scale converges to v(t, x), and there exists a function v1(t, x, y) in

L2([0, T ]× Ω;H1
#(Y )/R) such that, up to a subsequence, ∇vǫ two-scale converges to

∇xv(t, x) +∇yv1(t, x, y).
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The main result of two-scale convergence can be generalized to the case of

sequences defined in L2([0, T ]× Γǫ).

Theorem 5. Let vǫ be a sequence in L2([0, T ]× Γǫ) such that

ǫ

∫ T

0

∫

Γǫ

|vǫ(t, x)|2 dt dσǫ(x) ≤ C (17)

where C is a positive constant, independent of ǫ. There exist a subsequence (still

denoted by ǫ) and a two-scale limit v0(t, x, y) ∈ L2([0, T ]× Ω;L2(Γ)) such that vǫ(t, x)

two-scale converges to v0(t, x, y) in the sense that

lim
ǫ→0

ǫ

∫ T

0

∫

Γǫ

vǫ(t, x)φ

(
t, x,

x

ǫ

)
dt dσǫ(x) =

∫ T

0

∫

Ω

∫

Γ

v0(t, x, y)φ(t, x, y) dt dx dσ(y)

(18)

for any function φ ∈ C1([0, T ]× Ω;C∞
# (Y )).
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Preliminary a Priori Estimates

Since the homogenization will be carried out in the framework of two-scale

convergence, we first need to obtain the a priori estimates for the sequences uǫj , ∇uǫj ,

∂tu
ǫ
j in [0, T ]× Ωǫ, that are independent of ǫ.

Lemma 1. Let T > 0 be arbitrary and uǫ1 be a classical solution of (6). Then,

‖uǫ1‖L∞(0,T ;L∞(Ωǫ))
≤ |U1|+ ‖uǫ1‖L∞(0,T ;L∞(Γǫ)). (19)

The boundedness of uǫ1(t, x) in L∞([0, T ]× Γǫ), uniformly in ǫ, can be immediately

deduced from Lemma 2 below.

Lemma 2. Let T > 0 be arbitrary and uǫ1 be a classical solution of (6). Then,

‖uǫ1‖L∞(0,T ;L∞(Γǫ))
≤ c ‖ψ‖L∞(0,T ;B) (20)

where c is independent of ǫ.

18



Lemma 3. Let uǫm(t, x) (1 < m < M ) be a classical solution of (8). Then

‖uǫm‖L∞(0,T ;L∞(Ωǫ)) ≤ Km (21)

uniformly with respect to ǫ, where

Km = 1 +

[m−1∑

j=1

aj,m−jKjKm−j

]

am,m
(22)

Lemma 4. Let uǫM (t, x) be a classical solution of (10). Then

‖uǫM‖L∞(0,T ;L∞(Ωǫ)) ≤ KM (23)

uniformly with respect to ǫ, where

KM = eT
∑

j+k≥M
k<M
j<M

aj,kKj Kk (24)

with the constants Kj (1 < j < M ) given by (22).
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Lemma 5. The sequences ∇xu
ǫ
m and ∂tu

ǫ
m (1 ≤ m ≤M ) are bounded in

L2([0, T ]× Ωǫ), uniformly in ǫ.

The proofs of the previous Lemmas rely on a generalization to perforated domains of

the main inequalities valid in Ω, through the following extension Lemma:

Lemma 6. Suppose that the domain Ωǫ is such that assumption (5) is satisfied. Then, there exists a

family of linear continuous extension operators

Pǫ :W
1,p(Ωǫ) →W 1,p(Ω)

and a constant C > 0 independent of ǫ such that: Pǫv = v in Ωǫ, and

∫

Ω

|Pǫv|
pdx ≤ C

∫

Ωǫ

|v|pdx,

∫

Ω

|∇(Pǫv)|
pdx ≤ C

∫

Ωǫ

|∇v|pdx (25)

for each v ∈W 1,p(Ωǫ) and for any p ∈ (1,+∞).
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Homogenization: Main Results

Theorem 6. Let uǫm(t, x) (1 ≤ m ≤M ) be a family of classical solutions to problems

(6)-(10). The sequences ũǫm and ∇̃xuǫm (1 ≤ m ≤M ) two-scale converge to:

[χ(y)um(t, x)] and

[χ(y)(∇xum(t, x) +∇yu
1
m(t, x, y))] (1 ≤ m ≤M ), respectively, where tilde denotes the

extension by zero outside Ωǫ and χ(y) represents the characteristic function of Y ∗.

The limiting functions (um(t, x), u1m(t, x, y)) (1 ≤ m ≤M ) are the unique solutions in

L2(0, T ;H1(Ω))× L2([0, T ]× Ω;H1
#(Y )/R)

of the following two-scale homogenized systems.
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If m = 1 we have:





θ ∂u1
∂t

(t, x)− divx

[
d1A∇xu1(t, x)

]
+ θ u1(t, x)

∑M
j=1 a1,j uj(t, x)

= d1

∫

Γ

ψ(t, x, y) dσ(y) in [0, T ]× Ω

[A∇xu1(t, x)] · n = 0 on [0, T ]× ∂Ω

u1(0, x) = U1 in Ω

(26)

if 1 < m < M we have:





θ ∂um
∂t

(t, x)− divx

[
dmA∇xum(t, x)

]
+ θ um(t, x)

∑M
j=1 am,j uj(t, x)

= θ
2
∑m−1

j=1 aj,m−juj(t, x)um−j(t, x) in [0, T ]× Ω

[A∇xum(t, x)] · n = 0 on [0, T ]× ∂Ω

um(0, x) = 0 in Ω

(27)
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if m =M we have:





θ ∂uM
∂t

(t, x)− divx

[
dM A∇xuM (t, x)

]

= θ
2
∑

j+k≥M
k<M
j<M

aj,k uj(t, x)uk(t, x) in [0, T ]× Ω

[A∇xuM (t, x)] · n = 0 on [0, T ]× ∂Ω

uM (0, x) = 0 in Ω

(28)

where

u1m(t, x, y) =
N∑

i=1

wi(y)
∂um
∂xi

(t, x) (1 ≤ m ≤M),

and

θ =

∫

Y

χ(y)dy = |Y ∗|

is the volume fraction of material.
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A is a matrix with constant coefficients defined by

Aij =

∫

Y ∗

(∇ywi + êi) · (∇ywj + êj) dy

with êi being the i-th unit vector in R
N , and (wi)1≤i≤N the family of solutions of the cell

problem





−divy[∇ywi + êi] = 0 in Y ∗

(∇ywi + êi) · n = 0 on Γ

y → wi(y) Y − periodic

(29)

When ǫ → 0, the solution of the micromodel two-scale converges to the solution of a

macromodel, where the information given on the microscale by the non-homogeneous

Neumann boundary condition is transferred into a global source term in the limiting

(homogenized) evolution equation for the concentration of monomers.

Moreover, at the macroscale, the geometric structure of the perforated domain induces

a correction in the scalar diffusion coefficients that are indeed replaced by a tensorial

quantity with constant coefficients.
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Proof

The sequences ũǫ
m and ∇̃xuǫ

m (1 ≤ m ≤ M ) are bounded in L2([0, T ]× Ω).

Therefore, they two-scale converge, up to a subsequence, to: [χ(y) um(t, x)] and

[χ(y)(∇xum(t, x) +∇yu
1
m(t, x, y))] (1 ≤ m ≤ M ).

Similarly, the sequence

(
∂̃uǫ

m

∂t

)
(1 ≤ m ≤ M ) two-scale converges to:

[
χ(y) ∂um

∂t
(t, x)

]
(1 ≤ m ≤ M ).

Case m = 1 :

Let us multiply the first equation of (6) by the test function

φǫ ≡ φ(t, x) + ǫ φ1

(
t, x,

x

ǫ

)

where φ ∈ C1([0, T ]× Ω) and φ1 ∈ C1([0, T ]× Ω;C∞
# (Y )).
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Integrating, the divergence theorem yields

∫ T

0

∫

Ωǫ

∂uǫ1
∂t

φǫ(t, x,
x

ǫ
) dt dx+ d1

∫ T

0

∫

Ωǫ

∇xu
ǫ
1 · ∇φǫ dt dx

+

∫ T

0

∫

Ωǫ

uǫ1

M∑

j=1

a1,j u
ǫ
j φǫ dt dx = ǫ d1

∫ T

0

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
φǫ dt dσǫ(x)

(30)

Passing to the two-scale limit, we get

∫ T

0

∫

Ω

∫

Y ∗

∂u1
∂t

(t, x)φ(t, x) dt dx dy

+ d1

∫ T

0

∫

Ω

∫

Y ∗

[∇xu1(t, x) +∇yu
1
1(t, x, y)] · [∇xφ(t, x) +∇yφ1(t, x, y)] dt dx dy

+

∫ T

0

∫

Ω

∫

Y ∗

u1(t, x)
M∑

j=1

a1,j uj(t, x)φ(t, x) dt dx dy

= d1

∫ T

0

∫

Ω

∫

Γ

ψ(t, x, y)φ(t, x) dt dx dσ(y).

(31)
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An integration by parts shows that (31) is a variational formulation associated with the

following homogenized system:

−divy[d1(∇xu1(t, x) +∇yu
1
1(t, x, y))] = 0 in [0, T ]× Ω× Y ∗

(32)

[∇xu1(t, x) +∇yu
1
1(t, x, y)] · n = 0 on [0, T ]× Ω× Γ (33)

θ
∂u1
∂t

(t, x)− divx

[
d1

∫

Y ∗

(∇xu1(t, x) +∇yu
1
1(t, x, y))dy

]

+ θ u1(t, x)

M∑

j=1

a1,j uj(t, x)− d1

∫

Γ

ψ(t, x, y) dσ(y) = 0 in [0, T ]× Ω

(34)

[ ∫

Y ∗

(∇xu1(t, x) +∇yu
1
1(t, x, y)) dy

]
· n = 0 on [0, T ]× ∂Ω (35)

where θ =
∫
Y
χ(y)dy = |Y ∗| is the volume fraction of material and by continuity:

u1(0, x) = U1 in Ω.
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Taking advantage of the constancy of the diffusion coefficient d1, Eqs. (32) and (33)

can be reexpressed as follows

△yu
1
1(t, x, y) = 0 in [0, T ]× Ω× Y ∗

(36)

∇yu
1
1(t, x, y) · n = −∇xu1(t, x) · n on [0, T ]× Ω× Γ (37)

Then, u11(t, x, y) satisfying (36)-(37) can be written as

u11(t, x, y) =
N∑

i=1

wi(y)
∂u1
∂xi

(t, x) (38)

where (wi)1≤i≤N is the family of solutions of the cell problem





−divy[∇ywi + êi] = 0 in Y ∗

(∇ywi + êi) · n = 0 on Γ

y → wi(y) Y − periodic

(39)

28



By using the relation (38) in Eqs. (34) and (35), we get

θ
∂u1
∂t

(t, x)− divx

[
d1A∇xu1(t, x)

]
+ θ u1(t, x)

M∑

j=1

a1,j uj(t, x)

− d1

∫

Γ

ψ(t, x, y) dσ(y) = 0 in [0, T ]× Ω

(40)

[A∇xu1(t, x)] · n = 0 on [0, T ]× ∂Ω (41)

where A is a matrix with constant coefficients defined by

Aij =

∫

Y ∗

(∇ywi + êi) · (∇ywj + êj) dy.

The proof for the case 1 < m ≤M is achieved by applying exactly the same

arguments considered when m = 1.
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Appendix: Some properties of Lp spaces

Definition 2. Let p ∈ R with 1 ≤ p < +∞. Define

Lp(O) =

{
f | f : O 7→ R, f measurable and such that

∫

O

|f(x)|p dx < +∞

}

L∞(O) =

{
f | f : O 7→ R, f measurable and such that there existsC ∈ R

with |f | ≤ C, a.e. onO

}
.

Proposition 1. Let p ∈ R with 1 ≤ p ≤ +∞. The set Lp(O) is a Banach space for the

norm

‖f‖Lp(O) =





[
∫
O
|f(x)|pdx]1/p if p < +∞

inf {C, |f | ≤ C a.e. onO} if p = +∞.

30



Definition 3. Let Y be the interval in R
N defined by

Y =]0, l1[× . . .×]0, lN [

(where l1, . . . , lN are given positive numbers ) and f a function defined a.e. on R
N . The

function f is called Y -periodic iff

f(x+ kliei) = f(x) a.e. onR
N , ∀k ∈ Z, ∀i ∈ {1, . . . , N},

where {e1, . . . , eN} is the canonical basis of RN .

Definition 4. We denote by

• C#(Y ), the subspace of C(RN ) of Y -periodic functions;

• C∞
# (Y ), the subspace of C∞(Ȳ ) of Y -periodic functions;

• Lp
#(Y ), the subspace of Lp(Y ) of Y -periodic functions in the sense of Definition 3.

31



References

[1] G. Allaire, Homogenization and two-scale convergence. Siam J. Math. Anal., 23(6): 1482-1518,

1992.

[2] G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and

applications. In: Proceedings of the International Conference on Mathematical Modelling of Flow

through Porous Media. A. Bourgeat et al. eds., pp. 15-25, World Scientific pub., Singapore, 1996.

[3] D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer-Verlag,

New York, 1999.

[4] A. Damlamian and P. Donato, Which sequences of holes are admissible for periodic

homogenization with Neumann boundary condition?. ESAIM: COCV, 8: 555-585, 2002.

[5] B. Franchi and S. Lorenzani, From a microscopic to a macroscopic model for Alzheimer disease:

Two-scale homogenization of the Smoluchowski equation in perforated domains. J. Nonlinear Sci.,

26: 717-753, 2016.

[6] G. Nguetseng, A general convergence result for a functional related to the theory of

homogenization. Siam J. Math. Anal., 20: 608-623, 1989.

[7] F. Rothe, Global solutions of reaction-diffusion systems. Volume 1072 of Lecture Notes in

Mathematics. Springer-Verlag, Berlin, 1984.

32


