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In this work we present a homogenization result for a class of degenerate elliptic functio-
nals mimicking strongly anisotropic media. We study the limit as ε → 0 of the functionals

∫

〈αε(x,∇u)Aε(x)∇u,∇u〉 dx ,

where, for any ε > 0, αε : R
n × R

n → R, αε(x, ξ) ≈ 〈Aε(x)ξ, ξ〉p/2−1, Aε ∈ Mn×n(R)
being measurable non-negative matrices such that At

ε(x) = Aε(x) almost everywhere,
p > 1. To take into account the anisotropy of the media we consider two families of weight
functions reasonably different, λε and Λε, possibly degenerate or singular, such that:

λ
2/p
ε (x)|ξ|2 ≤ 〈Aε(x)ξ, ξ〉 ≤ Λ

2/p
ε (x)|ξ|2 .

The convergence to the homogenized problem is obtained by a classical approach of
Γ-convergence.

Keywords: Homogenization; anisotropic operators; Γ-convergence; weighted Sobolev
spaces.
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1. Introduction

Composites are materials containing more than one constituent, finely mixed.21

They are widely used in several branches of industry, due to their interesting proper-

ties. Indeed it is known that in general a composite performs better than a material

made of a single component since it combines the attributes of the constituent ma-

terials, as in the case for example of ceramics or reinforced concrete. Common

examples of composites are bones, which are porous composites, porous rock, in

which the pores are often filled with salt water or oil, construction materials, such

as wood and concrete, martensite, which is typical of a shape memory material,
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with a laminar-type structure comprised of alternating layers of the two variants

of martensite.

Usually in a composite the heterogeneities are very small compared with the

global dimension of the sample. The smaller are the heterogeneities, the better is

the mixture, which from a macroscopic point of view looks like a “homogeneous”

material. It is then crucial to understand the relationship between the properties

of the constituent materials, the underlying microstructure of a composite, and the

overall effective (electrical, thermal, elastic) moduli which govern the macroscopic

behavior. The aim of the homogenization theory is to describe the macroscopic

properties of the composite by taking into account the properties of the microscopic

structure. Homogenization covers a wide range of applications, such as the study of

composites,21 optimal design problems,1 neutron transport problems23 and many

other fields, see for example Refs. 4 and 10 and references therein.

In this paper we are interested in the study of a homogenization problem for

highly anysotropic non-periodic composites. We want to emphasis that we are

considering a non-periodic modellization. Indeed in many situations a simple and

appropriate way to model evenly distributed heterogeneities is to consider as a

first approximation a periodic distribution, see the vast literature on the topic,

e.g. Refs. 10, 13 and 25. However, this approximation is not always appropriate, for

example to the case of random media.27

In many physical situation a certain “energy” (thermal, electric, elastic) of a

system is modelled by a nonlinear integral of the form

Fε(u) =

∫

Ω

fε(x,∇u) dx , (1.1)

where ε is a scale parameter, small compared to the size of the set Ω ⊂ R3, descri-

bing in some way the heterogeneities of the medium, and u is a physical field such

as for example the displacement or the temperature. The aim of the homogeniza-

tion in this case is to describe the overall properties of the medium by a simpler

homogenized energy integral of the form

Fhom(u) =

∫

Ω

fhom(∇u) dx , (1.2)

obtained by appropriately taking the limit of Fε for ε→ 0.

In the homogenization of multiple integrals, the right notion of variational con-

vergence to be used turns out to be the Γ-convergence one, introduced in Ref. 16,

whose natural framework is that of lower semicontinuous functionals. This is pre-

cisely the tool we use in this paper to obtain the convergence to the homogenized

problem. For comprehensive accounts on this techique see e.g. Refs. 3 and 14.

We recall that there are many other different techniques available to treat ho-

mogenization problems which arise in other mathematical contexts, for example in

the context of PDEs or of boundary values problems, for which we refer to Refs. 1,

10 and 13 and references therein.



2nd Reading
November 16, 2004 11:5 WSPC/103-M3AS 00380

Non-Periodic Homogenization of Strongly Anisotropic Functionals 1737

In this paper we consider the following functionals,

Jε(u) =

∫

Ω

fε(x,∇u) dx+

∫

Ω

gu dx , (1.3)

defined on any bounded open set Ω with Lipschitz boundary in Rn, for ε > 0

and g ∈ L∞(Ω), with u belonging to some space where ∇u exists. The family of

functions fε : Rn × Rn → R+ is defined by

fε(x, ξ) := 〈αε(x, ξ)Aε(x)ξ, ξ〉 , ε > 0 , (1.4)

where Aε : Rn →Mn×n(R) is a family of measurable matrix-valued functions such

that At
ε(x) = Aε(x) ≥ 0 a.e. in Rn for all ε > 0. We shall assume that there exist two

families of weight functions (i.e. non-negative locally summable functions) (λε)ε>0,

(Λε)ε>0 such that:

λ2/p
ε (x)|ξ|2 ≤ 〈Aε(x)ξ, ξ〉 ≤ Λ2/p

ε (x)|ξ|2 (1.5)

for a.e. x ∈ Rn and for all ξ ∈ Rn, with p > 1.

Moreover, we assume


































(i) αε(x, ·) : Rn → R continuous for a.e. x ∈ Rn ,

αε(·, ξ) measurable on Rn for any ξ ∈ Rn ;

(ii) b1〈Aε(x)ξ, ξ〉p/2−1 ≤ αε(x, ξ) ≤ b2〈Aε(x)ξ, ξ〉p/2−1 ,

where b1 and b2 are positive constants ;

(iii) 〈αε(x, ξ)Aε(x)ξ, ξ〉 convex in ξ .

(1.6)

Up to changing the constants in (1.5), it holds

λε(x)|ξ|
p ≤ fε(x, ξ) ≤ Λε(x)|ξ|

p , (1.7)

for a.e. x ∈ Rn, for any ξ ∈ Rn, p > 1.

Concerning the weights we will make the following assumptions:

(w1) λε ∈ Ap(A), p > 1, uniformly with respect to ε, i.e. there exists A > 0 such

that
(
∫

I

λε dx

)(
∫

I

λ−1/(p−1)
ε dx

)p−1

≤ A (1.8)

for all cubes I with faces parallel to the coordinate planes and for all ε > 0; in

addition, for any given cube I ⊂ Rn, there exists a constant C1 = C1(I) > 0

such that
∫

I

λε ≥ C1 (1.9)

for all ε > 0;
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(w2) Λε ∈ L1+µ
loc (Rn), µ > 0, uniformly with respect to ε, i.e. for any given cube

I ⊂ Rn there exists a constant C2 = C2(I) > 0 such that
(
∫

I

Λ1+µ
ε dx

)
1

1+µ

≤ C2 (1.10)

for all ε > 0;

(w3) for every cube I ⊆ Rn there exists a constant K = K(I) > 0 such that
∫

I

Λε(x)

λε(x)
dx ≤ K , (1.11)

uniformly with respect to ε.

We give some examples of admissible weights at the end of the section.

Given the functionals Jε(u) =
∫

Ω〈αε(x,∇u)Aε(x)∇u,∇u〉 dx +
∫

Ω gu dx we

want to prove that there exists a subsequence 〈αεk
(x, ξ)Aεk

(x)ξ, ξ〉 and a function

f∞(x, ξ), whose properties will be specified later, such that the functionals Jεk
(u)

Γ-converge in the L1(Ω) topology to a functional that can be written, for suitably

regular functions u, as
∫

Ω
f∞(x,∇u) dx+

∫

Ω
gu dx. In addition we will show that

min{Jεk
(u) : u = 0 on ∂Ω}

converge in the L1(Ω) topology to

min

{
∫

Ω

f∞(x,∇u) dx+

∫

Ω

gu dx : u = 0 on ∂Ω

}

(1.12)

with the minima taken in suitable function spaces.

Functionals as in (1.3), with a weighted growth condition on the energy density

such as the one considered in (1.7), can be used to describe some fine properties of

a wide class of degenerate anisotropic structures. Notice that we do not make any

periodicity requirement on the energy density, in order to be able to describe non-

periodic structures. For example one could think of models of porous media,11 or

models of mixtures of materials with different nonlinearities, showing a particular

different behavior along preferred directions.20

As a simple model case of a physical situation with an energy density such as

(1.4) we can consider an electromagnetic material in R3 with a mesoscopic structure

given by alternate layers of two materials, a metal with high conductivity and a

plastic that is electrically insulating. The constitutive equation for this medium is

given by j(x) = σ(x)e(x), x = (x1, x2, x3), where j(x) is the current field, e(x)

is the electric field and the conductivity tensor field (σi,j(x))i,j=1,2,3 is such that

σ1,3(x) = σ3,1(x) = σ2,3(x) = σ3,2(x) = 0 for any x ∈ R3, and σ3,3(x) = λ(x3),

λ being a periodic A2-weight vanishing at a finite number of points. The energy

density of such a medium is modelled by fε(x,∇u) = 〈σε(x)∇u,∇u〉 and the energy

is described by the functional

Jε(u) =

∫

Ω

{

2
∑

i,j=1

σi,j∂xi
u∂xj

u+ λε(x3)|∂x3u|
2

}

dx+

∫

Ω

gu dx , (1.13)
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where Ω is a bounded connected open subset of R3, the sub-matrix (σi,j(x))i,j=1,2

is bounded and positively definite (again to simplify the picture) and the functions

λε have the form λε(x3) = λ(x3

ε ).

The homogenization process leads to a highly anisotropic composite that has

the conducting properties of the metal in the directions parallel to the layers and

the insulating properties of the plastic normal to the layers.

Functionals like (1.13) can model the energy of several different physical situa-

tions in addition to the one mentioned above, like for instance thermal conduction

in a body containing at the microscopic scale a horizontal bundle of thin layers

characterized by a very low thermal conductivity, or again the behavior of hetero-

geneous materials with some kind of “stiff degeneracies” along a given direction.

Clearly, in (1.13), Λε is a constant, but we might easily modify the model to take

into account opposite behavior of the inclusions, taking now λε ≡ 1 and possibly

Λε = +∞ along some direction.

Concerning previous studies of models of possibly degenerate anisotropic situa-

tions as the ones we are interested in here, we are basically aware of two papers.

In Ref. 15 the author consider functionals with density energy fε with a growth

condition as in (1.7), restricted to the case Λε = cλε, that is, describing possibly

degenerate phenomena basically isotropic in all directions. On the contrary, since we

are interested in studying strongly anisotropic situations, we consider two different

families of weights λε and Λε, which can differ each other in the sense that the

ratios Λε/λε can blow-up at some point, provided (1.11) is satisfied.

A possibly degenerate anisotropic nonlinear elliptic problem with the same

structure of (1.4) and with the same structural hypotheses was treated in Ref. 17,

with a completely different approach based on weighted compensated compact-

ness techniques. However, in Ref. 17 the authors were somehow forced to restrict

themselves to the periodic context.

We want to stress explicitly that the anisotropy of the problem treated here,

i.e. the presence of two different families of weights controlling the structure of the

functionals, leads to face several problems that we try to explain now.

We have to be vague for a while (for precise definitions see the next section).

Let Ω be a bounded open set, and p > 1. We denote by W 1,p
Aε

(Ω) a two-weight

Sobolev space related to the matrix Aε (satisfying (1.5) for any ε > 0), endowed

with a norm “induced” by Aε, in a sense specified in Definition 2.3 below. Then

we consider the space given by the closure of regular functions in Ω with respect

to that norm, and we denote it by H1,p
Aε

(Ω). Now, a Meyers–Serrin type result

reading “H1,p
Aε

(Ω) = W 1,p
Aε

(Ω)” is not true in the two-weight case (see Ref. 9 and

also some examples in Sec. 6). This means that H1,p
Aε

(Ω) does not coincide with the

finiteness domain of the functional Jε, and therefore a Lavrentev-type phenomenon

can occur.22

In addition, when dealing with the Γ-limε→0 Jε, it is not even obvious in which

way to define the spaces of type H and W connected with the finiteness domain

of the Γ-limit. One of the features of this note is to produce consistent definitions
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of suitable H and W -type space where to represent the Γ-limit. This problem,

representing one of the main difficulties of this work, is extensively discussed in

Secs. 4 and 5. Moreover, in Sec. 6 we show that these spaces H and W might be

different.

Examples of admissible weights

The simplest situation one could think of is the case of equal periodical Ap weights

λ = Λ, if we set λε(x) = λ(x
ε ), which clearly satisfy hypotheses (w1), (w2) and

(w3) (notice that a periodic extension of an Ap weight is again in the Ap class).

A less trivial example (however still periodic) is provided by a pair (λ,Λ) of

periodic weights with the same period, if we put λε(x) = λ(x
ε ), Λε(x) = Λ(x

ε ), with

λ ∈ Ap and Λ ∈ L1+µ
loc (Rn) provided Λ/λ ∈ L1

loc(R
n).

In order to provide simple examples of non-periodic weights, consider first for

instance the case λε ≡ 1. Then (w1) is obvious, whereas (w2) and (w3) read straight-

forwardly as Λε ∈ L1+µ
loc (Rn) uniformly in ε. On the other hand, it is easy to produce

non-periodic Ap weights with controlled behavior in ε as required in (w1) and (w3)

just starting from periodic Ap weights with non-rationally comparable periods.

We stress also explicitly that, even if we assume λε, Λε periodic, the function

fε might not be periodic.

Our notation is standard. The Lebesgue measure of sets is denoted by | | and the

scalar product in Rn by 〈 , 〉. For any Lebesgue measurable set E, if ω ∈ L1
loc(R

n)

we denote by ω(E) :=
∫

E ω(x) dx, and if S denotes a set in Ω, uS is the average

of the function u in the set S, i.e. uS =
∫

S u(y) dy = 1
|S|

∫

S u(y) dy. We denote by

Liploc(R
n) the space of locally Lipschitz functions on Rn and, for any bounded open

set Ω we denote by Lip0(Ω) the space of locally Lipschitz functions with support

compactly contained in Ω.

The plan of the work is the following. Section 2 briefly recalls the definition of

Γ-convergence and some basic properties of Ap weights. In Sec. 3 we prove some

preliminary results about the Γ-limit of the functionals Jε. Section 4 is devoted to

the definition of suitable Sobolev-type spaces, denoted by
◦

H∞ (Ω) and
◦

W∞(Ω), for

studying problem (1.12). In Sec. 5 we obtain a representation theorem for the Γ-

limit of Jε in
◦

H∞ and we give a result concerning the convergence of the minimum

points of Jε. In Sec. 6 we produce two examples concerning the relations between

the spaces H and W used in the paper. In the first example we provide weights such

that H1,p
Aε

(Ω) 6= W 1,p
Aε

(Ω) but when we pass to the Γ-limit
◦

H∞(Ω) =
◦

W∞(Ω). On the

contrary, in the second one we choose weight functions so that H1,p
Aε

(Ω) = W 1,p
Aε

(Ω)

but
◦

H∞(Ω) 6=
◦

W∞(Ω).

2. Basic Tools

The notion of convergence used in this paper is the so-called Γ-convergence (see

Ref. 16).
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Definition 2.1. Let X be a metric space and for ε > 0 consider the functional

Fε : X → [−∞,+∞]. We say that Fε Γ-converges to F on X as ε goes to zero if

the following two conditions hold:

(1) for every u ∈ X and every sequence (uε) which converges to u in X there holds

lim inf
ε→0

Fε(uε) ≥ F (u) ; (2.1)

(2) for every u ∈ X there exists a sequence (uε) which converges to u in X and

lim
ε→0

Fε(uε) = F (u) . (2.2)

Many properties about Γ-convergence can be found for example in Refs. 3–5 and

14. In particular we remark explicitly that, if the functionals Fε are convex, the Γ-

limit F is convex. Moreover Γ-convergence turns out to be stable with respect

to perturbation with a continuous function and composition with an increasing

function.

We briefly recall some results on Muckenhoupt weights:

Definition 2.2. 24 We say that a non-negative mesurable function λ on Rn is a

weight in the class Ap(A), p > 1, for a given constant A ≥ 1, if it satisfies the

following condition:
(
∫

I

λ dx

)(
∫

I

λ−1/(p−1)dx

)p−1

≤ A ,

for all cubes I ⊂ Rn. Moreover, we denote by Ap :=
⋃

A≥1Ap(A).

We need the following result, see Refs. 12, 15 and 18:

Theorem 2.1. Let λ ∈ Ap(A), p > 1. Then there exist two positive constants

σ = σ(n, p, A) and C = C(n, p, A) such that

(
∫

I

λ1+σdx

)1/(1+σ)

≤ C

∫

I

λ dx , (2.3)

(
∫

I

λ−(1+σ)/(p−1)dx

)1/(1+σ)

≤ C

∫

I

λ−1/(p−1)dx (2.4)

for every cube I with faces parallel to the coordinate planes.

LetM be the Hardy–Littlewood maximal function operator defined byMu(x) =

supI3x

∫

I |u(y)| dy, where u is a locally integrable function and I is a cube as above.

The following weighted norm inequality for M holds:

Theorem 2.2. 24 Let 1 < p < ∞. Given a weight function λ ∈ Ap(A) there exists

a constant c = c(A) such that
∫

Rn

(M |u|)pλ(x) dx ≤ c

∫

Rn

|u|pλ(x) dx ∀u ∈ Lp(Rn, λ) , (2.5)

where Lp(Rn, λ) = {u ∈ L1
loc(R

n) :
∫

Rn |u(x)|pλ(x) dx <∞}.
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Let us now introduce some function spaces suitable to our problem. Let Ω be

a bounded open set in Rn. If p > 1 and λ ∈ Ap we denote by W 1,p(Ω, λ) = {u ∈

Lp(Ω, λ) ∩W 1,1
loc (Ω) : |∇u| ∈ Lp(Ω, λ)}, by

◦

W1,p(Ω, λ) :=
◦

W1,1(Ω) ∩W 1,p(Ω, λ), by

H1,p(Ω, λ) the closure of C1(Ω) ∩W 1,p(Ω, λ) in W 1,p(Ω, λ) and by
◦

H1,p(Ω, λ) the

closure of C∞
0 (Ω) in W 1,p(Ω, λ). In addition, if Ω has Lipschitz boundary, then the

following characterization has been proved (see Ref. 15 and also Ref. 9):

◦

H
1,p(Ω, λ) =

◦

W
1,p(Ω, λ) .

Let Aε be the matrix defined in (1.5) and the pair of weights (λε,Λε) satisfying

hypothesis (w1), (w2) and (w3) listed in the Introduction. In complete analogy with

Ref. 17, we define the following spaces:

Definition 2.3. If 1 < p <∞, we define for all ε > 0

W 1,p
Aε

(Ω) =

{

u ∈ Lp(Ω, λε) ∩W
1,1
loc (Ω) :

∫

Ω

〈Aε∇u,∇u〉
p/2dx < +∞

}

, (2.6)

endowed with the norm

‖u‖W 1,p
Aε

(Ω) =

(
∫

Ω

|u|pλε dx

)1/p

+

(
∫

Ω

〈Aε∇u,∇u〉
p/2dx

)1/p

. (2.7)

With suitable minor changes in the proof of Theorem 1 in Ref. 17, it is pos-

sible to show that W 1,p
Aε

(Ω) is a reflexive Banach space continuously embedded in

W 1,p(Ω, λε) and hence continuously embedded in W 1,1(Ω). We stress explicitly that

the embedding in W 1,1(Ω) is uniform in ε since the constant controlling the norm

W 1,1(Ω) depends only on the constant A of Definition 2.2.

Definition 2.4. If 1 < p <∞, we define for all ε > 0

◦

H
1,p
Aε

(Ω) = Lip0(Ω)
‖·‖

W
1,p
Aε

(Ω) . (2.8)

Due to the assumptions on fε, the functionals Jε defined in (1.3) have minima in
◦

W
1,p
Aε

(Ω) :=
◦

W1,1(Ω) ∩
◦

W
1,p
Aε

(Ω) for any ε > 0 (see e.g. Ref. 19). In general
◦

W
1,p
Aε

(Ω)

and
◦

H
1,p
Aε

(Ω) do not coincide, as shown in Sec. 6. Therefore the result concerning

the convergence of minimum points of Jε when passing to the Γ-limit is restricted

to only the spaces
◦

H
1,p
Aε

(Ω) (see Theorem 5.2 for a detailed statement).

3. Preliminary Results

The following theorem states that for functions in Liploc the Γ-limit of (1.3) has an

integral representation. More precisely we have:

Theorem 3.1. (Theorem 3.4 of Ref. 7) Let (fε) be the family of functions defined

in (1.4) satisfying hypothesis (1.6), and (Λε) be a family of weights satisfying (1.10).

Then there exists a weight Λ∞ ∈ L1+µ
loc (Rn) such that, up to subsequences,

Λε
w−L1+µ(I)

−→ Λ∞ , (3.1)
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for every given cube I in Rn. Moreover, there exist a subfamily (fεk
) ⊂ (fε) and a

function f∞(x, ξ) convex in ξ such that

0 ≤ f∞(x, ξ) ≤ Λ∞(x)|ξ|p , a.e. x ∈ Rn, ξ ∈ Rn (3.2)

and

Γ- lim
k→∞

∫

Ω

fεk
(x,∇u) dx =

∫

Ω

f∞(x,∇u) dx < +∞ , (3.3)

in the L1(Ω) topology, for any bounded open set Ω, u ∈ Liploc(R
n).

Now if we assume a uniform Ap condition and a local uniform lower bound on

the weights λε, it is possible to obtain, locally, a sharper estimate for f∞. This

result is largely inspired by Proposition 4.1 in Ref. 15.

Theorem 3.2. Let (fε) be the family of functions defined in (1.4) satisfying hypoth-

esis (1.6). Let I be a given cube, and (λε) and (Λε) be as in (1.8)–(1.10) respectively.

Then there exist a subfamily (fεk
) ⊂ (fε) and two weights Λ∞ ∈ L1+µ

loc (Rn) and λ∞
in Ap such that,

Λε
w−L1+µ(I)

−→ Λ∞ , (3.4)

and there exists σ > 0 such that

λ−1/(p−1)
ε

w−L1+σ(I)
−→ λ−1/(p−1)

∞ . (3.5)

Moreover, there exists a function f∞(x, ξ), convex in ξ, satisfying

λ∞(x)|ξ|p ≤ f∞(x, ξ) ≤ Λ∞(x)|ξ|p (3.6)

for almost every x ∈ I, for any ξ ∈ Rn and such that

Γ- lim
k→∞

∫

Ω

fεk
(x,∇u) dx =

∫

Ω

f∞(x,∇u) dx (3.7)

in the L1(Ω)-topology, for every open set Ω ⊂⊂ I and u ∈ Liploc(R
n).

Proof. Let I be a given cube such that (1.9) holds. By hypothesis (1.10), we have,

up to a subsequence,

Λε
w−L1+µ(I)

−→ Λ∞ . (3.8)

By Theorem 3.1 the estimate (3.2) holds almost everywhere in I , and we have

the related Γ-convergence result (3.3) for all bounded open set Ω ⊂⊂ I for every

u ∈ Liploc(R
n).

Due to hypotheses (1.8) and (1.9), and by Theorem 2.1 there exist σ > 0 and

C3 > 0 such that, for all ε > 0, we have

(
∫

I

λ−(1+σ)/(p−1)
ε

)1/(1+σ)

≤ C3

(

A

C1

)1/(p−1)

; (3.9)
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therefore, up to a subsequence, there exists a function λ
−1/(p−1)
∞ ∈ L1+σ(I) such

that

λ−1/(p−1)
ε

w−L1+σ(I)
−→ λ−1/(p−1)

∞ . (3.10)

As for the proof that λ∞ ∈ Ap, we argue as in the proof of Proposition 4.1 in

Ref. 15, since by (1.10), we have
∫

I
λε dx ≤ C2|I |

µ−1
1+µ .

Now, to get the estimate from below in (3.6) we proceed as follows. By Hölder’s

inequality, if u ∈ Liploc(R
n) is given, it is trivial to see that

(
∫

Ω

|∇u| dx

)p

≤

(
∫

Ω

|∇u|pλε dx

)(
∫

Ω

λ−1/p−1
ε dx

)p−1

.

Applying the lower estimate in (1.7) to the right-hand side, it follows that

(
∫

Ω

|∇u| dx

)p

≤

(
∫

Ω

fε(x,∇u) dx

)(
∫

Ω

λ−1/p−1
ε dx

)p−1

. (3.11)

By Theorem 3.1 there exists uε → u in L1(Ω), such that limε→0

∫

Ω fε(x,∇uε) dx =
∫

Ω f∞(x,∇u) dx. On the other hand, the functional
∫

Ω |∇u| dx is L1(Ω)-lower

semicontinuous on W 1,1
loc (Rn) (and hence in Liploc(R

n)), hence
∫

Ω |∇u| dx ≤

lim infε→0

∫

Ω |∇uε| dx. Therefore, using (3.11) for uε, we have (
∫

Ω |∇u| dx)p ≤

lim infε(
∫

Ω
|∇uε| dx)p ≤ lim infε(

∫

Ω
fε(x,∇uε) dx)(

∫

Ω
λ
−1/p−1
ε dx)p−1, and we get

(
∫

Ω

|∇u| dx

)p

≤

(
∫

Ω

f∞(x,∇u) dx

)(
∫

Ω

λ−1/p−1
∞ dx

)p−1

.

Now take u(x) = 〈ξ, x〉. Choosing Ω = B(x̄, r) and letting r → 0 we get the estimate

λ∞(x̄)|ξ|p ≤ f∞(x̄, ξ) at any Lebesgue point x̄ of λ
−1/p−1
∞ and f∞(·, ξ).

Remark 3.1. If we choose αε(x, ξ) = 〈Aε(x)ξ, ξ〉p/2−1, we can apply Theorem 3.2

to the functions fε(x, ξ) = 〈Aε(x)ξ, ξ〉p/2. More precisely, there exists a function

Q(x, ξ), convex in ξ, satisfying

λ∞(x)|ξ|p ≤ Q(x, ξ) ≤ Λ∞(x)|ξ|p (3.12)

for almost every x ∈ I , for any ξ ∈ Rn and such that

Γ- lim
k→∞

∫

Ω

〈Aεk
(x)∇u,∇u〉p/2dx =

∫

Ω

Q(x,∇u) dx (3.13)

in the L1(Ω) topology, for every open set Ω ⊂⊂ I and u ∈ Liploc(R
n).

Even if the functions fε have a polynomial structure, as in previous remark, the

the Γ-limit might have a different structure (for a counterexample see Ref. 6). Never-

theless, if fε(x, ξ) = 〈Aε(x)ξ, ξ〉p/2, we show in the next section that
∫

Ω
Q(x,∇u) dx

produces a norm in Lip0(Ω).
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4. Definition of the Space
◦

H∞

In the sequel I is a given cube, where hypotheses of Theorem 3.2 are satisfied and

we consider a Lipschitz domain Ω, compactly contained in I . For ε > 0, we consider

the functionals

Ĝε(u) =











∫

Ω

〈Aε(x)∇u,∇u)〉
p/2dx u ∈ Liploc(R

n) ,

+∞ u ∈ (W 1,1
loc (Rn) − Liploc(R

n)) .

(4.1)

By a Γ-convergence property, up to subsequences, it is known that the Γ-limit in

the L1(Ω) topology is well defined for all u ∈ W 1,1
loc (Rn); we denote it by ĜΓ(u).

Using Remark 3.1, and because of Proposition 6.15 in Ref. 14 the previous Γ-limit

is represented by the functionals

ĜΓ(u) =

∫

Ω

Q(x,∇u) dx (4.2)

for every u ∈ Liploc(R
n), where Q satisfies (3.12).

We introduce the following notation:

Definition 4.1. For u ∈ W 1,1
loc (Rn), we denote by [u] the following Γ-limit

[u] := Γ- lim
ε→0

(
∫

Ω

|u| dx+ (Ĝε(u))
1/p

)

(4.3)

in the L1(Ω) topology.

Recalling that Γ-convergence is stable under continuous perturbations and under

composition by an increasing function, the following proposition follows easily:

Proposition 4.1. For u ∈ Liploc(R
n),

[u] =

∫

Ω

|u| dx+

(
∫

Ω

Q(x,∇u) dx

)1/p

, (4.4)

where Q(x, ξ) is given by (3.13) and satisfies (3.12).

We now restrict ourselves to the space Lip0(Ω) and show that [·] is a norm on

Lip0(Ω). To achieve this result we first recall the following statement proved in

Ref. 8, Theorem 1.2:

Proposition 4.2. Let Ω be a bounded Lipschitz domain, u ∈ W 1,1
loc (Ω)∩L1(Ω), and

λε ∈ Ap(A), then
∫

Ω

|u− uΩ|
pλε dx ≤ CΩ

∫

Ω

|∇u|pλε dx, (4.5)

where uΩ =
∫

Ω
|u| dx and the constant CΩ = CΩ(A) is independent of u and ε.

Let us introduce a new norm on W 1,p
Aε

(Ω) equivalent to (2.7):
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Lemma 4.1. Let (λε), (Λε) satisfying (1.8) and (1.10); in addition let I be a given

cube, assume that (1.9) holds in I for all ε > 0. Let Ω be a bounded Lipschitz domain,

Ω ⊂⊂ I. The norm (2.7) and the following

|‖u‖|W 1,p
Aε

(Ω) :=

∫

Ω

|u| dx+

(
∫

Ω

〈Aε∇u,∇u〉
p/2dx

)1/p

(4.6)

are equivalent on W 1,p
Aε

(Ω), and the constants appearing in the equivalence are

independent of ε.

Proof. By Hölder’s inequality, since λε are uniformly Ap and (1.9) holds, we get
∫

Ω
|u| dx ≤ c(

∫

Ω
|u|pλε dx)

1/p with c independent of ε.

On the other hand, using Poincaré inequality (4.5) and (1.10), we easily obtain

(
∫

Ω

|u|pλε dx

)1/p

≤

(
∫

Ω

|u− uΩ|
pλε dx

)1/p

+ |uΩ|λε(Ω)1/p

≤ C
1/p
Ω

(
∫

Ω

|∇u|pλε dx

)1/p

+
Λε(Ω)1/p

|Ω|

∫

Ω

|u| dx

≤ C
1/p
Ω

(
∫

Ω

〈Aε∇u,∇u〉
p/2dx

)1/p

+ C ′
Ω

∫

Ω

|u| dx ,

where C ′
Ω is a constant independent of ε.

By previous lemma [u] can be seen as a Γ-limit of norms, hence we prove:

Proposition 4.3. [·] is a norm on Lip0(Ω).

Proof. First [u] < +∞ on Lip0(Ω); indeed
∫

Ω

Q(x,∇u) dx ≤

∫

Ω

Λ∞(x)|∇u|pdx ≤ ‖u‖p
Lip0(Ω)

∫

Ω

Λ∞(x) dx ≤ C1+µ
2 ‖u‖p

Lip0(Ω)

by (3.12) and since Λ∞ ∈ L1+µ
loc (Rn).

To simplify notations in the remaining of the proof we will indicate the norm

(4.6) by |‖ · ‖|ε.

Let u be in Lip0(Ω) and t ∈ R, t 6= 0. By definition of Γ-convergence, there

exists a sequence of functions {vε} in Liploc(R
n) such that

vε → tu in L1(Ω) , |‖vε‖|ε → [tu] .

Without loss of generality we can assume vε = tuε, with uε → u in L1(Ω). Then

[u] ≤ lim inf
ε→0

|‖uε‖|ε =
1

|t|
lim inf

ε→0
|t| |‖uε‖|ε

=
1

|t|
lim inf

ε→0
|‖tuε‖|ε =

1

|t|
[tu] .

Hence, for t 6= 0, |t|[u] ≤ [tu] and analogously 1
|t| [tu] ≤ [u], which imply [tu] = |t|[u].
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As for the triangular inequality, let u, v be in Lip0(Ω). Then there exists two

sequences of functions {uε} and {uε} in Liploc(R
n) such that

uε → u in L1(Ω) , |‖uε‖|ε → [u] ,

vε → v in L1(Ω) , |‖vε‖|ε → [v] .

Since uε + vε → u+ v in L1(Ω), we have

[u+ v] ≤ lim inf
ε→0

|‖uε + vε‖|ε

≤ lim inf
ε→0

(|‖uε‖|ε + |‖vε‖|ε)

≤ lim sup
ε→0

(|‖uε‖|ε) + lim sup
ε→0

(|‖vε‖|ε)

= [u] + [v]

and we are done.

Thanks to previous results it makes sense to define:

Definition 4.2. If 1 < p <∞, we define the space
◦

H∞(Ω) = Lip0(Ω)
[·]
. (4.7)

The space
◦

H∞ (Ω) will turn out to be the suitable one where to treat the

minimum problem (1.12) stated in the Introduction and proved in Theorem 5.2 of

Sec. 5.

In the sequel we show how to represent the Γ-limit (4.3) in
◦

H∞(Ω). First we

prove that

Lemma 4.2. The space
◦

H∞(Ω) is continuously embedded in
◦

W1,1(Ω).

Proof. Let u ∈
◦

H∞(Ω), then there exists a sequence of functions un ∈ Lip0(Ω)

such that [un − u] → 0. This implies un → u in L1(Ω). On the other hand, for any

v ∈ Lip0(Ω), by (3.12) and (4.5) we have

[v] ≥

(
∫

Ω

λ∞(x)|∇v|pdx

)1/p

+

∫

Ω

|v| dx ≥ C

∫

Ω

|∇v| dx +

∫

Ω

|v| dx

≥ c‖v‖ ◦
W1,1(Ω)

(4.8)

since λ∞ ∈ Ap. The sequence un is a Cauchy sequence in
◦

H∞(Ω), hence by (4.8)

it is a Cauchy sequence in
◦

W1,1(Ω), thus un → ũ in
◦

W1,1(Ω). By uniqueness of the

limit ũ = u, that is
◦

H∞(Ω) ↪→
◦

W1,1(Ω).

We show now how to represent the norm [·] in
◦

H∞(Ω); indeed we show that the

representation result given in Proposition 4.1 holds not only on Lip0(Ω) but also in
◦

H∞(Ω).

Theorem 4.1. If u ∈
◦

H∞(Ω), then we have [u] =
∫

Ω |u| dx+ (
∫

ΩQ(x,∇u) dx)1/p.
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Proof. Since u ∈
◦

H∞ (Ω) there exists a sequence (un)n∈N in Lip0(Ω) such that

un → u in
◦

H∞(Ω) and hence, by Lemma 4.2, in
◦

W 1,1(Ω). Thus, without loss of

generality, we may assume that un(x) → u(x), ∇un(x) → ∇u(x) for a.e. x ∈ Ω

and in particular we notice that Q(x,∇u) = limn→∞Q(x,∇un) since Q is conti-

nuous in the second variable. Hence,
∫

Ω
Q(x,∇u) dx ≤ lim infn

∫

Ω
Q(x,∇un) dx ≤

lim infn[un] < ∞, by Fatou’s lemma and since (un)n∈N is bounded in
◦

H∞ (Ω).

Hence
∫

Ω
Q(x,∇u) dx < +∞.

We show now that, if un ∈ Lip0(Ω), un → u in
◦

H∞(Ω) then

[un] →

∫

Ω

|u| dx+

(
∫

Ω

Q(x,∇u) dx

)1/p

as n→ ∞ . (4.9)

To prove (4.9) it is enough to show that the assertion holds for a subsequence. Let

u ∈
◦

H∞(Ω) be given, and let (un)n∈N be a sequence in Lip0(Ω) converging to u

in
◦

H∞(Ω). Again, without loss of generality, we may assume that un(x) → u(x),

∇un(x) → ∇u(x) for a.e. x ∈ Ω. On the other hand, mimicking the proof of Riesz–

Fischer theorem, we choose a subsequence (uni
)i∈N such that [uni+1 − uni

] < 1/2i.

Now we can write (putting un0 = 0)

∇unm
(x) =

m
∑

i=1

(∇uni
−∇uni−1) .

Thus for a.e. x ∈ Ω

Q(x,∇unm
(x))1/p ≤

m
∑

i=1

Q(x,∇uni
(x) −∇uni−1(x))

1/p

≤
∞
∑

i=1

Q(x,∇uni
(x) −∇uni−1(x))

1/p , (4.10)

where the first inequality is proved in detail in Remark 4.1 below. Since [unm
] =

(
∫

ΩQ(x,∇unm
(x)) dx)1/p +

∫

Ω |unm
(x)| dx, (4.9) follows by dominated convergence

theorem once we prove that
∞
∑

i=1

Q(·,∇uni
(·) −∇uni−1(·))

1/p ∈ Lp(Ω) .

This holds since
(

∫

Ω

(

∞
∑

i=1

Q(x,∇uni
(x) −∇uni−1(x))

1/p

)p

dx

)1/p

≤
∞
∑

i=1

(
∫

Ω

Q(x,∇uni
(x) −∇uni−1(x)) dx

)1/p

≤
∞
∑

i=1

[uni
− uni−1 ] ≤

∞
∑

i=1

1

2i
= 1 .
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Now the representation result follows easily. Indeed, let u ∈
◦

H∞(Ω), by definition

there is a sequence (un)n∈N in Lip0(Ω) converging to u, hence, in particular, [un] →

[u] as n → ∞. By uniqueness of the limit (in R), (4.9) the representation of [u] in
◦

H∞(Ω).

In the following remark we show in detail how to get formula (4.10) used in the

previous proof.

Remark 4.1. For a.e. x̄ ∈ Ω, for any ξ, η ∈ Rn it holds

Q(x̄, ξ + η)1/p ≤ Q(x̄, ξ)1/p +Q(x̄, η)1/p . (4.11)

Proof. Let B = B(x̄, r) be a ball centered in x̄ with radius r, B ⊂ Ω. Let uε,

vε ∈ Liploc(R
n) such that uε → 〈·, ξ〉 vε → 〈·, η〉 in L1(B) and

(
∫

B

〈Aε(x)∇uε,∇uε〉
p/2dx

)1/p

→

(
∫

B

Q(x, ξ) dx

)1/p

,

(
∫

B

〈Aε(x)∇vε,∇vε〉
p/2dx

)1/p

→

(
∫

B

Q(x, η) dx

)1/p

;

this is possible since the Γ-limit has the integral representation (3.13), the functions

〈·, ξ〉 〈·, η〉 being in Liploc(R
n). For the same reason,

(
∫

B

Q(x, ξ + η) dx

)1/p

≤ lim inf
ε→0

(
∫

B

〈Aε(x)∇(uε + vε),∇(uε + vε)〉
p/2dx

)1/p

≤

(
∫

B

Q(x, ξ) dx

)1/p

+

(
∫

B

Q(x, η) dx

)1/p

.

Letting r → 0, (4.11) is proved if x̄ if a Lebesgue point of Q(·, ξ+η), Q(·, ξ)Q(·, η).

On the other hand, the set

Ω0 ={x̄ ∈ Ω; x̄ is a Lebesgue point of Q(·, ξ + η), Q(·, ξ), Q(·, η) for any ξ, η ∈ Qn}

is such that |Ω\Ω0| = 0. Eventually (4.11) holds for ξ, η ∈ Rn and x ∈ Ω\Ω0,

thanks to a limit argument.

Let Ω be as above. The representation Theorem 4.1 allows us to give a repre-

sentation result for the Γ-limit of the following functionals defined for functions

u0 ∈ Liploc(R
n),

Fε(u) =











∫

Ω

fε(x,∇u) dx u ∈ u0 + Lip0(Ω) ,

+∞ u ∈ u0 + (
◦

W1,1(Ω) − Lip0(Ω)) .

(4.12)
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By a property of Γ-convergence, up to a subsequence, the Γ-limit in L1(Ω) of (4.12)

is well defined for all u ∈ u0 +
◦

W 1,1(Ω); we denote it by FΓ(u). The problem we

are concerned with in next section is to find a representation for FΓ(u).

Let us first define the space
◦

W∞ (Ω) := {u ∈
◦

W 1,1(Ω); [u] < +∞}; clearly
◦

H∞(Ω) ⊂
◦

W∞(Ω) but in general the two spaces do not coincide (see counter-

examples in Sec. 6). The lack of equality between
◦

H∞ (Ω) and
◦

W∞ (Ω) involves

a representation problem for the Γ-limit. Indeed, it is not possible to prove that

FΓ(u) =











∫

Ω

f∞(x,∇u) dx u ∈ u0 +
◦

H∞(Ω) ,

+∞ u ∈ u0 + (
◦

W1,1(Ω)−
◦

H∞(Ω)) ,

(4.13)

for every u ∈ u0 +
◦

W 1,1(Ω) with u0 ∈ Liploc(R
n), since as we already noticed the

finiteness domain of FΓ is in general bigger than
◦

H∞(Ω). For this reason we can get a

representation theorem only in
◦

H∞(Ω), i.e. we prove that FΓ(u) =
∫

Ω f∞(x,∇u) dx

for u ∈ u0 +
◦

H∞(Ω).

5. Representation Results on Γ-Limits

At the end of previous section we explained the problem of representation of the

limit of the functionals (4.12). As already mentioned, their Γ-limit FΓ(u) is well

defined for all u ∈ u0 +
◦

W 1,1(Ω). Recalling Theorem 3.2, it is easy to prove (see

Ref. 14, Proposition 6.15) that FΓ is represented by the functional

FΓ(u) =

∫

Ω

f∞(u,∇u) dx , (5.1)

for every u ∈ u0 + Lip0(Ω), where f∞ satisfies (3.6).

In fact, we prove in Theorem 5.1 that FΓ(u) =
∫

Ω
f∞(u,∇u) dx for every u ∈

u0 +
◦

H∞(Ω).

Let us introduce the functionals

F̂ε(u) =











∫

Ω

fε(u,∇u) dx u ∈ Liploc(R
n) ,

+∞ u ∈ (W 1,1
loc (Rn) − Liploc(R

n)) .

(5.2)

Again up to subsequences, it is known that the Γ-limit in the L1(Ω) topology is

well defined for all u ∈ W 1,1
loc (Rn); we denote it by F̂Γ(u). Using Remark 3.1, and

because of Proposition 6.15 in Ref. 14 the previous Γ-limit is represented by the

functional

F̂Γ(u) =

∫

Ω

f∞(x,∇u) dx , (5.3)

for every u ∈ Liploc(R
n), where f∞ satisfies (3.6).
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The proof of Theorem 5.1 is based on Theorem 3.1 and an approximation result

stated in Proposition 5.1 below will be overcome via an approximation.

Proposition 5.1. Let p > 1 and let Ω be a bounded open set compactly contained

in a cube I. Let (fε(x, ξ)) be a family of functions measurable in x and convex in

ξ satisfying λε(x)|ξ|p ≤ fε(x, ξ) ≤ Λε(x)|ξ|p for a.e. x ∈ Rn for any ξ ∈ Rn. Let

(λε) be as in (1.8) and (1.9); let (Λε) satisfy (1.10); in addition suppose that the

pair (λε,Λε) satisfies (1.11).

Consider u ∈
◦

W 1,1(Ω) and a sequence (uε) ∈ Lip0(Ω) such that uε → u in

L1(Ω) and
∫

Ω

〈Aε(x)∇uε,∇uε〉
p/2dx < C4 (5.4)

for all ε > 0.

Then for every u0 ∈ Lip0(Ω) and τ > 0 there exist Ωτ ⊂ Ω so that |Ω−Ωτ | < 3τ,

βτ > 0, ατ > 0, such that βτ → 0, ατ → ∞, as τ → 0, and there exist a sequence

(vε,τ ) ∈ Liploc(R
n), and a function vτ ∈ Liploc(R

n) verifying ‖∇vε,τ‖L∞(Rn) ≤

c(n)ατ , vε,τ → vτ in L∞(Ω) as ε→ 0 and

lim inf
ε→0

∫

Ω

fε(x,∇u0 + ∇uε) dx ≥ lim inf
ε→0

∫

Ωτ

fε(x,∇u0 + ∇vε,τ ) dx− βτ . (5.5)

In addition, setting

Vτ := {x ∈ Rn : vτ (x) 6= u(x)} , (5.6)

we have |Vτ | < 2τ.

Proof. The scheme of the proof is essentially the one of Theorem 3.1 in Ref. 15.

However since we are dealing with two different weights, appropriate changes must

be taken into account. For the reader convenience we will report the proof, obviously

stressing the differences. To avoid cumbersome notation we will use the same label

for sequences and subsequences.

Without loss of generality, consider (uε) ∈ C∞
0 (Ω) and identify u and (uε) with

their zero extension outside Ω.

For N > 0, let us define the sets Cε
N = {x ∈ Rn : Λε

λε
> N} ∩ Ω. By hypothesis

(1.11), it follows that

N |Cε
N | = N

∫

Cε
N

dx ≤

∫

I

Λε

λε
dx < K (5.7)

uniformly in ε.

Then, for a fixed τ > 0 there exists a Nτ such that, for N > Nτ , |Cε
N | < τ ,

uniformly in ε.

On the other hand, since the weights λε are in the Ap(A) class we can apply

Theorem 2.2 to the functions ∇uε which gives
∫

Rn

(M |∇uε|)
pλε(x) dx ≤ c

∫

Ω

|∇uε|
pλε(x) dx .
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By (1.5) and (5.4) the integrals
∫

Rn(M |∇uε|)pλε(x) dx are equibounded, there-

fore the sequence ((M |∇uε|)pλε(x)) is bounded in L1(Rn). Then, as proved in

Ref. 2, for every η > 0 we can find a set Sη with |Sη| < η and a constant δη such

that, up to a subsequence
∫

B

(M |∇uε|)
pλε(x) dx < η (5.8)

for any measurable set B with B ∩ Sη = ∅ and |B| < δη. By Hölder’s inequality,

the uniform condition Ap on λε and (1.5) yield (
∫

Ω |∇uε| dx)p = (
∫

Ω |∇uε|λ
1/p
ε

λ
−1/p
ε dx)p ≤ (

∫

Ω
λ
−1/(p−1)
ε dx)p−1

∫

Ω
〈Aε(x)∇uε,∇uε〉p/2dx < C4

A
C1

where in the

last inequality we also use (1.9) and (5.4). By the one-to-one weak type property

of the maximal function (see e.g. Theorem 1 of Ref. 26), there exists a constant

c(n) depending only on n such that |{x ∈ Rn : (M |∇uε|) > γ}| ≤ c(n)
γ ‖∇uε‖L1(Rn).

Therefore we can choose αη ≥ c(n)
η (AC4

C1
)1/p such that

|{x ∈ Rn : (M |∇uε|) ≥ αη}| ≤ min{η, δη} . (5.9)

We define the sets

Zη
ε = {x ∈ Rn : (M |∇uε|) ≤ αη} ;

we have uε ∈ Lip(Zη
ε ) with Lipschitz constant c(n)αη (see Lemma II-11 of Ref. 2).

We denote by vε,η the Lipschitz extension of uε out of Zη
ε ∩ Ω to the whole Rn,

with the same Lipschitz constant c(n)αη. In summary we have

vε,η(x) = uε(x) and ∇vε,η(x) = ∇uε(x) a.e. in Zη
ε ∩ Ω (5.10)

and

‖∇vε,η‖L∞(Rn) ≤ c(n)αη ; (5.11)

moreover, without loss of generality we can assume that vε,η(x) = 0 if dist(x,Ω) > 1.

Up to a subsequence, it holds that

vε,η → vη in L∞(Ω) and ‖∇vη‖L∞(Rn) ≤ c(n)αη ,

|{x ∈ Ω : vη(x) 6= u(x)}| ≤ 2η, and by (5.9) |(Ω − Sη) − Zη
ε | < min{η, δη} (see

Ref. 15 for a detailed proof).

Finally, we can proceed as follows:
∫

Ω

fε(x,∇u0 + ∇uε) dx

=

∫

Ω∩Cε
N

fε(x,∇u0 + ∇uε) dx+

∫

Ω−Cε
N

fε(x,∇u0 + ∇uε) dx

≥

∫

Ω−Cε
N

fε(x,∇u0 + ∇uε) dx . (5.12)
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Let us set Ω̃ = Ω −Cε
N , clearly |(Ω̃ − Sη) − Zη

ε | < min{η, δη} uniformly in ε; then,
∫

Ω̃

fε(x,∇u0 + ∇uε) dx ≥

∫

(Ω̃−Sη)∩Zη
ε

fε(x,∇u0 + ∇vε,η) dx

=

∫

(Ω̃−Sη)

fε(x,∇u0 + ∇vε,η) dx−

∫

(Ω̃−Sη)−Zη
ε

fε(x,∇u0 + ∇vε,η) dx . (5.13)

We want to show that the second integral in the last line is small with respect to

τ . We stress that the following chain of inequalities involves two weight estimates,

requiring the use of our assumptions on the functionals, listed in the order they

have to be used ((1.7), (5.10), (5.11), (5.9), (1.10), (5.7) (5.8)).

Let L0 = ‖∇u0‖L∞(Ω), we have:
∫

(Ω̃−Sη)−Zη
ε

fε(x,∇u0 + ∇vε,η) dx

≤

∫

(Ω̃−Sη)−Zη
ε

|∇u0 + ∇vε,η |
pΛε(x) dx

≤ 2p−1Lp
0

∫

Ω̃−Zη
ε

Λε(x) dx + 2p−1(c(n)αη)p

∫

(Ω̃−Sη)−Zη
ε

Λε(x) dx

≤ 2p−1Lp
0

(
∫

Ω̃−Zη
ε

Λ1+µ
ε (x) dx

)
1

1+µ

|Ω̃ − Zη
ε |

µ
1+µ

+ 2p−1c(n)p

∫

(Ω̃−Sη)−Zη
ε

(M |∇uε|)
pΛε(x) dx

≤ 2p−1Lp
0C2|Ω̃ − Zη

ε |
µ

1+µ + 2p−1c(n)p

∫

(Ω̃−Sη)−Zη
ε

(M |∇uε|)
pNλε(x) dx

≤ 2p−1Lp
0C2η

µ
1+µ + 2p−1c(n)pηN . (5.14)

Set γη := 2p−1Lp
0C2η

µ
1+µ + 2p−1c(n)pηN .

For a fixed τ > 0 there exists η = η(τ) such that γη < τ for η < η(τ). Since

from now on η = η(τ) we will denote the quantities vε,η , vη , αη , γη , Sη by vε,τ , vτ ,

ατ , γτ , Sτ to stress their τ dependence. Clearly γτ → 0 as τ → 0.

For any measurable subset E of I we have

∫

E

Λε(x) dx ≤

(
∫

I

Λε(x)
1+µdx

)
1

1+µ

|E|
µ

1+µ ≤ C2|E|
µ

1+µ .

This inequality and (5.11) allows us to choose an open set Ωτ such that Ω̃−Sτ ⊂ Ωτ

for which
∣

∣

∣

∣

∫

Ωτ

fε(x,∇u0 + ∇vε,τ ) dx−

∫

Ω̃−Sτ

fε(x,∇u0 + ∇vε,τ ) dx

∣

∣

∣

∣

< τ ; (5.15)

it is easy to see that |Ω − Ωτ | < 3τ .
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Using (5.12)–(5.15) we have
∫

Ω

fε(x,∇u0 + ∇uε) dx ≥

∫

Ωτ

fε(x,∇u0 + ∇vε,τ ) dx − γτ − τ .

We define βτ := γτ + τ . Obviously βτ → 0 as τ → 0 and the thesis follows.

Theorem 5.1. Let Ω be an open set with Lipschitz boundary, compactly contained

in a cube I. Let fε be the family of functions defined in (1.4) satisfying hypothesis

(1.6). Let (λε) and (Λε) be as in (1.8)–(1.10) respectively.

Then for all u ∈ u0 +
◦

H∞(Ω) with u0 in Liploc(R
n), it holds

FΓ(u) =

∫

Ω

f∞(x,∇u) dx , (5.16)

where FΓ is the Γ-limit of Fε and Fε are defined in (4.12).

Proof. In the sequel we always argue up to subsequences. Let u0 be in Liploc(R
n).

Let us prove that

FΓ(u) ≥

∫

Ω

f∞(x,∇u) dx (5.17)

for all u ∈ u0 +
◦

H∞(Ω).

As remarked above, FΓ is well defined for any u ∈ u0 +
◦

W 1,1(Ω). Hence if we

consider u, uε ∈
◦

H∞(Ω)(⊂
◦

W1,1(Ω)) such that uε → u in L1(Ω) and

lim supFε(u0 + uε) ≤ FΓ(u0 + u) <∞ , (5.18)

by definition (4.12) we deduce that uε ∈ Lip0(Ω) for all ε and so Fε(uε) =
∫

Ω fε(x,∇uε) dx.

Therefore

FΓ(u0 + u) ≥ lim inf
ε→0

∫

Ω

fε(x,∇(u0 + uε)) dx . (5.19)

By Proposition 5.1, for a fixed τ > 0, there exist Ωτ ⊂ Ω, βτ > 0, and (vε,τ ),

vτ ∈ Liploc(R
n) such as in Proposition 5.1, so that

lim inf
ε→0

∫

Ω

fε(x,∇(u0 + uε)) dx ≥ lim inf
ε→0

∫

Ωτ

fε(x,∇(u0 + vε,τ )) dx − βτ

≥ F̂Γ(u0 + vτ ) − βτ

=

∫

Ωτ

f∞(x,∇u0 + ∇vτ ) dx− βτ , (5.20)

where the functional F̂Γ is now restricted to Ωτ and the last equality follows by the

representation given in (5.3). Let Vτ be defined as in (5.6), by Proposition 5.1 we
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know that |Vτ | < 2τ . Moreover

∫

Ωτ

f∞(x,∇u0 + ∇vτ ) dx− βτ ≥

∫

Ωτ−Vτ

f∞(x,∇u0 + ∇vτ ) dx− βτ

=

∫

Ωτ−Vτ

f∞(x,∇u0 + ∇u) dx− βτ . (5.21)

In conclusion, for all u ∈
◦

H∞(Ω) such that (5.18) holds we find that

FΓ(u0 + u) ≥

∫

Ωτ−Vτ

f∞(x,∇u0 + ∇u) dx− βτ . (5.22)

Since |Ω − (Ωτ − Vτ )| ≤ 5τ we get (5.17) from (5.22) letting τ → 0.

Let us prove now that FΓ(u) ≤ F (u) in u0 +
◦

H∞(Ω).

Let u ∈ u0 +
◦

H∞(Ω) and uk ∈ u0+Lip0(Ω) such that [(uk−u0)−(u−u0)] → 0 in
◦

H∞(Ω)(⊂
◦

W1,1(Ω)). In particular uk → u in L1(Ω) and ∇uk → ∇u in L1(Ω), thus,

without loss of generality we may assume that ∇uk(x) → ∇u(x) for a.e. x ∈ Ω.

By the convexity of f∞ this implies f∞(x,∇uk(x)) → f∞(x,∇u(x)) for k → ∞ for

a.e. x ∈ Ω. By the very definition of fε we have the estimate

b1〈Aε(x)ξ, ξ)〉
p/2 ≤ fε(x, ξ) ≤ b2〈Aε(x)ξ, ξ)〉

p/2 . (5.23)

Using (3.3) and (3.13), passing to Γ-limits we obtain

b1

∫

Ω

Q(x,∇u) dx ≤

∫

Ω

f∞(x,∇u) dx ≤ b2

∫

Ω

Q(x,∇u) dx (5.24)

for every u ∈ Liploc(R
n). Since for u ∈ Liploc(R

n) both f∞(x,∇u) and Q(x,∇u)

belong to L1
loc(R

n) (by (3.2) and (3.12)), passing to the Lebesgue points we obtain

b1Q(x,∇u) ≤ f∞(x,∇u) ≤ b2Q(x,∇u) a.e. x ∈ Rn (5.25)

for every u ∈ Liploc(R
n). On the other hand, recalling that [·] is a norm on

◦

H∞(Ω),

we have
∫

Ω
Q(x,∇uk) dx →

∫

Ω
Q(x,∇u). Hence, there exits a subsequence, still

denoted by Q(x,∇uk) and a function h ∈ L1(Ω) such that |Q(x,∇uk)| ≤ h(x)

a.e. in Ω.

By (5.25) we have f∞(x,∇uk(x)) ≤ b2Q(x,∇uk(x)) ≤ b2h(x). The dominated

convergence theorem implies

∫

Ω

f∞(x,∇u) dx = lim
k

∫

Ω

f∞(x,∇uk) dx .

By (5.1) FΓ(uk) =
∫

Ω
f∞(x,∇uk) dx. Eventually, using the lower semicontinuity

property of the Γ-limit, we get
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∫

Ω

f∞(x,∇u) dx = lim
k→∞

∫

Ω

f∞(x,∇uk) dx

= lim
k→∞

FΓ(uk) ≥ FΓ(u) ,

that implies together with (5.17) the desired result (5.16).

Thanks to result above we can state the following theorem.

Theorem 5.2. Let p > 1, I a cube in Rn and fε be the family of functions defined in

(1.4) satisfying hypothesis (1.6). Let (λε) and (Λε) be as in (1.8)–(1.10) respectively,

and satisfying (1.11). Then there exist a subfamily (fεk
) ⊂ (fε) and two weights

Λ∞ ∈ L1+µ
loc (Rn) and λ∞ ∈ Ap and a function f∞ satisfying (3.6), such that for

any open set Ω ⊂⊂ I with Lipschitz boundary, g ∈ L∞(Ω) and u0 ∈ Liploc(R
n) the

sequence of solutions of the problem

min

{
∫

Ω

fε(x,∇u) dx +

∫

Ω

gu dx : u ∈ u0 +
◦

H
1,p
Aε

(Ω)

}

converge in L1(Ω) to the solution of the problem

min

{
∫

Ω

f∞(x,∇u) dx +

∫

Ω

gu dx : u ∈ u0 +
◦

H∞(Ω)

}

;

and the convergence of the minimum values holds.

Proof. Using Theorem 5.1 the proof is the same as the one in Theorem 4.6 of

Ref. 15.

6. Examples and Counterexamples

In this section we produce two examples concerning the relations between the spaces

H and W used in the paper. Let Ω be a bounded open set in R2, with Lipschitz

boundary, and p > 2. In the first example we provide weights such that
◦

H
1,p
Aε

(Ω) 6=
◦

W
1,p
Aε

(Ω) but when we pass to the limit
◦

H∞(Ω) =
◦

W∞(Ω). In the second one we

consider weights such that
◦

H
1,p
Aε

(Ω) =
◦

W
1,p
Aε

(Ω) but
◦

H∞(Ω) 6=
◦

W∞(Ω).

Example 6.1. Let I0 be the unit cube I0 = ] − 1/2, 1/2[× ] − 1/2, 1/2[ in R2.

In Ref. 9, Example 2.2, the authors construct an example of a weight λ such that

H1,p(I0, λ) 6= W 1,p(I0, λ), where λ is defined as follows. Let p, α, β ∈ R, with p > 2

and 0 < α < β < 2(p−1). The authors define a suitable π-periodic smooth function

k : R → [α, β] (see Ref. 9 for details), and they define the weight λ : I0 → [0,+∞[ as

λ(x) =

{

|x|k(arccos
x1
|x|

) if |x| 6= 0 ,

0 if |x| = 0 .
(6.1)

It is clear that

|x|β ≤ λ(x) ≤ |x|α for every x ∈ I0 . (6.2)
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Then they define u : I0 → R as

u(x) =







































1 if x1, x2 > 0 ,

0 if x1, x2 < 0 ,

x2

|x|
if x1 < 0 < x2 ,

x1

|x|
if x2 < 0 < x1

(6.3)

and show that u ∈ W 1,p(I0, λ) but u 6∈ H1,p(I0, λ) for β > p− 2 and 0 < α < β <

2(p − 1). We now consider a smooth function ψ, with ψ ≡ 1 in ]− 1/4, 1/4[× ]−

1/4, 1/4[ and supp ψ ⊂⊂ I0, and we define U : I0 → R as U = ψu. Arguing as

in Ref. 9 with the same choice of α and β, we can show that U ∈
◦

W 1,p(I0, λ) but

U 6∈
◦

H1,p(I0, λ).

Let us take the matrix Aε(x) := λ
2/p
# (x

ε )I, where the symbol # denotes the

periodic extension of λ to the whole plane and I is the unit matrix in R2. With this

definition and by (6.2), the assumption (1.5) becomes | xε |
2β/p|ξ|2 ≤ 〈Aε(x)ξ, ξ〉 ≤

|xε |
2α/p|ξ|2 a.e. in I0. We now extend to the whole R2 the functions |xε |

β and |xε |
α,

by periodicity and we denote the periodic extension adding the symbol # to both

functions. We choose the weights λε(x) = |xε |
β
# and Λε(x) = |xε |

α
#. By periodicity, it

is easy to show that λε and Λε satisfy conditions (w1) and (w2) in the Introduction.

As for condition (w3) to hold, we need further relation α > β − 2. By a careful

analysis of the proof given in Ref. 9 we can also show that for this choice of α and

β we still have U ∈
◦

W1,p(I0, λ) but U 6∈
◦

H1,p(I0, λ).

Let Ω = I0 for simplicity. We claim that the periodic function uε(x) := U#(x
ε )

is in W 1,p
Aε

(Ω) but not in H1,p
Aε

(Ω).

The first assertion is easy to be verified. Indeed, since supp U ⊂⊂ I0 then

∇U# = (∇U)# and since the number of ε-cells recovering Ω is of the order 1/ε2

and u ∈W 1,p(I0, λ), for every ε > 0 we have
∫

Ω

〈Aε(x)∇uε,∇uε〉
p/2 =

∫

Ω

λ#

(x

ε

)

|∇uε|
pdx

=
1

ε

∫

Ω

λ#

(x

ε

)
∣

∣

∣
∇(ψu)#

(x

ε

)
∣

∣

∣

p

dx

=
1

ε3

∫

1
ε
Ω

λ#(x)|∇(ψu)#(x)|pdx

≤
1

ε

∫

Ω

λ(x)|∇(ψu)(x)|pdx

≤
1

ε

(
∫

Ω

λ(x)|u|pdx +

∫

Ω

λ(x)|∇u|pdx

)

<∞ .

To show that uε 6∈ H1,p
Aε

(Ω), we follows the same argument used in Ref. 9. By con-

tradiction, suppose there exists a sequence (uε)k ∈ C1(Ω) which converges to uε in
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W 1,p
Aε

(Ω). In particular the convergence holds in the ε-cell Iε = 1
εΩ (which can be

supposed centered in the origin). In particular we have limk→∞

∫

Iε
λ#(x

ε )|∇(uε)k −

∇uε|
pdx = 0. Up to rescaling, we have in fact shown that U can be approximated

by a C1-function in Ω and we have a contradiction since ∇uε(x) = (∇U)#(x
ε ) and

U 6∈ H1,p(Ω, λ).

In addition, if we choose a cutoff function Φ with support contained in Ω, and

we consider ūε := Φuε, we see that ūε ∈
◦

W
1,p
Aε

(Ω) but ūε 6∈
◦

H
1,p
Aε

(Ω).

We want to show that the two families of admissible weights describing the

problem in this example induce, via a Γ-limit argument,
◦

H∞(Ω) =
◦

W∞(Ω). Indeed,

by Remark 3.1, there exist a function Q(x, ξ) such that λ∞(x)|ξ|p ≤ Q(x, ξ) ≤

Λ∞(x)|ξ|p for almost every x ∈ Ω, for any ξ ∈ Rn, where the two weights λ∞
and Λ∞ are weak limits of λε and Λε respectively. On the other hand, since the

weights λε and Λε are periodic they converges to their averages (and hence to two

positive constants a, b). By unicity of the limit, λ∞ = a and Λ∞ = b. Therefore the

ellipticity condition a|ξ|p ≤ Q(x, ξ) ≤ b|ξ|p implies
◦

H∞(Ω) =
◦

W∞(Ω) =
◦

W1,1(Ω).

Example 6.2. Let Ω = I0 and λ as in (6.1). Define λ̃ε = max{λ, ε}, clearly λ̃ε ≥ ε;

moreover by (6.2) λ̃ε ≤ 1 in Ω. Define Aε(x) = λ̃ε(x)
2/pI, since for any ε > 0 the

ellipticity growth condition ε|ξ|p ≤ 〈Aε(x)ξ, ξ〉p/2 ≤ |ξ|p holds for a.e. x ∈ Ω and

every ξ ∈ Rn, we have
◦

H
1,p
Aε

(Ω) =
◦

W
1,p
Aε

(Ω).

On the other hand, in Theorem 4.1 (where we take u0 = 0) it is shown that, up to

subsequences, [u] = Γ− lim(
∫

Ω |u| dx+ (
∫

Ω〈Aε(x)∇u,∇u〉p/2dx)1/p) = (
∫

Ω |u| dx+

(
∫

ΩQ(x,∇u) dx)1/p) for u ∈
◦

H∞(Ω). By definition of λ̃ε, the sequence (〈Aε(x)∇u,

∇u〉p/2)ε is non-increasing when ε → 0, hence using the monotone convergence

theorem, limε→0(
∫

Ω〈Aε(x)∇u,∇u〉p/2dx)1/p = (
∫

Ω |∇u|pλ dx)1/p on Lip0(Ω). Since

(
∫

Ω |∇u|pλ dx)1/p is L1(Ω)-lower semicontinuous on Lip0(Ω), by Theorem 5.7 and

Proposition 6.1 in Ref. 14, the norm [·] coincides with the norm ‖ · ‖W 1,p(Ω,λ) in

Lip0(Ω) and hence
◦

H∞(Ω) =
◦

H1,p(Ω, λ). Now take U as in Example 6.1, and recall

that U 6∈
◦

H1,p(Ω, λ) but U ∈
◦

W1,p(Ω, λ) ⊂
◦

W∞(Ω). Hence
◦

H∞(Ω) 6=
◦

W∞(Ω).
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