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Abstract. The knot probability of semiflexible polygons on the cubic lattice is investigated.
The degree of stiffness of the polygon is mimicked by introducing a bending fugacity conjugate
to the curvature of the polygon. By generalizing Kesten’s pattern theorem to semiflexible walks,
we show that for any finite value of the bending fugacity all except exponentially few sufficiently
long polygons are knotted.

1. Introduction

The presence of knots in closed polymer chains is considered of interest in polymer physics,
chemistry, molecular biology and knot theory, and knotting can have an important influence
on a number of polymer properties. For instance, the effects of knots on the rheology
of polymer networks were investigated by Edwards (1967, 1968), and de Gennes (1984)
considered tight knots in polymers and the influence they can have on long-time memory
effects in melts of crystallizable linear polymers. In addition, the presence of knots in
closed circular DNA can give information about the mechanism of the action of enzymes
acting on the DNA molecules (Wasserman and Cozzarelli 1986). In this context knots have
been detected in circular DNA, their knot type identified by electron microscopy (Dean
and Cozzarelli 1985) and the knot probability measured experimentally as a function of the
degree of polymerization and the ionic strength (Shaw and Wang 1993).

A flexible ring polymer (such as closed circular DNA) can be modelled as-step
self-avoiding polygon on a regular lattice, and the presence of knots in polygons (and in
related models such as piecewise-linear closed curvés)imas been studied using Monte
Carlo methods by a number of workers (Vologodskial 1974, Michels and Wiegel 1986,
Janse van Rensburg and Whittington 1990, Koniaris and Muthukumar 1991, Deguchi and
Tsurusaki 1993, 1994). Little is known rigorously, but it has been shown that sufficiently
long polygons are knotted with probability one (Sumners and Whittington 1998, Pippenger
1989). These rigorous results have been successively extended to the more general case
of graphs embedded i#Z® (Soteroset al 1992) and to the problem of the entanglement
complexity of self-avoiding walks (Janse van Rensbetrgl 1992).

On the other hand, a large number of real polymer chains do not obey the simple statistics
of flexible chains. These chains, called semiflexible or stiff, are in general characterized
by having the correlation between the direction of the bonds not entirely vanishing. An
important example of a stiff polymer is the DNA molecule in solution. Indeed due to
the tight constraint of successive pairs of nuclei acids (‘base pairs’, or bp) by chemical
and hydrogen bonds, the DNA has a thermal bending persistence length of about 150 bp
(50 nm) (Darnellet al 1990, Hagerman 1988).
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A model of a semiflexible polymer chain was first introduced by Flory (1956) by
assigning an energy loss for each consecutive pairs of parallel bonds in the chain. With this
model Flory (1956) predicted a phase transition from an isotropic phase to an ordered state.
Since then, variants of this model have been used in studying many other properties of
polymer chains, such as crystallization (Flory 1982), glass transition (Gibbs and Di Marzio
1958), polymer melting (Basclet al 1992) and protein folding (Doniacét al 1996).

In this paper we will focus on the topological properties of semiflexible polymers. In
particular, we discuss the occurrence of knots in semiflexible ring polymers modelled by
polygons in the cubic lattice weighted according to their curvature by a bending fugacity
B. In particular, we will prove that for any finite value of the bending fugacity, sufficiently
long polygons are knotted with probability one. The paper is arranged as follows. In
section 2, after recalling some previous results on knotting probability, we introduce the
notion of semiflexible self-avoiding walks by defining the curvature of a walk3irand its
associated bending fugacity. A similar definition for semiflexible polygons is considered.
The main result of the section is the proof that the limiting free energies of semiflexible
walks and polygons exist and are equal, for any finite value of the bending fugaclty
section 3 we generalize Kesten’s pattern theorem to semiflexible walks and in section 4
we use this result to prove that the knot probability of semiflexible polygons goes to unity
exponentially rapidly as the number of edges in the polygon goes to infinity, for any finite
value of the bending fugacitg. Finally, in section 5 we summarize our results and we
give some suggestions for future work.

2. Definitions and rigorous results on free energies

Let Z3 be the simple cubic lattice whose vertices are the integer poinf®jrand with
edges between vertices which are unit distance apartn-&tep self-avoiding walks an
ordered sequence af+ 1 vertices such that the first vertex is the origin, neighbouring pairs
of vertices in the sequence are unit distance apart and all vertices are distinct. We often use
walk to mean self-avoiding walk. A walk and any translate of the walk form an equivalence
class and we also use walk as a short-hanedprivalence class of self-avoiding walkben
this is not likely to cause confusion.

An n-step self-avoiding circuit{-SAC) is an(n — 1)-step self-avoiding walk whose first
and last vertices are unit distance apart, with the additional edge between these two vertices.
Any cyclic permutation of am-SAC is also am-SAC, and so is the reverse permutation
and all cyclic permutations of the reverse permutation. The resulting set afSACs
which originate from a given-SAC can be regarded as a single geometrical object, which
we call ann-step (self-avoiding) polygon. Twe-step polygons are equivalent if one is a
translate of the other. For instange, = 3, pg = 22 andpg = 207. We also use the word
polygon for an equivalence class of polygons, when no confusion is likely to arise.

Let p, be the number ofi-step polygons. Hammersley (1961) has shown that there
exists a connective constant> 0 such that, in the large limit,

P = e{anro(n) (21)

and similar techniques, together with the use of a pattern theorem (Kesten 1963), have
been used (Sumners and Whittington 1988, Pippenger 1989) to prove that the mefinber
of unknottedpolygons behaves, in the largelimit, as

p0 = gromtom (2.2)
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with 0 < kg < «, SO that the probability? (n) that the polygon is a knot goes, as— oo,
to unity exponentially rapidly as

P(n) =1—p°/p, =1 — e oo (2.3)

for some positive constaify = k — kg. One concludes that unknotted polygons amount to
an exponentially small fraction of all polygons adends to infinity.

To define semiflexible walks (polygons) we need first to introduce the notion of curvature
of a walk. Aright angleis a vertex on the walk (or on the polygon) that is shared by two
consecutive non-colinear edges. Insastep self-avoiding walk there can be at mast 1
right angles since the first and the last vertex are not shared by two edges. Wawite
and p,(c) for the numbers of self-avoiding walks and polygons witedges and: right
angles. The numberof right angles we call theurvatureassociated to the walk (polygon).

By introducing the bending fugacit§ conjugate to the curvature we define the partition
function for semiflexible walks as

Z(B) =) wi(c) & (2.4)

and similarly for semiflexible polygons

ZIB) =) pu(c) €. (2.5)

Positive 8 values would correspond to walks with enhanced flexibility (the turns are
favoured), whereas negativg values will weight straight walks. Ag becomes more
and more negative the walk becomes more and more stiff. The gase0 gives back
the unweighted walk (polygon) problem. From now on the notion of semiflexible walks
(and semiflexible polygons) will correspond to self-avoiding walks (polygons) with partition
function (2.4) ((2.5)).

First, we prove the existence of the limiting free energy for semiflexible polygons.

2.1. Existence of the limiting free energy for polygons

Theorem 2.1. The limit
lim n~tlogz?(B) = Fr(B) (2.6)

exists for allg € R.

Proof. The idea is to concatenate pairs of polygons, and establish that the partition function
satisfies a generalized supermultiplicative inequality.

The top and bottom edges of a polygon are defined by a lexicographic ordering of the
edges by the coordinates of their midpoints. The top edge is the one with lexicographically
largest midpoint, and the bottom edge is the one with lexicographically smallest midpoint.
Let P be a polygon inZ® with n edges and curvature— s, and letQ be a polygon inz®
with m edges and curvatute We calle, the top edge of° ande, the bottom edge 0D.

In order to concatenat® and Q, we need to have, ande, parallel. This implies that,

once we have choséhin p,(c —s) ways, we can choosg in p,,(s)/2 ways. Now we can
translateQ so that the midpoints of, ande, differ by unity in their first coordinates (with

all other coordinates identical, arg with the larger first coordinate). We concatenéte
and Q by deletinge, ande, and by adding two new edges to join the endpoints,ofnd

e,. This gives a new polygo® @ Q. Observe that removal of an edge in any polygon
can decrease the curvature by at most 2 units, and similarly addition of an edge to make a
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new polygon can increase the curvature by up to 2 units. Thus the curvatire @ can
range from up to 4 less to up to 4 more than the sum of the curvatufearid Q. Then
P @ Q hasn + m edges and curvature at least- 4 and at most + 4. Without loss of
generality, we will assume from now on that> m. Thus

4

> pule = )pu(s) <2 puimlc+k) 2.7)
s k=—4

and the summation overis over all those values of which give a non-zero contribution

to the sum. Multiply (2.7) by & and sum over (remembering that we have> m, and

that p,,(¢) = 0 if £ > m) to obtain

n c 4 n+m
Z Z Pn (C - S)pm (S) eﬂ(073) eﬂs < 2 Z Z Pn+m (C + k) eﬂ(chk) eiﬂk (28)
c=0 s=0 k=—4 ¢=0
which gives
z2BZh(B) < 2e¥Z),,, B+ +€LZ8 (B + Z8,,.(B) + € (Z],,(B) = Puim(0))
+€ 2 (Zpim(B) — Prsm(0) — Prim (1) + - -} (2.9)
thus
4 . 4 . 4 )
ZiBZh(B) < 2[( > e’ﬂ)z,ﬁm (B) - (Z e—fﬂ) Prtm(0) — (Z e—fﬁ>pn+m<1>
j=—4 j=1 j=2
4
- < e_jﬁ> pn+m (2) - e_4ﬁ pn+1n (3):|
j=3
4
<2 X &) 2Lt (2.10)

j=a

so that logz? (B) is a generalized superadditive sequence.
Note that, since foB < 0 we haveZ! (B) < Y'_, pu(c) = p, = eantom,

Zh(B) <& if <0 (2.11)
wherexs < oo is the connective constant of polyggris Z3, and
ZP(B) < esthn if >0 (2.12)

since, for > 0, ZJ (B) < € Y "_ pu(c) = €"p,. Thus lim,_. n"tlog Z; (B) = FF(B)
exists and is finite foB € R (Hille 1948). O

2.2. Convexity and monotonicity
The convexity of the function,” (8) = ntlog Z% () follows from the Cauchy—Schwartz

inequality, i.e.

ZP(BUZL (B = ) pa() €Y puls) e
c=0 s=0

n 2
> (Z Pn(©) e(ﬂlJrﬁz)/ZC)

c=0

1 The connective constant of polygons is defined to be the limitlim(1/n)logp, = x4 in d dimensions
(Hammersley 1957, 1961). The connective constant of self-avoiding walks is defined by repladiggw, (the
number of self-avoiding walks of steps) and it is equal to; (Hammersley 1957, 1961).
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2
_ (Z,f(ﬂl_;ﬂ2>> (2_13)

voazy (P 2) < (Tlogzpp + 1 loazp o) (2.14)
n 2 2\n n

which implies that

i.e. thatF! (B) is a convex function of8. SinceF”(B) is the limit of a sequence of convex
functions, it is convex I8 € (—oo, o0). It is therefore continuous i € (—oo, +00), and
differentiable almost everywhere (Harédy al 1952).

2.3. Bounds oFP(B)

We use the bounds on the partition functid@fi(g8) in order to obtain bounds on the free
energy. Ifg =0, thenz!(0) = p,, and by the definition of the free energy we obtain

FP(0) = «3. (2.15)
Moreover, from equation (2.11) and (2.12) we obtain

FP(B) < ks+ B for 8> 0 (2.16)
and

FP(B) < k3 for g <O. (2.17)

We next prove the main result of the section.

2.4. The limiting free energies of semiflexible walks and polygons are equal

The idea is to find an upper and a lower boundZg(8) that involve the partition function
for polygons modulo some factors that become irrelevant in the thermodynamic limit. The
lower bound is easy to find and the result can be stated as follows.

Lemma 2.2. The partition functions for polygons and walks are related by the inequality

0

2nZ!(B) < ( > e"k)z;“_l(ﬂ>. (2.18)

k=2

Proof. By deleting any of the: edges in a polygon witlk edges and curvature we
obtain an — 1-step walk with curvature’ € {c — 2,¢ — 1, ¢}. Thus,

0
2npa(c) < Y wyalc +k) (2.19)
k=—2

where the factor of 2 comes from the two possible ways in which we can choose the origin
of the resulting walk. Multiplying equation (2.19) byeand summing over the curvature
¢ we obtain the result. O
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The inequality in the opposite direction is more complicated to obtain. The idea is to
unfold a walk, show that walks and unfolded walks have the same exponential behaviour
and then construct a subset of polygons by a suitable concatenation of unfolded walks.
In order to do that we need some subsidiary lemmas about unfolded walks. We write
(xi,vi,z2i),i =0,...,n, for the coordinates of vertexin ann-step self-avoiding walk. A
self-avoiding walk isx-unfoldedif xo < x; < x,, i = 1,...,n — 1. Similarly, we define a
walk to be(x, z)-unfoldedif xo < x; andzg < z;, Vi > 0, andx, > x; andz, > z;, Vi < n.

We write wI,(c) (w}; (c)) for the number ofx-unfolded (x, z)-unfolded)n-step walks with
¢ right angles, and define the partition function

ZiB) =) wi(e) & (2.20)
with a similar definition forZﬁ B).

Lemma 2.3. We have

2 2
Zy(p) < e?m ( > ef”‘) Z} ,(B) <e”WMe ( > eﬂ") Zy5(B). (2.21)

k=0 k=0

Proof. To relate w,(c) to wi(c) we make use of an unfolding transformation along
the x-direction (Hammersley and Welsh 1962). For a particular walkuin(c) let

Xmin = MiN;{x;} andxmax = Max {x;}. Let p1 be the smallest integer such thgf = xmin and

let p- be the largest integer such thgt = xmax. Now reflect the vertices=0, 1, ..., p1—1

with respect to the plane = xnin, and the vertices = p, + 1, ..., n with respect to the
planex = xmax. Note that the transformation does not change the number of right angles.
By repeated application of these reflections we eventually obtain, apart from the trivial
translation, a walk havingy = 0, po = n and ¢ right angles. Finally, to obtain an-
unfolded walk two edges must be added at the extremities, one of coordigates, xo

and the other of coordinates, x, + 1. Thex-unfolded walk obtained will have + 2 steps
andc + k right angles withk € {0, 1, 2}. In general, the same walk jl+2(c + k) can be
obtained from different members af, (¢) but Hammersley and Welsh (1962) have shown
that there exists a constahtsuch that at most’&™ different members ofv, (c) can lead

to the same member oﬂ+2(c + k). We then have

2
wa () < D w)(c+ k) eV, (2.22)
k=0

The unfolding procedure is similarly performed along thdirection to obtain from an
x-unfolded walk a walk unfolded in théx, z) directions. Moreover, since a bond is added
at the vertexcg alongz, this will create an additional right angle. In terms of configurations
we then have

w,]: (c) < wz“(c + 1) eV, (2.23)

By multiplying equations (2.22) and (2.23) b§eand summing over we have respectively

2
ZYB) < DY wh o+ k) e?WP et g pk (2.24)
¢ k=0

and
Z(B) < Y whae+ DX e g s, (2.29)
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Since

Z Z w (e + k) ePCHD g Pk — ZT+2(/3)(Z e ﬁk) —e Pl ,,(0 (2.26)

2ﬂ (wn+2(0) + wn+2(1))

,1+2(ﬂ)<2 e ﬂk) (2.27)

we obtain the first inequality of the lemma. The second inequality is then obtained in a
similar way. O

We next concatenateér, z)-unfolded walks to form polygons.

Lemma 2.4. We have

(Zi(B))*

e (2.28)

Zp(B) =
Proof. The set ofn-step (x, z)-unfolded walks can be divided int¥; subsets according
to the value of théheightr = z,, — zo of the walk. There are no more thansuch subsets
(i.e. Ny < n), which we caIIWT(h) h=1,...,n, whereh is the height of the members of
the subset. Let the number of membersW)f(h), which havec right angles, bewi(c, h)
and define the partition functioﬂﬁ B, h) =), wf,(c, h) efe.

For a given value of3, let h, = h,(B8) be the smallest integer such tlﬁi(ﬂ, hy) =
Z,,i(ﬁ, h) for all 4. In other wordsh, identifies the ‘most popular class’. Since the most
popular class must contain at least a fractigiv,l of (x, z)-unfolded walks, we have the
estimate

Zu(B) . Za(P)

N, ~ n
We define ann-loop as ann-step self-avoiding walk such thapy < x; < x,,Vi and
20 = zn < zi, Vi # 0,n. Let the number of:-loops with ¢ right angles bd, (¢), with
corresponding partition functiofi,’1 (B) = Y. L.(c) €. Concatenating a member v}f,f(h(,),
with a second (not necessarily different) member, reflected in the planex,, gives a
loop with 2n edges, so that

ZHB, h,) =

ln(c) = Y wh(cr, ho)wh(c = c1, hy). (2.29)
Hence
Zh(B)\?
Z5,(B) = ZL(B. ho)* > <#> : (2.30)

In a similar way one can split loops into classes, according tocthed y coordinates of
the first and the last vertex (giving at mast possible classes), and concatenate in pairs to
form polygons, giving the inequality

Z, (ﬂ))
l’l

zh(B) > ( (2.31)

Lemma 2.4 then follows immediately. O
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Now we can state the main result of the section.

Theorem 2.5. The limiting free energy for semiflexible walks

FU(B) = lim n"tlog Z" (B) (2.32)
exists and it is equal to the one for semiflexible polygons, that is
FY(B) = FP(B) VB € R. (2.33)

Proof. From lemmas 2.2-2.4 we have
0

2z )< (3 &™)z

k=—2
2 0
< e0Wm g p ( Z e—ﬂk) < Z e_ﬁk>Zi+2(ﬂ)
k=0 k=—2
2 0
< e0Wn=1) o= (Z e—ﬁk>< Z e—ﬁk)z(n + Z)Z(Zf(,l+2)(ﬁ))1/4-
k=0 k=—2
(2.34)
By taking logarithms in (2.3) and (2.34), dividing byand lettingn tend to infinity, the
theorem follows immediately. O

Note that from inequality (2.34) we have also that the limiting free energies of
x-unfolded and(x, z)-unfolded walks exist and are all equal to the limiting free energy
of walks, namely

lim n~tlog Z}(B) = lim n~*log Z;(8) = F*(B) VB € R. (2.35)

3. Pattern theorem for semiflexible walks

In this section we state and prove a pattern theorem for walks with curvature, similar to
Kesten’s pattern theorem for self-avoiding walks (Kesten 1963). The proof that we shall
give is closely related to an unpublished proof of Kesten’s theorem due to Hammersley and
recently used to prove a similar result for open ribbons (Janse van Reretlal96). We

begin by defining dactorizationof an x-unfolded walk. Ther-unfolded walk has autting
planeif there is a vertex; with 0 < k < n such thaty; < x; < x; forall j =0,..., k-1

andi = k+1,...,n. The cutting plane is the plane = x;. If an x-unfolded walk has

no cutting planes, then it is prime walk Let g, be the number of-step prime walks and

gn(c) the number ofz-step prime walks witte right angles. Clearly)". ¢,(c) = q,. We

define the partition function for prime walks and its generating function as follows:

0u(B) =) qu(c) € (3.2)
c=0
Qx, B) =Y Qu(B)x". (3.2)
n>0

Similarly we can define a generating functidvif (x, 8) for x-unfolded walks. The idea is
now to relate the two generating functions by using a generalized renewal equation. Indeed,
by factorization at the first available cutting plane we obtain the generalized renewal equation

c n-1
wh(©) = gue) + Y D gulc — cwi_(c1) (3:3)

c1=20 m
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which can be rewritten in terms of the generating functions as

Q(x, B)

1-9(x, B)
In order to show for which values af = x(8) W' (x, B) diverges we need the generating
function for the walks with weighted curvature, namely
Wix, B) =Y ZV(B)x". (3.5)
n>0

From theorem 2.5, we know th3¥(x, ) diverges atc = x(8) = e 7" ® and we can use
such a result to get the asymptotic behaviou¥f(x, 8). In order to do that we introduce
another special subset of walks, theddges We define an-step walk to be @ridge if
xo < x;, Vi > 0, andx; < x,,Vi < n. Letb,(c) be the number ofi-steps bridges (up to
translation) withc right angles. The partition function and the generating function follows
as

Wi, g) = (3.4)

B.(B) =) bu(c)€” (3.6)
c=0

B(x.p) =Y Bu(B)x". 3.7)
n>0

It is easy to show thaB(x, 8) andW'(x, ) have the same asymptotic behaviour. Indeed,
from the inequalitywl(c) < by(c), Ve (the x-unfolded walks are a subset of bridges), it
follows Wf(x, ) < B(x, ). Moreover, one can obtain an + 1)-stepx-unfolded walk

by adding a step to the rightmost vertex of asstep bridge. Since this procedure can
produce at most a new right angle, we hayéc) = Zi:o wi+l(c+k). By multiplying by

the Boltzmann factor & and summing over, we obtainB,(8) < ZiH(ﬁ)(l + e Py,
and in terms of the generating functions we have the reversed inequlity8) <
L+ePHWix, B).

Given thatB(x, 8) and Wi(x, B) have the same asymptotic behaviour it remains to
relate B(x, B) to the generating function for the walks. This is achieved in the following
lemma.

Lemma 3.1. We have
e2B(x.p)/x
Wix, B) < — (3.8)

Proof. The proof is very similar to the proof of corollary 3.1.8 in Madras and Slade (1993,

p 61). Here we give a sketch of this proof without entering into the details (which can be

found in the above-mentioned reference) but stressing the differences we encounter between

the present case and the case for unweighted walks discussed in Madras and Slade.
Bridges are a particular subclass of half-space walks, that is walks for which

x;, Vi > 0. Each self-avoiding walk can be split into two half-space walks (see Madras

and Slade 1993, p 60) and this process does not affect the number of right angles. This

procedure leads to the following inequality

Wy (C) < Z Z hnfm (C - r)hm+1(k) (39)

r=0m=1
where &, (c) is the number ofs-step half-space walks with right angles. Moreover,
each half-space walk can be decomposed into a finite sequence of bridges whate the
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bridge is characterized by a span (for a definition of a span of a walk see Madras and
Slade), lengthn; and number of right angles. In addition, the following constraints hold:

Al > A > Az3> - > A; >0 ande.‘ m; = n. Since each time we break the half-space
walk we loose a right angle, we control this variable by adding at the end of each bridge
of the decomposition, an edge perpendicular to the last edge of the bridge. In this way we
have

k
ha(c) < Y [ [ bmrra @) (3.10)
i=1
where the sum is over all integeks> 1, all integersA; > Ay > Az > --- > A > 0,

and all integersn; such that}" m; = n. In addition, we have the constraipt;_, & = c.
From (3.10), following Madras and Slade (1993, p 62), we obtain

YY) hae)eFx" < H (1+ ZmeﬂA(c) e x '") (3.11)

n=1 ¢=0 c=0 m=
< exp(zz(zbm+1A<c>eﬂ) )
=1m=1
= exp( > Z Bui1.a(B)x" )
=1m=
X
This inequality combined with equation (3.9) gives
rm+1
Zzw”(c)eﬂtxn S Zzzzhn m(C—V)eﬂ(C ) n=m m+1(r)65
n=1 ¢20 n=1 ¢20 r=0 m=
2
= —<ZZhn(c) eﬂcx”) (3.12)
X n=1 c¢=0
which gives the desired result. d

Since W(x, B) diverges atx = x(8) = e 7" ®, B(x, ) also diverges at & ®
(lemma 3.1), and henc®f(x, B) diverges at&”"®.

A patternis any fixed finite self-avoiding walk, andm@ime patternis any finite prime
walk. Consider a prime patterR and the set ofi-step walks withce right angles, not
containing P. We write w,(c; P), bu(c; P), wi(c; P) and g,(c; P) for the numbers of
walks, bridgesx-unfolded walks and prime walks, respectively, wittsteps and right
angles, not containing the prime pattePa Similarly, we write W(x, 8; P), B(x, B; P),
Wi(x, B; P) and Q(x, B; P) for the corresponding generating functions. For the class of
walks that do not contain the pattefhwe then define the partition functiaf” (8; P) in
analogy withZ (). A simple concatenation argument gives the following result.

Lemma 3.2. The limit
lim n~*log Z}' (B: P) = F"(B; P) (3.13)

exists for allg € R.
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Proof. Since by concatenating two walks we will create at most one right angle, we have

1
Z wy (¢ — c1; P)wy(cr; P) = Z Whan (c + k; P). (3.14)
6'120 k=0

Indeed, the sense of the inequality allows us to reject configurations obtained by
concatenation that do contain the pattgtn By multiplying by €¢ and summing over

¢, we have

1
YD wale—cx; DYV, (er; PYEI 2 YN Cwym(e +k; P e (3.15)
c=0 c1 c=0 k=0
> waim(c: P) e (3.16)
c=0
hence
ZY(B; PYZY(B; P) = Z,,.(B; P). (3.17)

Since Z¥(B: P) < ZY(B).YB € R, the limit lim,_n~tlogZ;(B; P)_
lim,_ F'(8; P) = F¥(B; P) exists and is finite for alf € R. Moreover, 7 (B; P) <
F(B). 0

The result of the lemma implies thaw'(x, g; P) diverges atr = x(B) = e 7 (B:P)
whereF" (8; P) < F¥(B). On the other hand, by using the same arguments as in lemma 3.1
we have

_ @BupiP)x
W, B, P) < —— (3.18)
X

so B(x, B; P) also diverges at = x(8) = 7 %P and converges for alt < x(8) =

e 7" &P given thatB(x, B; P) < W(x, B; P),Vx > 0. SinceB(x, B; P) andW'(x, B; P)

have the same asymptotic behaviour (by an argument exactly similar to that given above
for B(x, B) andWi(x, B)), then alsoW'(x, B; P) diverges atr = x(8) = e 7" %P and
converges for alk < x(8) = &7 |t remains to show tha(x = e *"® g; P) is

finite; this result would imply that e # < e 7"®#")  Sinceg,,(c, P) < gn(c) for at least

one value ofn (the obvious case being when the prime walk is the prime paftemade

by m edges) we have for the generating function

Qe P B Py = Qu(B: PYET D)+ 30 0u(B: PYe TP < 0, (B) (e TP

n#m
+) 0. e e
n#m

=9, p). (3.19)
On the other handWf(e”"®, g) diverges and from equation (3.4) this implies
Qe "' ® ) = 1. From inequality (3.19) we then hav@(e ™", g; P) < 1. This
implies, using an equation analogous to (3.4), Hdtx = e*"® g; P) is finite. Hence
e 7" < e 7" B:P) This is the key result of the section which we state as follows.

Theorem 3.3. Semiflexible self-avoiding walks that do not contain the prime patferat
least once have a free ener@y’ (8; P) that is strictly less than the free ener@y’ (8) of
the set of all semiflexible self-avoiding walks. That is,

F¥(B; P) < FY(B) VB € R. (3.20)
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The next theorem is the corresponding result for the polygons.
Theorem 3.4. Defining F7(B; P) = lim,_,« sup1/n) In Z! (B; P) we have
FP(B; P) < FU(B: P) < F'(B) = F¥(B) VB € R. (3.21)

Proof. If an edge of aiz-edge polygon with curvatureis deleted, the corresponding graph
is a self-avoiding walk with(n — 1) edges and curvaturé& € {c — 2, ¢ — 1, ¢}. Moreover,
deleting an edge cannot create a pattern so that(@; P) < Y0 ,w, 1(c + k; P).
Multiplying both terms by & and summing over we have

2nZP(B: P) < ZV_1(B; P)(1+ € + 7). (3.22)
Taking logarithms, dividing by: and lettingn — oo, by using (3.20) and (2.33), we obtain
(3.22). O

4. Knots in semiflexible polygons

In this section we shall be concerned with knots in polygons with weighted curvature. The
main result will be an extension of theorem 1 in Sumners and Whittington (1988) on the
probability for a polygon to be knotted. Indeed we prove thatp apes to infinity, the
probability that the polygon weighted by curvature is knotted goes to unity exponentially
rapidly for all finite values of the curvature paramefer We first prove a preliminary
lemma.

Lemma 4.1. Let p2(c) the subclass of unknotted polygons wittedges and right angles.
Let ! (B) = . p’(c) € be the partition function for the corresponding model in which
the curvature of unknotted polygons is weighted by the bending fugAcifihe limit

lim 1 InZ"(B) = F°(B) 4.1)
n—-oo n
existsVp € R.

Proof. The proof, based on concatenation of a pair of unknotted polygons, is similar to
that of theorem 2.1. |

We now come to the main theorem of this section.

Theorem 4.2. For any finite value of the bending fugacify, unknotted self-avoiding
polygons are exponentially rare in the set of all polygons. That is,

a(B)=FrB)—F°PB)>0 VB < oo. (4.2)

Proof. We take

T = {ly i5 j’ kv k5 _ja _j9 _ka _i9 _k9 _ka ja j’ kv k5 _js i’ l} (43)
wherei, j, k are unit vectors in the coordinate directions d@hdstands for trefoil. The
sequence of edges iskaotted arc(see Sumners and Whittington (1998) for the technical
definition of knotted arc), and its presence in a polygon ensures that the polygon will be
knotted. Replacing® by T in theorem 3.4 we hav&?(8; T) < F?(B),VYB € R. On the
other hand, the subset of unknotted semiflexible polygons wsthiges is a subset of the
corresponding semiflexible polygons which do not contain the paftedafined above. We
then haveF°(B) < FP(B; T) < FP(B),VB € R. O
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If we introduce the knotting probability as

7l (B)

P,(B)=1— 4.4
B 276 (4.4)
then theorem 4.2 implies that for large

Py(B) = 1—exp(—a(B)n +o(n)) (4.5)

i.e. the probability that a semiflexible polygons is knotted goes to onegies to infinity
for any finite value of the bending parametgr

5. Discussion

By proving a pattern theorem for weighted (by curvature) walks, we have shown rigorously
that, for semiflexible polygons irZ3, the knot probability goes to unity exponentially
rapidly as the size of the polygon increases, for any finite value of the bending fugacity
Specialized to the less obvious cgée< 0, this result means that no matter how stiff the
n-edges polygon is (finite stiffness however) xifis sufficiently big the polygon will be
knotted with probability one. This is an interesting result if one considers the experimental
evidence of the presence of knots in long and stiff polymers in solution such as DNA.
Notice that in the limitg — —oo the polygon will have the minimal number of bends

(c = 4) and no knots can occur in this configuration. In this sense the poiat—oco is
singular for the functionx(8). A similar approach based on the density functions of right
angles should allow a more precise study of the functigf).

The arguments in theorem 3.3 could be extended to show that every pattern occurs at
positive density with high probability andg finite. This should allow the proof results
about entanglement complexity following the arguments used in So&trak(1992) for
unweighted self-avoiding walks.

The results obtained in this paper are all asymptotic in nature. In particular, they say
little about knotting in semiflexible polygons for small valuesnoflt would then be very
interesting to tackle the finite problem by numerical approaches, such as Monte Carlo
simulations.
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