
J. Phys. A: Math. Gen.31 (1998) 9441–9454. Printed in the UK PII: S0305-4470(98)95516-0

Knotted polygons with curvature in Z3

E Orlandini† and M C Tesi‡
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Abstract. The knot probability of semiflexible polygons on the cubic lattice is investigated.
The degree of stiffness of the polygon is mimicked by introducing a bending fugacity conjugate
to the curvature of the polygon. By generalizing Kesten’s pattern theorem to semiflexible walks,
we show that for any finite value of the bending fugacity all except exponentially few sufficiently
long polygons are knotted.

1. Introduction

The presence of knots in closed polymer chains is considered of interest in polymer physics,
chemistry, molecular biology and knot theory, and knotting can have an important influence
on a number of polymer properties. For instance, the effects of knots on the rheology
of polymer networks were investigated by Edwards (1967, 1968), and de Gennes (1984)
considered tight knots in polymers and the influence they can have on long-time memory
effects in melts of crystallizable linear polymers. In addition, the presence of knots in
closed circular DNA can give information about the mechanism of the action of enzymes
acting on the DNA molecules (Wasserman and Cozzarelli 1986). In this context knots have
been detected in circular DNA, their knot type identified by electron microscopy (Dean
and Cozzarelli 1985) and the knot probability measured experimentally as a function of the
degree of polymerization and the ionic strength (Shaw and Wang 1993).

A flexible ring polymer (such as closed circular DNA) can be modelled as ann-step
self-avoiding polygon on a regular lattice, and the presence of knots in polygons (and in
related models such as piecewise-linear closed curves inR3) has been studied using Monte
Carlo methods by a number of workers (Vologodskiiet al 1974, Michels and Wiegel 1986,
Janse van Rensburg and Whittington 1990, Koniaris and Muthukumar 1991, Deguchi and
Tsurusaki 1993, 1994). Little is known rigorously, but it has been shown that sufficiently
long polygons are knotted with probability one (Sumners and Whittington 1998, Pippenger
1989). These rigorous results have been successively extended to the more general case
of graphs embedded inZ3 (Soteroset al 1992) and to the problem of the entanglement
complexity of self-avoiding walks (Janse van Rensburget al 1992).

On the other hand, a large number of real polymer chains do not obey the simple statistics
of flexible chains. These chains, called semiflexible or stiff, are in general characterized
by having the correlation between the direction of the bonds not entirely vanishing. An
important example of a stiff polymer is the DNA molecule in solution. Indeed due to
the tight constraint of successive pairs of nuclei acids (‘base pairs’, or bp) by chemical
and hydrogen bonds, the DNA has a thermal bending persistence length of about 150 bp
(50 nm) (Darnellet al 1990, Hagerman 1988).
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A model of a semiflexible polymer chain was first introduced by Flory (1956) by
assigning an energy loss for each consecutive pairs of parallel bonds in the chain. With this
model Flory (1956) predicted a phase transition from an isotropic phase to an ordered state.
Since then, variants of this model have been used in studying many other properties of
polymer chains, such as crystallization (Flory 1982), glass transition (Gibbs and Di Marzio
1958), polymer melting (Bascleet al 1992) and protein folding (Doniachet al 1996).

In this paper we will focus on the topological properties of semiflexible polymers. In
particular, we discuss the occurrence of knots in semiflexible ring polymers modelled by
polygons in the cubic lattice weighted according to their curvature by a bending fugacity
β. In particular, we will prove that for any finite value of the bending fugacity, sufficiently
long polygons are knotted with probability one. The paper is arranged as follows. In
section 2, after recalling some previous results on knotting probability, we introduce the
notion of semiflexible self-avoiding walks by defining the curvature of a walk inZ3 and its
associated bending fugacity. A similar definition for semiflexible polygons is considered.
The main result of the section is the proof that the limiting free energies of semiflexible
walks and polygons exist and are equal, for any finite value of the bending fugacityβ. In
section 3 we generalize Kesten’s pattern theorem to semiflexible walks and in section 4
we use this result to prove that the knot probability of semiflexible polygons goes to unity
exponentially rapidly as the number of edges in the polygon goes to infinity, for any finite
value of the bending fugacityβ. Finally, in section 5 we summarize our results and we
give some suggestions for future work.

2. Definitions and rigorous results on free energies

Let Z3 be the simple cubic lattice whose vertices are the integer points inR3, and with
edges between vertices which are unit distance apart. Ann-step self-avoiding walkis an
ordered sequence ofn+1 vertices such that the first vertex is the origin, neighbouring pairs
of vertices in the sequence are unit distance apart and all vertices are distinct. We often use
walk to mean self-avoiding walk. A walk and any translate of the walk form an equivalence
class and we also use walk as a short-hand forequivalence class of self-avoiding walkswhen
this is not likely to cause confusion.

An n-step self-avoiding circuit (n-SAC) is an(n−1)-step self-avoiding walk whose first
and last vertices are unit distance apart, with the additional edge between these two vertices.
Any cyclic permutation of ann-SAC is also ann-SAC, and so is the reverse permutation
and all cyclic permutations of the reverse permutation. The resulting set of 2n n-SACs
which originate from a givenn-SAC can be regarded as a single geometrical object, which
we call ann-step (self-avoiding) polygon. Twon-step polygons are equivalent if one is a
translate of the other. For instance,p4 = 3, p6 = 22 andp8 = 207. We also use the word
polygon for an equivalence class of polygons, when no confusion is likely to arise.

Let pn be the number ofn-step polygons. Hammersley (1961) has shown that there
exists a connective constantκ > 0 such that, in the largen limit,

pn = eκn+o(n) (2.1)

and similar techniques, together with the use of a pattern theorem (Kesten 1963), have
been used (Sumners and Whittington 1988, Pippenger 1989) to prove that the numberp0

n

of unknottedpolygons behaves, in the largen limit, as

p0
n = eκ0n+o(n) (2.2)
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with 0< κ0 < κ, so that the probabilityP(n) that the polygon is a knot goes, asn→∞,
to unity exponentially rapidly as

P(n) = 1− p0
n/pn = 1− e−α0n+o(n) (2.3)

for some positive constantα0 = κ − κ0. One concludes that unknotted polygons amount to
an exponentially small fraction of all polygons asn tends to infinity.

To define semiflexible walks (polygons) we need first to introduce the notion of curvature
of a walk. A right angle is a vertex on the walk (or on the polygon) that is shared by two
consecutive non-colinear edges. In ann-step self-avoiding walk there can be at mostn− 1
right angles since the first and the last vertex are not shared by two edges. We writewn(c)

andpn(c) for the numbers of self-avoiding walks and polygons withn edges andc right
angles. The numberc of right angles we call thecurvatureassociated to the walk (polygon).
By introducing the bending fugacityβ conjugate to the curvaturec, we define the partition
function for semiflexible walks as

Zwn (β) =
∑
c

wn(c) eβc (2.4)

and similarly for semiflexible polygons

Zpn (β) =
∑
c

pn(c) eβc. (2.5)

Positive β values would correspond to walks with enhanced flexibility (the turns are
favoured), whereas negativeβ values will weight straight walks. Asβ becomes more
and more negative the walk becomes more and more stiff. The caseβ = 0 gives back
the unweighted walk (polygon) problem. From now on the notion of semiflexible walks
(and semiflexible polygons) will correspond to self-avoiding walks (polygons) with partition
function (2.4) ((2.5)).

First, we prove the existence of the limiting free energy for semiflexible polygons.

2.1. Existence of the limiting free energy for polygons

Theorem 2.1. The limit

lim
n→∞ n

−1 logZpn (β) ≡ Fp(β) (2.6)

exists for allβ ∈ R.

Proof. The idea is to concatenate pairs of polygons, and establish that the partition function
satisfies a generalized supermultiplicative inequality.

The top and bottom edges of a polygon are defined by a lexicographic ordering of the
edges by the coordinates of their midpoints. The top edge is the one with lexicographically
largest midpoint, and the bottom edge is the one with lexicographically smallest midpoint.
Let P be a polygon inZ3 with n edges and curvaturec− s, and letQ be a polygon inZ3

with m edges and curvatures. We callep the top edge ofP andeq the bottom edge ofQ.
In order to concatenateP andQ, we need to haveep and eq parallel. This implies that,
once we have chosenP in pn(c−s) ways, we can chooseQ in pm(s)/2 ways. Now we can
translateQ so that the midpoints ofep andeq differ by unity in their first coordinates (with
all other coordinates identical, andeq with the larger first coordinate). We concatenateP
andQ by deletingep andeq and by adding two new edges to join the endpoints ofep and
eq . This gives a new polygonP ⊕ Q. Observe that removal of an edge in any polygon
can decrease the curvature by at most 2 units, and similarly addition of an edge to make a
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new polygon can increase the curvature by up to 2 units. Thus the curvature ofP ⊕Q can
range from up to 4 less to up to 4 more than the sum of the curvature ofP andQ. Then
P ⊕ Q hasn + m edges and curvature at leastc − 4 and at mostc + 4. Without loss of
generality, we will assume from now on thatn > m. Thus∑

s

pn(c − s)pm(s) 6 2
4∑

k=−4

pn+m(c + k) (2.7)

and the summation overs is over all those values ofs which give a non-zero contribution
to the sum. Multiply (2.7) by eβc and sum overc (remembering that we haven > m, and
thatpm(`) = 0 if ` > m) to obtain
n∑
c=0

c∑
s=0

pn(c − s)pm(s) eβ(c−s) eβs 6 2
4∑

k=−4

n+m∑
c=0

pn+m(c + k) eβ(c+k) e−βk (2.8)

which gives

Zpn (β)Z
p
m(β) 6 2{e4βZ

p
n+m(β)+ · · · + eβZpn+m(β)+ Zpn+m(β)+ e−β(Zpn+m(β)− pn+m(0))

+e−2β(Zn+m(β)− pn+m(0)− pn+m(1))+ · · ·} (2.9)

thus

Zpn (β)Z
p
m(β) 6 2

[( 4∑
j=−4

ejβ
)
Z
p
n+m(β)−

( 4∑
j=1

e−jβ
)
pn+m(0)−

( 4∑
j=2

e−jβ
)
pn+m(1)

−
( 4∑
j=3

e−jβ
)
pn+m(2)− e−4βpn+m(3)

]

6 2

( 4∑
j=−4

ejβ
)
Z
p
n+m(β) (2.10)

so that logZpn (β) is a generalized superadditive sequence.
Note that, since forβ 6 0 we haveZpn (β) 6

∑n
c=0pn(c) = pn = eκ3n+o(n),

Zpn (β) 6 eκ3n if β 6 0 (2.11)

whereκ3 <∞ is the connective constant of polygons† in Z3, and

Zpn (β) 6 e(κ3+β)n if β > 0 (2.12)

since, forβ > 0, Zpn (β) 6 eβn
∑n

c=0pn(c) = eβnpn. Thus limn→∞ n−1 logZpn (β) = Fp(β)
exists and is finite forβ ∈ R (Hille 1948). �

2.2. Convexity and monotonicity

The convexity of the functionsFpn (β) = n−1 logZpn (β) follows from the Cauchy–Schwartz
inequality, i.e.

Zpn (β1)Z
p
n (β2) =

n∑
c=0

pn(c) eβ1c
n∑
s=0

pn(s) eβ2s

>
( n∑
c=0

pn(c) e(β1+β2)/2c

)2

† The connective constant of polygons is defined to be the limit limn→∞(1/n) logpn = κd in d dimensions
(Hammersley 1957, 1961). The connective constant of self-avoiding walks is defined by replacingpn by wn (the
number of self-avoiding walks ofn steps) and it is equal toκd (Hammersley 1957, 1961).
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=
(
Zpn

(
β1+ β2

2

))2

(2.13)

which implies that

1

n
logZpn

(
β1+ β2

2

)
6 1

2

(
1

n
logZpn (β1)+ 1

n
logZpn (β2)

)
(2.14)

i.e. thatFpn (β) is a convex function ofβ. SinceFp(β) is the limit of a sequence of convex
functions, it is convex inβ ∈ (−∞,∞). It is therefore continuous inβ ∈ (−∞,+∞), and
differentiable almost everywhere (Hardyet al 1952).

2.3. Bounds onFp(β)

We use the bounds on the partition functionZpn (β) in order to obtain bounds on the free
energy. Ifβ = 0, thenZpn (0) = pn, and by the definition of the free energy we obtain

Fp(0) = κ3. (2.15)

Moreover, from equation (2.11) and (2.12) we obtain

Fp(β) 6 k3+ β for β > 0 (2.16)

and

Fp(β) 6 κ3 for β < 0. (2.17)

We next prove the main result of the section.

2.4. The limiting free energies of semiflexible walks and polygons are equal

The idea is to find an upper and a lower bound forZwn (β) that involve the partition function
for polygons modulo some factors that become irrelevant in the thermodynamic limit. The
lower bound is easy to find and the result can be stated as follows.

Lemma 2.2. The partition functions for polygons and walks are related by the inequality

2nZpn (β) 6
( 0∑
k=−2

e−βk
)
Zwn−1(β). (2.18)

Proof. By deleting any of then edges in a polygon withn edges and curvaturec, we
obtain an− 1-step walk with curvaturec′ ∈ {c − 2, c − 1, c}. Thus,

2npn(c) 6
0∑

k=−2

wn−1(c + k) (2.19)

where the factor of 2 comes from the two possible ways in which we can choose the origin
of the resulting walk. Multiplying equation (2.19) by eβc and summing over the curvature
c we obtain the result. �
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The inequality in the opposite direction is more complicated to obtain. The idea is to
unfold a walk, show that walks and unfolded walks have the same exponential behaviour
and then construct a subset of polygons by a suitable concatenation of unfolded walks.
In order to do that we need some subsidiary lemmas about unfolded walks. We write
(xi, yi, zi), i = 0, . . . , n, for the coordinates of vertexi in an n-step self-avoiding walk. A
self-avoiding walk isx-unfolded if x0 < xi < xn, i = 1, . . . , n− 1. Similarly, we define a
walk to be(x, z)-unfolded if x0 6 xi andz0 < zi, ∀i > 0, andxn > xi andzn > zi, ∀i < n.
We writew†n(c) (w‡n(c)) for the number ofx-unfolded ((x, z)-unfolded)n-step walks with
c right angles, and define the partition function

Z†n(β) =
∑
c

w†n(c) eβc (2.20)

with a similar definition forZ‡n(β).

Lemma 2.3. We have

Zwn (β) 6 eO(
√
n)

( 2∑
k=0

e−βk
)
Z
†
n+2(β) 6 eO(

√
n) e−β

( 2∑
k=0

e−βk
)
Z
‡
n+3(β). (2.21)

Proof. To relatewn(c) to w
†
n(c) we make use of an unfolding transformation along

the x-direction (Hammersley and Welsh 1962). For a particular walk inwn(c) let
xmin = mini{xi} andxmax= maxi{xi}. Letp1 be the smallest integer such thatxp1 = xmin and
letp2 be the largest integer such thatxp2 = xmax. Now reflect the verticesi = 0, 1, . . . , p1−1
with respect to the planex = xmin and the verticesi = p2 + 1, . . . , n with respect to the
planex = xmax. Note that the transformation does not change the number of right angles.
By repeated application of these reflections we eventually obtain, apart from the trivial
translation, a walk havingp1 = 0, p2 = n and c right angles. Finally, to obtain anx-
unfolded walk two edges must be added at the extremities, one of coordinatesx0 − 1, x0

and the other of coordinatesxn, xn+1. Thex-unfolded walk obtained will haven+2 steps
andc + k right angles withk ∈ {0, 1, 2}. In general, the same walk inw†n+2(c + k) can be
obtained from different members ofwn(c) but Hammersley and Welsh (1962) have shown
that there exists a constantb such that at most eb

√
n different members ofwn(c) can lead

to the same member ofw†n+2(c + k). We then have

wn(c) 6
2∑
k=0

w
†
n+2(c + k) eO(

√
n). (2.22)

The unfolding procedure is similarly performed along thez-direction to obtain from an
x-unfolded walk a walk unfolded in the(x, z) directions. Moreover, since a bond is added
at the vertexx0 alongz, this will create an additional right angle. In terms of configurations
we then have

w†n(c) 6 w
‡
n+1(c + 1) eO(

√
n). (2.23)

By multiplying equations (2.22) and (2.23) by eβc and summing overc we have respectively

Zwn (β) 6
∑
c

2∑
k=0

w
†
n+2(c + k) eO(

√
n) eβ(c+k) e−βk (2.24)

and

Z†n(β) 6
∑
c

w
‡
n+1(c + 1) eO(

√
n) eβ(c+1) e−β. (2.25)
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Since∑
c

2∑
k=0

w
†
n+2(c + k) eβ(c+k) e−βk = Z†n+2(β)

( 2∑
k=0

e−βk
)
− e−βw†n+2(0) (2.26)

−e−2β(w
†
n+2(0)+ w†n+2(1))

6 Z†n+2(β)

( 2∑
k=0

e−βk
)

(2.27)

we obtain the first inequality of the lemma. The second inequality is then obtained in a
similar way. �

We next concatenate(x, z)-unfolded walks to form polygons.

Lemma 2.4. We have

Z
p

4n(β) >
(Z
‡
n(β))

4

16n8
. (2.28)

Proof. The set ofn-step(x, z)-unfolded walks can be divided intoNs subsets according
to the value of theheighth = zn − z0 of the walk. There are no more thann such subsets
(i.e.Ns 6 n), which we callW ‡n(h), h = 1, . . . , n, whereh is the height of the members of
the subset. Let the number of members ofW

‡
n(h), which havec right angles, bew‡n(c, h)

and define the partition functionZ‡n(β, h) =
∑

c w
‡
n(c, h)eβc.

For a given value ofβ, let ho = ho(β) be the smallest integer such thatZ‡n(β, ho) >
Z
‡
n(β, h) for all h. In other wordsho identifies the ‘most popular class’. Since the most

popular class must contain at least a fraction 1/Ns of (x, z)-unfolded walks, we have the
estimate

Z‡n(β, ho) >
Z
‡
n(β)

Ns
> Z

‡
n(β)

n
.

We define ann-loop as ann-step self-avoiding walk such thatx0 6 xi 6 xn, ∀i and
z0 = zn < zi, ∀i 6= 0, n. Let the number ofn-loops with c right angles beln(c), with
corresponding partition functionZln(β) =

∑
c ln(c) eβc. Concatenating a member ofW ‡n(ho),

with a second (not necessarily different) member, reflected in the planex = xn, gives a
loop with 2n edges, so that

l2n(c) >
∑
c1

w‡n(c1, ho)w
‡
n(c − c1, ho). (2.29)

Hence

Zl2n(β) > Z‡n(β, ho)2 >
(
Z
‡
n(β)

n

)2

. (2.30)

In a similar way one can split loops into classes, according to thex andy coordinates of
the first and the last vertex (giving at mostn2 possible classes), and concatenate in pairs to
form polygons, giving the inequality

Z
p

2n(β) >
(
Zln(β)

n2

)2

. (2.31)

Lemma 2.4 then follows immediately. �
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Now we can state the main result of the section.

Theorem 2.5. The limiting free energy for semiflexible walks

Fw(β) = lim
n→∞ n

−1 logZwn (β) (2.32)

exists and it is equal to the one for semiflexible polygons, that is

Fw(β) = Fp(β) ∀β ∈ R. (2.33)

Proof. From lemmas 2.2–2.4 we have

2nZpn (β) 6
( 0∑
k=−2

e−βk
)
Zwn−1(β)

6 eO(
√
n) e−β

( 2∑
k=0

e−βk
)( 0∑

k=−2

e−βk
)
Z
‡
n+2(β)

6 eO(
√
n−1) e−β

( 2∑
k=0

e−βk
)( 0∑

k=−2

e−βk
)

2(n+ 2)2(Zp4(n+2)(β))
1/4.

(2.34)

By taking logarithms in (2.3) and (2.34), dividing byn and lettingn tend to infinity, the
theorem follows immediately. �

Note that from inequality (2.34) we have also that the limiting free energies of
x-unfolded and(x, z)-unfolded walks exist and are all equal to the limiting free energy
of walks, namely

lim
n→∞ n

−1 logZ†n(β) = lim
n→∞ n

−1 logZ‡n(β) = Fw(β) ∀β ∈ R. (2.35)

3. Pattern theorem for semiflexible walks

In this section we state and prove a pattern theorem for walks with curvature, similar to
Kesten’s pattern theorem for self-avoiding walks (Kesten 1963). The proof that we shall
give is closely related to an unpublished proof of Kesten’s theorem due to Hammersley and
recently used to prove a similar result for open ribbons (Janse van Rensburget al 1996). We
begin by defining afactorizationof anx-unfolded walk. Thex-unfolded walk has acutting
plane if there is a vertexxk with 0< k < n such thatxj < xk < xi for all j = 0, . . . , k−1
and i = k + 1, . . . , n. The cutting plane is the planex = xk. If an x-unfolded walk has
no cutting planes, then it is aprime walk. Let qn be the number ofn-step prime walks and
qn(c) the number ofn-step prime walks withc right angles. Clearly

∑
c qn(c) = qn. We

define the partition function for prime walks and its generating function as follows:

Qn(β) =
∑
c>0

qn(c) eβc (3.1)

Q(x, β) =
∑
n>0

Qn(β)x
n. (3.2)

Similarly we can define a generating functionW†(x, β) for x-unfolded walks. The idea is
now to relate the two generating functions by using a generalized renewal equation. Indeed,
by factorization at the first available cutting plane we obtain the generalized renewal equation

w†n(c) = qn(c)+
c∑

c1>0

n−1∑
m

qm(c − c1)w
†
n−m(c1) (3.3)
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which can be rewritten in terms of the generating functions as

W†(x, β) = Q(x, β)
1−Q(x, β) . (3.4)

In order to show for which values ofx = x(β)W†(x, β) diverges we need the generating
function for the walks with weighted curvature, namely

W(x, β) =
∑
n>0

Zwn (β)x
n. (3.5)

From theorem 2.5, we know thatW(x, β) diverges atx = x(β) = e−F
w(β) and we can use

such a result to get the asymptotic behaviour ofW†(x, β). In order to do that we introduce
another special subset of walks, thebridges. We define an-step walk to be abridge if
x0 < xi, ∀i > 0, andxi 6 xn, ∀i < n. Let bn(c) be the number ofn-steps bridges (up to
translation) withc right angles. The partition function and the generating function follows
as

Bn(β) =
∑
c>0

bn(c) eβc (3.6)

B(x, β) =
∑
n>0

Bn(β)x
n. (3.7)

It is easy to show thatB(x, β) andW†(x, β) have the same asymptotic behaviour. Indeed,
from the inequalityw†n(c) 6 bn(c), ∀c (the x-unfolded walks are a subset of bridges), it
follows W†(x, β) 6 B(x, β). Moreover, one can obtain an(n + 1)-stepx-unfolded walk
by adding a step to the rightmost vertex of ann-step bridge. Since this procedure can
produce at most a new right angle, we havebn(c) =

∑1
k=0w

†
n+1(c+ k). By multiplying by

the Boltzmann factor eβc and summing overc, we obtainBn(β) 6 Z
†
n+1(β)(1 + e−β),

and in terms of the generating functions we have the reversed inequalityB(x, β) 6
(1+ e−β)W†(x, β).

Given thatB(x, β) andW†(x, β) have the same asymptotic behaviour it remains to
relateB(x, β) to the generating function for the walks. This is achieved in the following
lemma.

Lemma 3.1. We have

W(x, β) 6 e2B(x,β)/x

x
. (3.8)

Proof. The proof is very similar to the proof of corollary 3.1.8 in Madras and Slade (1993,
p 61). Here we give a sketch of this proof without entering into the details (which can be
found in the above-mentioned reference) but stressing the differences we encounter between
the present case and the case for unweighted walks discussed in Madras and Slade.

Bridges are a particular subclass of half-space walks, that is walks for whichx0 <

xi, ∀i > 0. Each self-avoiding walk can be split into two half-space walks (see Madras
and Slade 1993, p 60) and this process does not affect the number of right angles. This
procedure leads to the following inequality

wn(c) 6
c∑
r=0

n∑
m=1

hn−m(c − r)hm+1(k) (3.9)

where hn(c) is the number ofn-step half-space walks withc right angles. Moreover,
each half-space walk can be decomposed into a finite sequence of bridges where theith
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bridge is characterized by a spanAi (for a definition of a span of a walk see Madras and
Slade), lengthmi and number of right anglesci . In addition, the following constraints hold:
A1 > A2 > A3 > · · · > Ak > 0 and

∑k
i mi = n. Since each time we break the half-space

walk we loose a right angle, we control this variable by adding at the end of each bridge
of the decomposition, an edge perpendicular to the last edge of the bridge. In this way we
have

hn(c) 6
∑ k∏

i=1

bmi+1,Ai (c̃i) (3.10)

where the sum is over all integersk > 1, all integersA1 > A2 > A3 > · · · > Ak > 0,
and all integersmi such that

∑k
i mi = n. In addition, we have the constraint

∑k
i=1 c̃i = c.

From (3.10), following Madras and Slade (1993, p 62), we obtain∑
n>1

∑
c>0

hn(c) eβcxn 6
∞∏
A=1

(
1+

∞∑
c=0

∞∑
m=1

bm+1,A(c) eβcxm
)

(3.11)

6 exp

( ∞∑
A=1

∞∑
m=1

( m∑
c=0

bm+1,A(c) eβc
)
xm
)

= exp

( ∞∑
A=1

∞∑
m=1

Bm+1,A(β)x
m

)
= exp

(B(x, β)
x

)
.

This inequality combined with equation (3.9) gives∑
n>1

∑
c>0

wn(c) eβcxn 6
∑
n>1

∑
c>0

c∑
r=0

n∑
m=1

hn−m(c − r) eβ(c−r)xn−m
hm+1(r) eβrxm+1

x

= 1

x

(∑
n>1

∑
c>0

hn(c) eβcxn
)2

(3.12)

which gives the desired result. �

SinceW(x, β) diverges atx = x(β) = e−F
w(β), B(x, β) also diverges at e−F

w(β)

(lemma 3.1), and henceW†(x, β) diverges at e−F
w(β).

A pattern is any fixed finite self-avoiding walk, and aprime patternis any finite prime
walk. Consider a prime patternP and the set ofn-step walks withc right angles, not
containingP . We write wn(c; P̄ ), bn(c; P̄ ), w†n(c; P̄ ) and qn(c; P̄ ) for the numbers of
walks, bridges,x-unfolded walks and prime walks, respectively, withn steps andc right
angles, not containing the prime patternP . Similarly, we writeW(x, β; P̄ ), B(x, β; P̄ ),
W†(x, β; P̄ ) andQ(x, β; P̄ ) for the corresponding generating functions. For the class of
walks that do not contain the patternP we then define the partition functionZwn (β; P̄ ) in
analogy withZwn (β). A simple concatenation argument gives the following result.

Lemma 3.2. The limit

lim
n→∞ n

−1 logZwn (β; P̄ ) ≡ Fw(β; P̄ ) (3.13)

exists for allβ ∈ R.
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Proof. Since by concatenating two walks we will create at most one right angle, we have∑
c1>0

wn(c − c1; P̄ )wm(c1; P̄ ) >
1∑
k=0

wm+n(c + k; P̄ ). (3.14)

Indeed, the sense of the inequality allows us to reject configurations obtained by
concatenation that do contain the patternP . By multiplying by eβc and summing over
c, we have∑
c>0

∑
c1

wn(c − c1; P̄ ) eβ(c−c1)wm(c1; P̄ ) eβc1 >
∑
c>0

1∑
k=0

wn+m(c + k; P̄ ) eβc (3.15)

>
∑
c>0

wn+m(c; P̄ ) eβc (3.16)

hence

Zwn (β; P̄ )Zwm(β; P̄ ) > Zwn+m(β; P̄ ). (3.17)

Since Zwn (β; P̄ ) 6 Zwn (β), ∀β ∈ R, the limit limn→∞ n−1 logZpn (β; P̄ ) =
limn→∞ Fwn (β; P̄ ) = Fw(β; P̄ ) exists and is finite for allβ ∈ R. Moreover,Fw(β; P̄ ) 6
Fw(β). �

The result of the lemma implies thatW(x, β; P̄ ) diverges atx = x(β) = e−F
w(β;P̄ )

whereFw(β; P̄ ) 6 Fw(β). On the other hand, by using the same arguments as in lemma 3.1
we have

W(x, β; P̄ ) 6 e2B(x,β;P̄ )/x

x
(3.18)

so B(x, β; P̄ ) also diverges atx = x(β) = e−F
w(β;P̄ ), and converges for allx < x(β) =

e−F
w(β;P̄ ) given thatB(x, β; P̄ ) 6W(x, β; P̄ ), ∀x > 0. SinceB(x, β; P̄ ) andW†(x, β; P̄ )

have the same asymptotic behaviour (by an argument exactly similar to that given above
for B(x, β) andW†(x, β)), then alsoW†(x, β; P̄ ) diverges atx = x(β) = e−F

w(β;P̄ ), and
converges for allx < x(β) = e−F

w(β;P̄ ). It remains to show thatW†(x = e−F
w(β), β; P̄ ) is

finite; this result would imply that e−F
w(β) < e−F

w(β;P̄ ). Sinceqm(c, P̄ ) < qm(c) for at least
one value ofm (the obvious case being when the prime walk is the prime patternP made
by m edges) we have for the generating function

Q(e−Fw(β), β; P̄ ) = Qm(β; P̄ )(e−Fw(β))m +
∑
n6=m

Qn(β; P̄ ) e−F
w(β)n < Qm(β)(e

−Fw(β))m

+
∑
n6=m

Qn(β) e−F
w(β)n

= Q(e−Fw(β), β). (3.19)

On the other hand,W†(e−Fw(β), β) diverges and from equation (3.4) this implies
Q(e−Fw(β), β) = 1. From inequality (3.19) we then haveQ(e−Fw(β), β; P̄ ) < 1. This
implies, using an equation analogous to (3.4), thatW†(x = e−F

w(β), β; P̄ ) is finite. Hence
e−F

w(β) < e−F
w(β;P̄ ). This is the key result of the section which we state as follows.

Theorem 3.3. Semiflexible self-avoiding walks that do not contain the prime patternP at
least once have a free energyFw(β; P̄ ) that is strictly less than the free energyFw(β) of
the set of all semiflexible self-avoiding walks. That is,

Fw(β; P̄ ) < Fw(β) ∀β ∈ R. (3.20)
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The next theorem is the corresponding result for the polygons.

Theorem 3.4. DefiningFp(β; P̄ ) ≡ limn→∞ sup(1/n) lnZpn (β; P̄ ) we have

Fp(β; P̄ ) 6 Fw(β; P̄ ) < Fw(β) = Fp(β) ∀β ∈ R. (3.21)

Proof. If an edge of an-edge polygon with curvaturec is deleted, the corresponding graph
is a self-avoiding walk with(n− 1) edges and curvaturec′ ∈ {c − 2, c − 1, c}. Moreover,
deleting an edge cannot create a pattern so that 2npn(c; P̄ ) 6

∑0
k=−2wn−1(c + k; P̄ ).

Multiplying both terms by eβc and summing overc we have

2nZpn (β; P̄ ) 6 Zwn−1(β; P̄ )(1+ eβ + e2β). (3.22)

Taking logarithms, dividing byn and lettingn→∞, by using (3.20) and (2.33), we obtain
(3.21). �

4. Knots in semiflexible polygons

In this section we shall be concerned with knots in polygons with weighted curvature. The
main result will be an extension of theorem 1 in Sumners and Whittington (1988) on the
probability for a polygon to be knotted. Indeed we prove that, asn goes to infinity, the
probability that the polygon weighted by curvature is knotted goes to unity exponentially
rapidly for all finite values of the curvature parameterβ. We first prove a preliminary
lemma.

Lemma 4.1. Let pon(c) the subclass of unknotted polygons withn edges andc right angles.
Let Zp

o

n (β) =
∑

c p
o
n(c) eβc be the partition function for the corresponding model in which

the curvature of unknotted polygons is weighted by the bending fugacityβ. The limit

lim
n→∞

1

n
lnZp

o

n (β) = Fo(β) (4.1)

exists∀β ∈ R.

Proof. The proof, based on concatenation of a pair of unknotted polygons, is similar to
that of theorem 2.1. �

We now come to the main theorem of this section.

Theorem 4.2. For any finite value of the bending fugacityβ, unknotted self-avoiding
polygons are exponentially rare in the set of all polygons. That is,

α(β) = Fp(β)− Fo(β) > 0 ∀β <∞. (4.2)

Proof. We take

T = {i, i, j, k, k,−j,−j,−k,−i,−k,−k, j, j, k, k,−j, i, i} (4.3)

where i, j, k are unit vectors in the coordinate directions andT stands for trefoil. The
sequence of edges is aknotted arc(see Sumners and Whittington (1998) for the technical
definition of knotted arc), and its presence in a polygon ensures that the polygon will be
knotted. ReplacingP by T in theorem 3.4 we haveFp(β; T̄ ) < Fp(β), ∀β ∈ R. On the
other hand, the subset of unknotted semiflexible polygons withn-edges is a subset of the
corresponding semiflexible polygons which do not contain the patternT defined above. We
then haveFo(β) 6 Fp(β; T̄ ) < Fp(β), ∀β ∈ R. �



Knotted polygons with curvature in Z3 9453

If we introduce the knotting probability as

Pn(β) = 1− Z
po

n (β)

Z
p
n (β)

(4.4)

then theorem 4.2 implies that for largen

Pn(β) = 1− exp(−α(β)n+ o(n)) (4.5)

i.e. the probability that a semiflexible polygons is knotted goes to one asn goes to infinity
for any finite value of the bending parameterβ.

5. Discussion

By proving a pattern theorem for weighted (by curvature) walks, we have shown rigorously
that, for semiflexible polygons inZ3, the knot probability goes to unity exponentially
rapidly as the size of the polygon increases, for any finite value of the bending fugacityβ.
Specialized to the less obvious caseβ < 0, this result means that no matter how stiff the
n-edges polygon is (finite stiffness however), ifn is sufficiently big the polygon will be
knotted with probability one. This is an interesting result if one considers the experimental
evidence of the presence of knots in long and stiff polymers in solution such as DNA.
Notice that in the limitβ → −∞ the polygon will have the minimal number of bends
(c = 4) and no knots can occur in this configuration. In this sense the pointβ = −∞ is
singular for the functionα(β). A similar approach based on the density functions of right
angles should allow a more precise study of the functionα(β).

The arguments in theorem 3.3 could be extended to show that every pattern occurs at
positive density with high probability and∀β finite. This should allow the proof results
about entanglement complexity following the arguments used in Soteroset al (1992) for
unweighted self-avoiding walks.

The results obtained in this paper are all asymptotic in nature. In particular, they say
little about knotting in semiflexible polygons for small values ofn. It would then be very
interesting to tackle the finiten problem by numerical approaches, such as Monte Carlo
simulations.
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