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Abstract
We discuss self-averaging of thermodynamic properties in some random lattice
models. In particular, we investigate when self-averaging (in an almost sure
sense) of the free energy implies self-averaging of the energy and heat capacity,
and we discuss the connection between self-averaging in the almost sure sense,
and self-averaging in anLp sense. Under quite general conditions we show that
the average of the finite size heat capacity converges to the second derivative
of the limiting quenched average free energy. We consider the application of
these ideas to the problem of adsorption of a random copolymer at a surface,
and to some related systems.

PACS numbers: 05.50.tq, 36.20.−r

1. Introduction

Quenched random systems (Brout1959) have been studied extensively in statistical mechanics.
See, for example, Monari et al (1999) and papers cited there. One important problem which
arises in such systems is the question of self-averaging. Loosely speaking, a property (X)
of a system is self-averaging if ‘most’ realizations of the randomness have the same value of
X in the thermodynamic limit. Several different definitions of self-averaging have been
used. For instance, the fact that the free energy converges almost everywhere to the
limiting quenched average free energy has been proved for spin systems with short-range
(van Hemmen and Palmer 1982) and long-range interactions (van Enter and van Hemmen
1983), for self-avoiding walk models of polymer adsorption (Orlandini et al 1999) and polymer
localization at an interface (Martin et al 2000), and for some simplified models of self-
interacting polymers (Orlandini et al 2000, Janse van Rensburg et al 2001). In addition You
and Janse van Rensburg (2000) have proved similar results for a model of random branched
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copolymer adsorption. A definition of self-averaging which has been used largely in numerical
studies is as follows. The system is said to be self-averaging with respect to property X if〈

X2
n

〉 − 〈Xn〉2

〈Xn〉2
→ 0 (1.1)

as the size (n) of the system goes to infinity. Here the angular brackets denote averages over
the realizations of the quenched randomness of the system and Xn is the value of property X
when the system has size n. See, for example, Binder and Young (1986), Aharony and Brooks
Harris (1996), and Wiseman and Domany (1998). The relation between these two notions
of self-averaging has not received much attention and we make some observations about the
connection in section 2.

The work about convergence almost everywhere, referred to above, was confined to the
free energy. Corresponding results for the energy are easy to prove (see section 2) but it is not
so easy to provide results about self-averaging of the heat capacity. We provide some partial
results in this direction in section 3. In section 4 we discuss the application of our results to
some problems in the statistical mechanics of random copolymers.

2. Self-averaging of the free energy and energy

We shall be concerned with a system of combinatorial objects inZd of size n with an associated
colouring χ ∈ Y where Y is a probability space. The objects have an energy s which depends
on χ . The strength of the interaction is controlled by a parameter β which plays the role of
inverse temperature. Let the number of embeddings of these objects be fn(s, χ) and let the
partition function be

Zn(β, χ) =
∑
s

fn(s, χ) eβs. (2.1)

The corresponding free energy is

Fn(β, χ) = n−1 logZn(β, χ). (2.2)

Suppose that the following conditions hold:

C1. Fn(β, χ) � M(β) < ∞ for all β < ∞ and all finite n,
C2. Fn(β, χ) converges almost surely in χ to F(β) < ∞, for n → ∞, and
C3. There exists a constant Q < ∞ and a function smax(n) � Qn, such that for sufficiently

large n, fn(s, χ) = 0 for all s > smax(n).

Condition C1 requires that the free energy is finite for any finite size system and for
any realization of the disorder, and condition C3 ensures that the energy ∂Fn(β, χ)/∂β is
also finite. Condition C2 says that the free energy converges almost surely and we want to
investigate conditions under which this (a) implies convergence of the free energy in the sense
of (1.1) and (b) implies self-averaging of the energy and heat capacity.

In the above,F(β) is the limiting quenched average free energy of the system and sufficient
conditions for C2 to hold in some polymer systems are given in Orlandini et al (2000).

Proposition 1. Conditions C1 and C2 imply that Fn(β, χ) converges in Lp(Y ) to F(β) for
all β < ∞ and for all p such that 1 � p < ∞.

This proposition, which is an immediate consequence of the Lebesgue-dominated convergence
theorem, says that almost everywhere convergence and boundedness implies∫

Y

|Fn(β, χ) − F(β)|p dχ → 0 (2.3)
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as n → ∞. The case p = 2 is equivalent to the notion of self-averaging embodied in (1.1)
provided that the denominator in (1.1) has a non-zero limit.

We now turn to the question of self-averaging of the energy of the system. The energy
per vertex, Un(β, χ), is given by

Un(β, χ) = ∂Fn(β, χ)

∂β
(2.4)

and we are interested in the convergence of Un(β, χ). We first prove that the free energy is
convex.

Lemma 1. The free energyFn(β, χ) is a convex function of β for β < ∞ for any colouring χ .

Proof. By the Cauchy–Schwartz inequality

Zn

(
β1 + β2

2
, χ

)
� [Zn(β1, χ)Zn(β2, χ)]

1/2 (2.5)

so that after taking logarithms and dividing by n we have

Fn

(
β1 + β2

2
, χ

)
� 1

2
[Fn(β1, χ) + Fn(β2, χ)]. (2.6)

Since the Zn are polynomials in eβ they are continuous and therefore Fn(β, χ) is a continuous
function of β. By a theorem of Hardy et al (1934) this implies that Fn(β, χ) is a convex
function of β for all χ . �

Remark 1. By condition C2 the sequence Fn(β, χ) converges almost surely to the limit F(β),
and, since this limit is the limit of a sequence of convex functions, F(β) is convex.

Since Fn(β, χ) is the logarithm of a polynomial in eβ , where the polynomial is always
positive, Fn(β, χ) is smooth for all β < ∞. It is also a monotone non-decreasing function of
β. Its derivative with respect to β, Un(β, χ), is also a smooth and monotone non-decreasing
function of β.

Proposition 2. Un(β, χ) converges, almost surely in χ , to U(β) := ∂F (β)

∂β
for almost all β.

Proof. Fn(β, χ) is a sequence of convex functions, differentiable for all β < ∞. Therefore,
for every β for which the limit of the sequence is differentiable, the sequence of derivatives
converges to the derivative of the limit function. The limit of the sequence is F(β) which
is convex, and so almost everywhere differentiable. Hence the derivative of Fn(β, χ) with
respect to β converges, almost surely in χ , to the derivative of F(β), for almost all β. �

Proposition 3. Un(β, χ) converges to U(β) in Lp(Y ) for 1 � p < ∞.

Proof. By condition C3, Un(β, χ) � Q, so it is bounded in Lp(Y ). Moreover it converges
almost surely inχ toU(β) by proposition 2, so the result follows from the Lebesgue-dominated
convergence theorem. �

Remark 2. The result of proposition 2 together with the boundedness of Un (condition C3)
implies that ∫

Y

Un(β, χ) dχ →
∫
Y

U(β) dχ = U(β). (2.7)

Proposition 3 for the case p = 2, together with (2.7), implies that∫
Y

Un(β, χ)
2 dχ −

[∫
Y

Un(β, χ) dχ

]2

→ 0 (2.8)

which establishes (1.1) for the energy of the system.
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3. Self-averaging of the heat capacity

In this section we are interested in proving self-averaging of the heat capacity, Cn(β, χ) =
∂Un(β, χ)/∂β. We shall show that, under conditions which are not very restrictive, the
average of the heat capacity at finite n,

∫
Cn(β, χ) dχ , converges to the second derivative of

the limiting quenched average free energy, ∂2F(β)/∂β2. We also find conditions which are
sufficient to ensure that the heat capacity self-averages.

Since Un(β, χ) is not, in general, a convex function of β we cannot apply to Cn(β, χ)

the same argument that we used for Un(β, χ) in proposition 2. Moreover the argument used
for Fn(β, χ), in remark 1, cannot be applied to Un(β, χ) and we cannot say anything a priori
about the differentiability of U(β). Our aim is to prove self-averaging for the heat capacity
in a finite interval B = [β1, β2] which can contain points where U(β) is not differentiable,
corresponding to phase transitions in the system. We shall not be able to give a complete
treatment of the problem but we shall be able to say something useful for certain types of
phase transition.

Instead of assuming differentiability ofU(β) in B we make the less restrictive assumption:

C4. U(β) ∈ AC([β1, β2]), i.e. the energy belongs to the class of absolutely continuous
functions in that interval.

This is equivalent to saying that the derivative,U ′(β), exists for almost all β ∈ B, that U ′(β) is
integrable, and that the fundamental theorem of calculus holds, for all β ∈ B (see for instance,
Rudin (1987) or Titchmarsh (1932)). This last property will be crucial in the proof of the
next lemma. Condition C4 is very mild and, for instance, does not rule out a first-order phase
transition.

Since Cn(β, χ) is the second derivative of a convex function it is always non-negative.
Finally we also make the assumption:

C5. The sequence Cn(β, χ) = ∂Un

∂β
is bounded above by a finite function of β, i.e.

Cn(β, χ) � P(β) < ∞.

Condition C5 requires that the heat capacity is finite so this condition will not hold at a
second-order transition at which the heat capacity diverges. However, for such a system this
condition would be expected to hold away from the transition. In addition, it would hold in
systems in which there is a phase transition signalled by a cusp in the heat capacity.

Lemma 2. Every weakly convergent subsequence of Cn(β, χ) has the same limit, for fixed
β ∈ B, and the limit is independent of χ .

Proof. Since Cn(β, χ) is bounded in Lp(Y ), i.e. ‖Cn(β, χ)‖Lp(Y) � P(β) < +∞, there exists
a subsequence Cnk (β, χ) weakly converging to t (β, χ) in Lp(Y ), i.e.∫

Y

Cnk (β, χ)φ(χ) dχ →
∫
Y

t (β, χ)φ(χ) dχ ∀φ ∈ Lp′
(Y ) (3.1)

where 1/p + 1/p′ = 1. This implies that (Brezis 1986)

‖t (β, χ)‖Lp(Y) � lim inf
k→∞

‖Cnk (β, χ)‖Lp(Y). (3.2)

This inequality, together with the bound Cn(β, χ) � P(β) gives ‖t (β, χ)‖Lp(Y) � P(β). By
the Holder inequality∫
B

(∫
Y

|t (β, χ)φ(χ)| dχ

)
dβ �

∫
B

[(∫
Y

|t (β, χ)|p dχ

)1/p (∫
Y

|φ(χ)|p′
dχ

)1/p′]
dβ

� K

∫
B

P (β) dβ < +∞ (3.3)
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where K can depend on φ. We integrate with respect to β both sides of (3.1) and since∫
B

(∫
Y

|t (β, χ)φ(χ)| dχ
)

dβ < +∞, the order of integration can be interchanged by Fubini’s
theorem. This gives∫

Y

φ(χ)

(∫ β

β1

Cnk (γ, χ) dγ

)
dχ →

∫
Y

(∫ β

β1

t (γ , χ) dγ

)
φ(χ) dχ. (3.4)

Therefore,∫
Y

φ(χ)Unk (β, χ) dχ −
∫
Y

φ(χ)Unk (β1, χ) dχ →
∫
Y

(∫ β

β1

t (γ , χ) dγ

)
φ(χ) dχ

∀φ ∈ Lp′
(Y ). (3.5)

Since, by proposition 3, Un(β, χ) converges to U(β) in Lp(Y ) it converges weakly to U(β)

in Lp(Y ). Therefore∫
Y

φ(χ)[U(β) − U(β1)] dχ =
∫
Y

(∫ β

β1

t (γ , χ) dγ

)
φ(χ) dχ ∀φ ∈ Lp′

(Y ). (3.6)

We now show that (3.6) implies

U(β) − U(β1) =
∫ β

β1

t (γ , χ) dγ for almost all χ ∈ Y. (3.7)

Since U(β) − U(β1) − ∫ β

β1
t (γ , χ) dγ belongs to L1(Y ) for each β ∈ B, and since φ in (3.6)

is in Lp′
(Y ) ⊃ C∞

c (Y ), where C∞
c (Y ) is the set of smooth functions with compact support in

Y, then we can apply corollary IV.24 of Brezis (1986), which implies equation (3.7). By the
fundamental theorem of calculus, we get

∂U(β)

∂β
= t (β, χ) for almost all χ ∈ Y (3.8)

for almost all β ∈ B. This implies that t (β, χ) does not depend on χ . If we now choose
another subsequence weakly convergent to, say, v(β, χ), we obtain equality (3.8) with, on the
right-hand side, v(β, χ) instead of t (β, χ). But this implies that the weak limit is the same,
independent of the chosen subsequence, which proves the lemma. We shall call such a limit
C(β), i.e. C(β) = ∂U/∂β. �

Remark 3. Consider the sequence Cn(β, χ) which is bounded in Lp(Y ). We note that
the whole sequence is weakly convergent in Lp(Y ) to C(β). This is because, whatever
subsequence Cnk (β, χ) we extract from Cn(β, χ), the subsequence will be bounded. From
each subsequence Cnk (β, χ) it is possible to extract a weakly converging subsubsequence
Cnkj

(β, χ). By lemma 2 all such subsubsequences converge to the same limit C(β). This
implies that the whole sequence Cn(β, χ) converges weakly to the same limit C(β). This
means that ∫

Y

Cn(β, χ)φ(χ) dχ →
∫
Y

C(β)φ(χ) dχ ∀φ ∈ Lp′
(Y ). (3.9)

Theorem 1. For almost all β < ∞∫
Y

Cn(β, χ) dχ → C(β) (3.10)

which implies convergence of mean values for the heat capacity.

Proof. The result follows by putting φ = 1 in (3.9). �

We want to have conditions sufficient to establish Lp-convergence of Cn(β, χ) to C(β).
Motivated by the behaviour of some physical systems we consider the side condition:
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C6. Either Cn(β, χ) � C(β) for all sufficiently large n and for almost all χ ∈ Y , or
Cn(β, χ) � C(β) for all sufficiently large n and for almost all χ ∈ Y .

This condition is more difficult to establish for typical physical systems though we show, in
the next section, that it holds in the high-temperature phase for random copolymer adsorption,
and for some related problems. Although it has not been established rigorously in the low-
temperature phase for these problems, there is numerical evidence that it also holds in these
cases.

Theorem 2. If condition C6 is satisfied then the sequence Cn(β, χ) converges to C(β) in
Lp(Y ), 2 � p < ∞, for almost all β ∈ B.

Proof. We give the proof when Cn(β, χ) � C(β). The proof in the second case proceeds in
a similar way. Note that∫
Y

(
Cp
n (β, χ) − Cp(β)

)
dχ =

∫
Y

(
Cp−1
n (β, χ) − C(β)p−1)Cn(β, χ) dχ

+
∫
Y

(Cn(β, χ) − C(β)) C(β)p−1 dχ

� P(β)

∫
Y

(
Cp−1
n (β, χ) − C(β)p−1) dχ + C(β)p−1

∫
Y

(Cn(β, χ) − C(β)) dχ

(3.11)

where we have used the fact that heat capacities are non-negative. By (3.10) the second term
converges to zero, and

‖Cn(β, χ)‖Lp(Y) → ‖C(β)‖Lp(Y) (3.12)

follows by induction. Since Lp is uniformly convex for 2 � p < ∞, (3.9) and (3.12) imply
strong convergence in Lp for 2 � p < ∞ (Cioranescu and Donato 1999, proposition 1.17).
That is, ∫

Y

|Cn(β, χ) − C(β)|p dχ → 0 (3.13)

which completes the proof. �

For p = 2, this lemma proves the notion of self-averaging contained in (1.1) for the heat
capacity C(β) a.e. in B. We now consider almost sure convergence of the heat capacity to a
limit independent of χ .

Theorem 3. If condition C6 is satisfied there exists at least one subsequence Cnk (β, χ) which
converges almost everywhere toC(β), for β ∈ B. If there exist other convergent subsequences
then all of these converge to the same limit.

Proof. Since Cn(β, χ) converges in L2(Y ) it converges in L1(Y ) and therefore in measure.
Therefore, we can extract a subsequenceCnk(β, χ)which converges almost everywhere (Rudin
1987, chapter 3). The second part of the theorem follows from theorem 2 and the uniqueness
of the limit. �



Self-averaging in the statistical mechanics of some lattice models 4225

4. Application to some random copolymer problems

We first consider a self-avoiding walk model of random copolymer adsorption (Orlandini et al
1999). We consider a sequence of colours χ ≡ {χ1, χ2, . . .} where each χi is A with
probability p and B with probability 1−p, and where the χi are independent. Consider n-edge
self-avoiding walks on the simple hypercubic lattice Zd with vertices labelled 0, 1, . . . , n. We
write (xi, yi, . . . , zi) for the coordinates of vertex i and fix the zeroth vertex at the origin. In
addition zi � 0. We associate the colour χi with vertex i for i = 1, 2, . . . , n. We take the
parameter s in (2.1) to be the number of vertices labelled A which have z-coordinate equal to
zero. That is, the number fn(s, χ) in (2.1) is the number of self-avoiding walks, starting at
the origin, confined to the half-space z � 0, with colouring χ , having s vertices labelled A in
the hyperplane z = 0.

The free energy Fn(β, χ) is defined by (2.2) and Orlandini et al (1999) established
condition C2. Clearly fn(s, χ) = 0 for all s > n, which establishes condition C3. We can
take M(β) = supn>0 κn(β) � max[log(2d), β + log(2d)] < ∞ for β < ∞, where κn(β)

is the free energy of the corresponding homopolymer (with all vertices labelled A). This
establishes condition C1. The results of section 2 imply that:

(1) The free energy converges in Lp(Y ), which (taking p = 2) implies the validity of (1.1)
for the free energy.

(2) The energyUn(β, χ) converges almost surely in χ and in the Lp sense to U(β) = ∂F/∂β,
for all values of β at which F(β) is differentiable. The mean energy converges and this,
when we take p = 2 in the above, establishes (1.1) for the energy.

For the heat capacity our results show that the mean heat capacity
∫
Cn(β, χ) dχ converges

toC(β) = ∂2F(β)/∂β2 in any intervalB = [β1, β2] in which the energyU(β) is differentiable
and C(β) < ∞ (so that condition C4 is satisfied). For this model it is known (Orlandini et al
1999) that F(β) = F(0) for all β � 0 and that there is a critical point βc > 0 defined as

βc = sup[β|F(β) = F(0)]. (4.1)

For all β < βc (i.e. in the high-temperature or desorbed phase) C(β) = 0 and Cn(β, χ) � 0,
so condition C5 is satisfied and Cn(β, χ) converges to C(β) = 0 in the Lp sense. Taking
p = 2 these results imply (1.1) for the heat capacity.

These results also apply to a lattice model of adsorption of branched random copolymers
(You and Janse van Rensburg 2000).

Orlandini et al (1999) also considered a self-avoiding walk model of random copolymer
adsorption in which the χi are real numbers chosen (independently) from a given probability
distribution such that the mean value of χi > 0. For this model all of the above results hold.

Martin et al (2000) have considered a self-avoiding walk model of localization of a
random copolymer at an interface between two immiscible solvents. The model has two
‘energy’ variables, α and β and one is interested in the behaviour in the (α, β)-plane. In the
delocalized phases the free energy is either independent of α and directly proportional to β or
vice versa, so the second derivatives ∂2F/∂α2 and ∂2F/∂β2 are both zero. These quantities
correspond to heat capacities and condition C6 can be shown to hold. All of the results which
we can prove for the 2-colour model of copolymer adsorption can be proved in a similar way
for the localization problem.

Another area of interest in random copolymers is the models of self-interacting randomly
coloured self-avoiding walks. In the usual version of this model the vertices are coloured A or
B independently. If two vertices each coloured A are unit distance apart on the lattice (but not
adjacent along the walk) we call this an AA contact, and similarly for BB and AB contacts.
The energy of a walk (given a particular sequence of colours) is a linear combination of the
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numbers of AA, BB and AB contacts. For two particular versions of this model, unfolded
walks (Orlandini et al 2000) and polygons (Janse van Rensburg et al 2001), condition C2 has
been shown to hold. Conditions C1 and C3 can be established easily for these models. Our
results therefore show that the free energy converges in Lp, the mean energy converges and
the energy converges both almost everywhere and in Lp, establishing (1.1) for both the free
energy and energy. In any interval in which the energy is absolutely continuous the mean
heat capacity converges but we are unable to prove self-averaging of the heat capacity without
additional conditions.

5. Discussion

In this paper we have examined conditions under which various thermodynamic functions
self-average for quenched random systems. Our main focus has been to prove convergence of
these thermodynamic functions both almost everywhere and in Lp. The convergence in Lp

is of interest since, for the case p = 2, it implies convergence of the variance to zero (as in
(1.1)). We have shown that if the free energy converges almost everywhere then it converges
in Lp and that the energy then converges both almost everywhere and in Lp, in an interval of
β, provided that the free energy is differentiable in this interval.

For the heat capacity the situation is more difficult, and we have been unable to prove
anything without additional conditions on the energy. We expect that Un(β, χ) will be a
convex function of β in some ranges of β and a concave function of β in others. If we confine
our attention to an interval β1 � β � β2 where Un(β, χ) is either a concave or a convex
function of β, then self-averaging of C(β) follows by repeating the argument in lemma 1 and
propositions 2 and 3 (with Un(β, χ) replacing Fn(β, χ)). We have derived some results about
the heat capacity under the less restrictive conditions that U(β) is absolutely continuous in an
interval β1 � β � β2 (condition C4), and that the heat capacity is bounded above (condition
C5). With these conditions we have shown that the mean heat capacity converges. This is
important in numerical studies, where the result is normally assumed in order to estimate the
quenched average heat capacity. It remains true even when the heat capacity exhibits cusps or
finite jumps (second-order transitions). If we impose the additional condition that the limiting
heat capacity is approached from one direction (condition C6) then we have also proved that
the heat capacity converges in Lp.

We have considered the application of these results to some problems involving random
copolymers, such as random copolymer adsorption and localization, and a self-interacting
random copolymer. For the adsorption and localization problems we have shown that the
models satisfy conditions C1 to C6 in the high-temperature phases so that the free energy and
energy converge almost everywhere and in Lp, and the heat capacity converges in Lp. In
the low-temperature phase we can prove results about the free energy and energy but we are
unable to say anything about the heat capacity without additional conditions. Our results do
not allow us to say anything about the convergence of metric properties such as the radius of
gyration.
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