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Abstract. In this paper we present homogenization results for elliptic degen-
erate differential equations describing strongly anisotropic media. More pre-
cisely, we study the limit as ε → 0 of the following Dirichlet problems with
rapidly oscillating periodic coefficients:{−div (α(x

ε
, ∇u)A(x

ε
)∇u) = f(x) ∈ L∞(Ω)

u = 0 su ∂Ω

where p > 1, α : R
n × R

n → R, α(y, ξ) ≈ 〈A(y)ξ, ξ〉p/2−1, A ∈ Mn×n(R),
A being a measurable periodic matrix such that At(x) = A(x) ≥ 0 almost
everywhere.

The anisotropy of the medium is described by the following structure
hypotheses on the matrix A:

λ2/p(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ2/p(x)|ξ|2,

where the weight functions λ and Λ (satisfying suitable summability assump-
tions) can vanish or blow up, and can also be ‘‘moderately” different. The
convergence to the homogenized problem is obtained by a classical compen-
sated compactness argument, that had to be extended to two-weight Sobolev
spaces.
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1 Introduction

Throughout this paper Y = (0, 1)n will denote the open unit cube in R
n. Let

A : R
n → Mn×n(R) be a Y -periodic measurable matrix-valued function such that

At(y) = A(y) ≥ 0 a.e. in Y . We shall assume that there exist two Y -periodic
weight functions (i.e. non negative locally summable periodic functions) λ, Λ such
that:

λ2/p(y)|ξ|2 ≤ 〈A(y)ξ, ξ〉 ≤ Λ2/p(y)|ξ|2 (1)

for a.e. y ∈ Y and for all ξ ∈ R
n, where p > 1. Let Ω be a regular bounded open

subset of R
n; in this paper we shall describe the asymptotic behavior, as ε → 0+,

of the solutions of the Dirichlet problem in Ω for the nonlinear degenerate or
singular elliptic equation

−div
(

a

(
x

ε
,∇u

))
:= −div

(
α

(
x

ε
,∇u

)
A

(
x

ε

)
∇u

)
= f(x) ∈ L∞(Ω), (2)

where α : R
n×R

n → R satisfies suitable structure conditions that will be specified
below (see conditions H1 − H4 at the end of this section). Roughly speaking,
we shall assume that α(y, ξ) ≈ 〈A(y)ξ, ξ〉p/2−1. For the moment, we can think
typically of the generalized p-Laplace operator of the form

−div
( ∣∣∣∣√A

(
x

ε

)
∇u

∣∣∣∣
p−2

A

(
x

ε

)
∇u

)
= f, (3)

where A has a strongly anisotropic behavior, i.e. the ratio of the upper and the
lower eigenvalues is not bounded. When λ ≡ λ0 > 0 and Λ ≡ Λ0 < ∞, i.e. when
the differential operator (2) is uniformly elliptic in Ω, this problem has been largely
studied in the last few years. For a detailed survey about the subject (the so-called
homogenization theory), together with physical motivations and applications, the
reader can refer to [1], [18], [14], and to the recent monographies [2] and [7]. The
result we want to extend in this note states, roughly speaking, that the solutions
of Dirichlet problems associated with equations with rapidly oscillating periodic
coefficients (like (2)) converge to the solution of a new Dirichlet problem, the so-
called homogenized problem, that can be explicitly written. If λ ≡ Λ, then the
problem has been fully solved by De Arcangelis and Serra Cassano in [9] for λ
belonging to the Muckenhoupt’s class Ap. A precise definition of this condition is
given below, but for the moment we want to stress the fact that to check such a
condition we need a precise description of the local behavior of the coefficients at
any scale. Moreover, the assumption λ ≡ Λ implies that the equation describes
phenomena that are basically isotropic in all directions. However, the main feature
of the present result will consist of the fact that the weight functions λ and Λ need
not to be either bounded or bounded away from zero, and that they can differ
each other, in the sense that the ratio Λ/λ can blow-up at some point. Think
for instance of an homogeneous material with inclusions producing a strongly
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anisotropic behavior; our model example will be provided by a, say linear, equation
in the plane of the form

∂

∂x1

(
λ

(
x1

ε
,
x2

ε

)
∂

∂x1

)
u +

∂

∂x2

(
Λ
(

x1

ε
,
x2

ε

)
∂

∂x2

)
u = f(x1, x2).

The key tool we shall use to prove our result will be a two-weight compensated
compactness theorem. We stress that the main difference between our result and
the classical one (see e.g. [17], [20]), or the weighted version of it proved in [9],
relies on the fact that the basic estimate and the dual estimate are assumed here
to hold with respect to different weight functions; in this way we keep into account
the anisotropy of our situation. In turn, our approach relies on an approxima-
tion argument based on Poincaré inequality ([12], [16], [19]) and on two-weights
Poincaré inequalities proved by S. Chanillo and R.L. Wheeden in [4]. In fact, our
approach has been largely inspired by [4, 5], where the authors study systemati-
cally linear anisotropic operators whose quadratic form is controlled in terms of a
couple of weights, like in assumption (1). Obviously, in this paper, to prove the
convergence to the homogenized problem we have to impose that the two weights,
that take into account our anisotropic behavior, are in a sense not “too bad” and
not “too different”. To state our assumptions in a concise way, we introduce some
notations that will be used throughout this paper. If ω is a weight function and
E is a measurable subset of R

n, we shall write

ω(E) :=
∫

E

ω(x) dx ,

∫
E

ω(x) dx :=
1

|E|
∫

E

ω(x) dx,

where |E| is the Lebesgue measure of E.
We shall assume the following conditions are satisfied. The weight functions

λ and Λ are not “too bad” in the sense that

I) λ ∈ Ap (the Muckenhoupt’s class), i.e. λ is a non-negative measurable func-
tion on R

n such that

K := supQ

( ∫
Q

λdy

)
·
( ∫

Q

λ−1/(p−1)dy

)p−1

< ∞, (4)

where the supremum is taken on all cubes Q = Q(x, r) = {y = (y1, . . . , yn) ∈
R

n; maxj |xj − yj | < r}, where x = (x1, . . . , xn) ∈ R
n, r ∈ (0, r0], r0 > 0. We

shall call x and r respectively the center and the radius of Q(x, r).

II) Λ ∈ L1+µ(Y ), µ > 0, and it is a doubling weight, i.e.

DΛ = supQ Λ(2Q)/Λ(Q) < ∞,

where the supremum is taken on all cubes Q = Q(x, r), x ∈ R
n, r ∈ (0, r0]

and 2Q = Q(x, 2r).

It is well known that condition (4) implies that also λ is a doubling weight,
with doubling constant depending only on K (see [13]). The two weights
are not “too different” in the sense that
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III) there exist q > p and C > 0 such that, if I, J are cubes of radius r(I), r(J)
respectively, such that I ⊆ J and r(I), r(J) ≤ r0, then

r(I)
r(J)

(
Λ(I)
Λ(J)

)1/q

≤ C

(
λ(I)
λ(J)

)1/p

. (5)

The role of assumptions I), II), and III) above will become clear in Proposition 4
below, since they will yield a scale-invariant two-weight Sobolev–Poincaré inequal-
ity that in turn will provide the key tool for a weighted compensated compactness
theorem (see Theorem 6).

Example 1 Suppose λ ≡ 1 and let Λ satisfy (II). Then (III) reads

(
r(I)
r(J)

)1−n/p(Λ(I)
Λ(J)

)1/q

≤ C, (6)

that is satisfied for instance if

1 − n

p
+

1
p

log2 DΛ > 0.

Example 2 Suppose λ ≡ 1 and Λ(x) = |x|−α, 0 < α < n on Y , continued by
periodicity on all R

n. Assumption (II) is satisfied since Λ is an A1-weight. An
elementary computation shows that

Λ(I)
Λ(J)

≤ C

(
r(I)
r(J)

)n−α

,

so that (6) holds provided there exists q > p such that

1 − n

p
+

1
q
(n − α) ≥ 0;

in particular, such a q exists if

α < min{p, n}.

Example 3 Suppose λ ≡ 1 and R
n = R

m
x × R

n−m
y , and let Λ(x, y) = |x|−α, 0 <

α < m, continued by periodicity. Again we see that condition (III) is satisfied if
α < min{p, m} (condition (II) still holds since Λ ∈ A1).

Example 4 If Λ ≈ λ, then condition (III) follows by doubling. Finally, let us list
precisely our (fairly standard) structure assumptions on the operator in (2). We
assume that
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H1) α(y, ·) : R
n × R

n → Ris continuous for a.e. y ∈ R
n,

H2) α(·, ξ) is measurable and Y -periodic on R
n,∀ξ ∈ R

n,

H3) c1〈A(y)ξ, ξ〉p/2−1 ≤ α(y, ξ) ≤ c2〈A(y)ξ, ξ〉p/2−1 where c1 and c2 are posi-
tive constants,

H4) 〈α(y, ξ1)A(y)ξ1 −α(y, ξ2)A(y)ξ2, ξ1 −ξ2〉 > 0 for a.e. y ∈ R
n and for every

ξ1 and ξ2 in R
n with ξ1 6= ξ2.

The paper will be organized as follows: Section 2 will deal with function spaces
and will contain the statement of the main theorem. In Section 3 we shall prove
the two-weight compensated compactness theorem, and finally Section 4 contains
the proof of the convergence theorem.

2 Preliminaries

Let us start by proving that, by periodicity and by doubling, the local assumptions
I), II) and III) are in fact global, i.e. they hold for any r > 0.

Lemma 1 If λ and Λ satisfy assumptions I), II) and III) for 0 < r < r0, then
they satisfy the same assumptions for any r > 0.

Proof. Write Y = ∪N0
j=1Qj , with r(Qj) := r1 < 1

2r0 for j = 1, . . . , N0. From now
on, r1 and N0 will be fixed geometric constants. By doubling1, if Qi and Qj are
contiguous cubes, then λ(Qi) and λ(Qj) are equivalent2, as well as Λ(Qi) and
Λ(Qj). Thus λ(Qj) ≈ λ0 and Λ(Qj) ≈ Λ0, for j = 1, . . . , N0. By periodicity, all
the space can be covered by a countable family of congruent cubes {Qj , j = 1, . . .}
of radius r1 enjoying the same property. In addition, again by doubling, if Q̃ is
any cube with radius between r1 and r0, then λ(Q̃) ≈ λ0 and Λ(Q̃) ≈ Λ0. Let now
Q = Q(x, r) be any cube with r ≥ r0. If we denote by Q∗ and Q∗ respectively
the subfamily of cubes of {Qj} contained in Q and of cubes having nonempty
intersection with Q, we have

#Q∗ ≥
([

2r

r0

]
− 1
)n

, #Q∗ ≤
([

2r

r0

]
+ 1
)n

,

so that

λ(Q) ≈
[
2r

r0

]n

λ0, Λ(Q) ≈
[
2r

r0

]n

Λ0, |Q| ≈
[
2r

r0

]n

.

1By saying ‘by doubling’ we shall mean that the assertion relies on the doubling property of
Λ specified in II) and on the doubling property of λ that follows from I), and that all constants
depend only on K, DΛ and on other geometric constants.

2As above ‘equivalent’ (≈) will mean that the ratio λ(Qi)/λ(Qj) is bounded and bounded
away from zero by positive constants that depend only on geometric constants.
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Thus, clearly, I) and II) hold for any r > 0, as well as III) when both r(I),
r(J) ≥ r0. As for III), if r(I) < r0 ≤ r(J), we can argue as follows. Let J̃ be the
cube with the same center as I and radius r0. By doubling, λ(J̃) ≈ [2r(J)

r0
]nλ(J)

and Λ(J̃) ≈ [ 2r(J)
r0

]nΛ(J), and then

r(I)
r(J)

(
Λ(I)
Λ(J)

)1/q (
λ(I)
λ(J)

)−1/p

≈ r(I)
r(J̃)

(
Λ(I)
Λ(J̃)

)1/q (
λ(I)
λ(J̃)

)−1/p [2r

r0

]n/p−n/q−1

≤ C,

by III), since r(I), r(J̃) ≤ r0, and we can always assume q close to p such that
n/p − n/q − 1 ≤ 0 (keep in mind 2r(J)

r0
≥ 2). ¨

We now define some function spaces suitable to our problem. If s > 1
and ω ∈ As we shall denote by Ls(Ω, ω) = {u ∈ L1

loc(Ω);ω1/su ∈ Ls(Ω)}, and
by W 1,s(Ω, ω) = {u ∈ W 1,1

loc (Ω);ω1/su ∈ Ls(Ω), ω1/s∇u ∈ (Ls(Ω))n}. Moreover,
◦

W 1,s(Ω, ω) is the closure of C∞
0 (Ω) in W 1,s(Ω, ω).

Definition 1 If 1 < p < ∞, we put

W 1,p
A (Ω) =

{
u ∈ Lp(Ω, λ) ∩ W 1,1

loc (Ω);
∫

Ω
〈A∇u, ∇u〉p/2dx < +∞

}
, (7)

endowed with the norm

‖u‖W 1,p
A

(Ω) =
(∫

Ω
〈A∇u, ∇u〉p/2dx

)1/p

+
(∫

Ω
|u|pλdx

)1/p

. (8)

We shall show below (Theorem 1) that W 1,p
A (Ω) is continuously embedded in

W 1,1(Ω). Thus we can define

◦
W 1,p

A (Ω) := W 1,p
A (Ω)∩ ◦

W
1,1(Ω).

Remark 1 If λ ≈ Λ then
◦

W 1,p
A (Ω) is the closure of C∞

0 (Ω) in W 1,p
A (Ω) (see [9],

Remark 3.6).

Theorem 1 Suppose λ satisfies hypothesis I) in the Introduction. Then we have:

i) W 1,p
A (Ω) is a reflexive Banach space;

ii) W 1,p
A (Ω) is continuously embedded in W 1,p(Ω, λ) and hence continuously

embedded in W 1,1(Ω). Moreover
◦

W
1,p
A (Ω) is continuously embedded in

◦
W 1,p(Ω, λ);
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iii) [u]p
W 1,p

A
(Ω)

:=
∫
Ω〈A∇u, ∇u〉p/2dx is a norm on

◦
W 1,p

A (Ω). More precisely,

‖u‖Lp(Ω,λ) ≤ C[u]W 1,p
A

(Ω), where the constant C is a geometric constant
depending only on K, the Ap constant of λ in (4);

iv) (W 1,p
A (Ω))∗ = {u ∈ D′(Ω), u = g0λ

1/p + div(
√

Ag), with (g0, g) ∈ (Lp′

(Ω))n+1, 1/p + 1/p′ = 1}, and the action of u on ϕ ∈ W 1,p
A (Ω) is given by

∫
Ω

[
g0ϕλ1/p + 〈

√
Ag,∇ϕ〉] dx;

v) (
◦

W 1,p
A (Ω))∗ = {u ∈ D′(Ω), u = div(

√
Ag), with g ∈ (Lp′

(Ω))n, 1/p +

1/p′ = 1}, and the action of u on ϕ ∈
◦

W 1,p
A (Ω) is given by

∫
Ω
〈
√

Ag,∇ϕ〉dx.

Proof. The first statement in ii) follows straightforwardly from (1) and from well
known properties of Ap-weights. Moreover, by [9], Remark 3.6,

◦
W 1,p

A (Ω) = W 1,p
A (Ω)∩ ◦

W
1,1(Ω) = W 1,p

A (Ω) ∩ W 1,p(Ω, λ)∩ ◦
W

1,1(Ω)

= W 1,p
A (Ω)∩ ◦

W
1,p(Ω, λ) ↪→ ◦

W
1,p(Ω, λ)

To prove i), let us show that W 1,p
A (Ω) is linearly isometric to a closed subspace of

(Lp(Ω))n+1. Indeed, consider the map T : W 1,p
A (Ω) → (Lp(Ω))n+1 defined by

Tu = (λ1/pu,
√

A∇u).

Clearly, T is a linear isometry, and we have only to show that its range is closed.
Thus, take (f0, f) = (f0, f1, . . . , fn) such that there exist uk ∈ W 1,p

A (Ω) such that
λ1/puk and

√
A∇uk converge in Lp(Ω) to f0 and f respectively. By ii), there

exists u0 ∈ W 1,1(Ω) such that uk → u0 in W 1,1(Ω); moreover it is easy to see that
λ1/pu0 = f0 and uk → u0 in Lp(Ω, λ) as k → ∞. To achieve the proof, let us notice
that, without loss of generality we may assume that ∇uk → ∇u0 a.e. in Ω, and
that there exists h ∈ Lp(Ω) such that |√A∇uk| ≤ h a.e. in Ω. Thus, by dominate
convergence theorem,

√
A∇uk → √

A∇u0, that implies that f =
√

A∇u0, so that
(f0, f) ∈ T (W 1,p

A (Ω)), and we are done. We can prove now iv) by noticing that,
thanks to Hahn–Banach theorem, a functional F ∈ (W 1,p

A (Ω))∗ can be written as

F (ϕ) =
∫

Ω
〈(g0, g), T (ϕ)〉 dx,
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where (g0, g) ∈ (Lp′
(Ω))n+1 , 1/p + 1/p′ = 1. To prove iii) holds, it is enough

to show that the Lp(Ω, λ)-norm of u ∈
◦

W 1,p
A (Ω) can be controlled by [u]p

W 1,p
A

(Ω)
.

But this follows straightforwardly thanks to (1) and ii), by known Poincaré type

inequalities for Ap weights (see [10]), since u belongs to
◦

W 1,p(Ω, λ) and then
can be approximated in this last norm by smooth functions supported in Ω to
whom Poincaré inequality applies. Finally, v) can be proved as iv), keeping in
mind iii). ¨

Let us now recall the following result ([15], III Corollary 1.8, page 87):

Theorem 2 Let X be a Banach space, K ⊆ X be a nonempty closed convex subset
and let A : K → X∗ be monotone, coercive and continuous on finite dimensional
subspaces. Then there exists u ∈ K such that

〈Au, v − u〉X∗,X ≥ 0 for any v ∈ K. (9)

If ε > 0 we put

Aε(x) = A

(
x

ε

)
.

Theorem 3 If f ∈ L∞(Ω) then there exists a unique uε ∈
◦

W 1,p
Aε

(Ω) such that

∫
Ω

〈
a

(
x

ε
,∇uε

)
,∇ϕ

〉
dx =

∫
Ω

fϕdx (10)

for all ϕ ∈
◦

W 1,p
Aε

(Ω).

Proof. Consider the operator A :
◦

W 1,p
Aε

(Ω) → (
◦

W 1,p
Aε

(Ω))∗ defined by A(u) =

div (a(·,∇u))−f . It can be easily verified that A(u) ∈ (
◦

W 1,p
Aε

(Ω))∗ by using (H3).
Moreover A is monotone, coercive and weakly continuous, so that Theorem 2 can
be applied. ¨

We shall denote by W 1,p
A,#(Y ) the set of real functions u ∈ W 1,1

loc (Rn),
u Y -periodic, u ∈ W 1,p

A (Y ).

Theorem 4 If ξ ∈ R
n, then there exists a unique function v ∈ 〈ξ, ·〉 + W 1,p

A,#(Y )
with

∫
Y

vdy = 0 such that∫
Y

〈a(y, ∇v(y)),∇w(y)〉dy = 0 ∀w ∈ W 1,p
A,#(Y ) (11)
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Proof. The existence of the solution is a consequence of Theorem 2, with
X = W 1,p

A (Y ), K = {u = 〈ξ, ·〉 + ũ, ũ ∈ W 1,p
A,#(Y ),

∫
Y

ũdy = 0} and Au =
div(a(·,∇u)). Indeed Theorem 2 implies that∫

Y

〈a(y, ∇v(y)),∇ϕ(y) − ∇v(y)〉dy ≥ 0

for any ϕ ∈ K. Thus, if w ∈ W 1,p
A,# and v = 〈ξ, ·〉 + ṽ with ṽ ∈ W 1,p

A,#, to obtain
(11) it is enough to choose ϕ = ±w + ṽ + 〈ξ, ·〉 ∓ ∫

Y
wdy. Uniqueness is due to

the strict monotonicity of a, see property H4. ¨

Arguing as in [9], if ξ ∈ R
n we put

b(ξ) =
∫

Y

a(y, ∇v(y))dy, (12)

where v is the solution of (11). In fact b will define our homogenized operator.
We have:

Proposition 1 Let b be defined by (12), then

i) |b(ξ)| ≤ c1|ξ|p−1 ∀ξ ∈ R
n;

ii) 〈b(ξ), ξ〉 ≥ c2|ξ|p ∀ξ ∈ R
n;

iii) 〈b(ξ1) − b(ξ2), ξ1 − ξ2〉 > 0 ∀ξ1, ξ2 ∈ R
n, ξ1 6= ξ2;

iv) b is continuous on R
n.

Proof. Just repeat more or less verbatim the proofs of Lemmas 3.3, 3.4 and 3.5
in [9]. ¨

We can state now the desired convergence result:

Theorem 5 Let a : R
n×R

n → R
n be a function satisfying the following structure

properties:




i) a(y, ·) : R
n → R

n is continuous ∀y ∈ R
n,

ii) a(·, ξ) is measurable and Y periodic on R
n,∀ξ ∈ R

n,

iii) a(y, ξ) is of the form a(y, ξ) = α(y, ξ)A(y)ξ, (S1)
where α(y, ξ) ∈ R, A(y) ∈ Mn×n(R), y, ξ ∈ R

n,
and moreover A = At, α(y, ξ) ≈ 〈A(y)ξ, ξ〉p/2−1;

λ2/p(y)|ξ|2 ≤ 〈A(y)ξ, ξ〉 ≤ Λ2/p(y)|ξ|2 (S2)
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where the weights λ and Λ are Y-periodic and satisfies conditions I), II) and III)
in the Introduction;

〈α(y, ξ1)A(y)ξ1 −α(y, ξ2)A(y)ξ2, ξ1 −ξ2〉 > 0 (S3)

for a.e. y ∈ R
n and for every ξ1 and ξ2 in R

n with ξ1 6= ξ2. Let ε > 0,Ω be
a bounded open set of R

n and f ∈ L∞(Ω). Let uε be the weak solution of the
Dirichlet problem (Pε):{−div (α(x

ε ,∇u)A(x
ε )∇u) = f on Ω

u ∈
◦

W 1,p
Aε

(Ω)
(Pε)

where Aε(x) = A(x
ε ), and let u0 be the solution of the Dirichlet problem (P0):

{−div (b(∇u)) = f on Ω

u ∈ ◦
W 1,p(Ω)

(P0)

Then, for ε → 0, we have

uε → u0 in
◦

W 1,1(Ω) − weak
α(x

ε ,∇uε)A(x
ε )∇uε → b(∇u0) in (L1(Ω))n − weak.

Remark 2 We recall that every problem (Pε)ε≥0 has a unique weak solution, see
Theorem 3.

The proof of the above theorem will be the content of Section 4.

3 Compensated compactness

Our compensated compactness result (that is the main result of the present paper)
reads as follows.

Theorem 6 Let Ω be a bounded open subset of R
n, and let ν be an Ap weight in

R
n. Moreover let {λε} and {Λε} be two families of weight functions defined in R

n

satisfying the following conditions:

1. there exists q > p > 1 and C > 0 such that, if I, J are cubes of radius
respectively r(I) and r(J) and such that I ⊆ J , then

r(I)
r(J)

(
Λε(I)
Λε(J)

)1/q

≤ C

(
λε(I)
λε(J)

)1/p

, (13)

where C > 0 is independent of ε ∈ (0, 1).
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2. {Λε} is uniformly doubling and {λε} is uniformly Ap, i.e. there exist D, K >
0 such that

Λε(2I) ≤ DΛε(I),
∫

I

λεdx

( ∫
I

λ−1/(p−1)
ε dx

)p−1

≤ K (14)

for all cubes I and for all ε ∈ (0, 1).

Let now {uε} be a family of functions such that


uε ∈ W 1,p(Ω, λε) (a)
‖uε‖W 1,p(Ω,λε) ≤ α1 for all ε ∈ (0, 1) (b)
there exists u ∈ W 1,p(Ω, ν); uε → u in L1(Ω). (c)

Moreover, let {aε} be a family of vector-valued functions such that


〈aε,∇uε〉 ∈ L1(Ω) for all ε ∈ (0, 1) (d)∫
Ω |aε|p′

Λ−1/(p−1)
ε dx ≤ αp′

2 for all ε ∈ (0, 1) (e)
div(aε) = f ∈ L∞ on C1

0 (Ω) for all ε ∈ (0, 1) (f)
there exists a ∈ (Lp′

(Ω, ν−1/(p−1))n; aε → a in (L1(Ω))n − weak. (g)

Then
〈aε,∇uε〉 → 〈a,∇u〉 in D′(Ω). (15)

Remark 3 Note that the limit 〈a,∇u〉 ∈ L1(Ω), by (c) and (g).

Remark 4 As we shall see, assumptions 1) and 2) in Theorem 6 are in fact
stronger than we really need. Indeed, we might restrict ourselves to assume
1) and 2) hold not globally, but locally, in the sense that the result would follow
by assuming that for any open set Ω′ ⊂⊂ Ω 1) and 2) hold for cubes I, J ⊆ Ω′,
with constants depending on Ω′.

Remark 5 In is easy to see that assumption 1) and 2) of the above theorem are
satisfied by choosing

λε(x) = λ

(
x

ε

)
, Λε(x) = Λ

(
x

ε

)
. (16)

This choice of λε and Λε will be used to prove later the main convergence theorem.

Let us state now a preliminary result. The first part is well known, whereas the
last statement is basically contained in [21].

Proposition 2 Suppose Λ satisfies hypothesis II) in the Introduction. If I is any
cube and t ∈ (0, 1), then

Λε(tI) ≥ 1
D

tlog2 DΛε(I).
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Moreover, if we put D̃ = 1 + 1
D 5− log2 D > 1 we have

Λε(2I) ≥ D̃Λε(I)

for any cube I, and hence

Λε(tI) ≤ D̃tlog2 D̃Λε(I)

for all t ∈ (0, 1) and ε ∈ (0, 1).

The following result will be crucial in the proof of Theorem 6.

Proposition 3 With the notations of Theorem 6, for any η > 0 there exists
r(η,Ω) > 0 such that, for any cube Q = Q(x, r), r < r(η,Ω) we have

(
Λε(Q)
λε(Q)

)1/p

r < η (17)

for all ε ∈ (0, 1).

Proof. Let {J1, . . . , J`} be a fixed covering of Ω̄, where Jk = Q(xk, 1), k = 1, . . . , `.
Let now Q = Q(x, r) be any cube with x ∈ Ω and r ≤ 1, and let k be such that
x ∈ Jk, so that Q ⊆ 2Jk and we can apply (13) with J = 2Jk and I = Q. After
few elementary computations we get

r

(
Λε(Q)
λε(Q)

)1/p

≤ 2C

(
Λε(2Jk)
λε(2Jk)

)1/p( Λε(Q)
Λε(2Jk)

)1/p−1/q

≤ 2C max
i

(
Λε(2Ji)
λε(2Ji)

)1/p( Λε(Q)
Λε(2Jk)

)1/p−1/q

=
(

Λε(Q)
Λε(2Jk)

)1/p−1/q

.

On the other hand, Q(x, 1) ⊆ Q(xk, 2) = 2Jk, so that Λε(2Jk) ≥ Λε(Q(x, 1)).
Hence, by Proposition 2,

Λε(Q)
Λε(2Jk)

≤ Λε(Q(x, r))
Λε(Q(x, 1))

≤ D̃rlog2 D̃,

and the assertion follows, since 1/p − 1/q > 0. ¨

The proof of Theorem 6 relies on the following two-weight Sobolev–Poincaré
inequality. This result is basically proved in [4].
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Proposition 4 Under the assumptions of Theorem 6, if B is an Euclidean ball,
B ⊆ Ω, and u ∈ W 1,p(Ω, λε), then for any s ∈ [p, q](

1
Λε(B)

∫
B

|u − uB |sΛεdx

)1/s

≤ Csr(B)
(

1
λε(B)

∫
B

|∇u|pλεdx

)1/p

, (18)

where uB =
∫

B
u(x)dx is the (Lebesgue) average of u on B, and the constant

Cs > 0 is a geometric constant depending only on n, s, and on the constants of
assumptions 1) and 2) of Theorem 6. In particular, C is independent of ε ∈ (0, 1).

Moreover, if u ∈
◦

W 1,p(Ω, λε), then(
1

Λε(B)

∫
B

|u|sΛεdx

)1/s

≤ Csr(B)
(

1
λε(B)

∫
B

|∇u|pλεdx

)1/p

, (19)

where again Cs is independent of ε ∈ (0, 1).

Proof. By [4], (18) holds when u ∈ Liploc(Ω). If now u ∈ W 1,p(Ω, λε) there
exists a sequence uk ∈ C∞(Ω) ∩ W 1,p(Ω, λε), uk → u in W 1,p(Ω, λε), by [6]. In
particular, uk → u in L1

loc(Ω) and a.e. in Ω, so that (uk)B → uB and the we can
conclude by Fatou’s lemma. The proof of the second statement is analogous. ¨

Remark 6 Through a covering argument it follows easily from (19) that, if Ω′ ⊂⊂
Ω, then for every u ∈ W 1,p(Ω, λε)

‖u‖Lp(Ω′,Λε) ≤ CΩ′‖u‖W 1,p(Ω,λε) (20)

where CΩ′ is independent of ε ∈ (0, 1).

In order to prove the theorem we need the following approximation lemma:

Lemma 2 Let λε, Λε, u and uε be as in Theorem 6. Then for any Ω′ ⊂⊂ Ω and
for any η > 0

• for any ε ∈ (0, 1) there exists uε,η ∈ C∞(Ω) such that∫
Ω′

|uε − uε,η|pΛεdx ≤ ηp

∫
Ω

|∇uε|pλεdx; (21)

• there exist uη ∈ C∞(Ω) such that∫
Ω′

|u − uη|pνdx ≤ ηp

∫
Ω

|∇u|pνdx. (22)

Moreover for any η > 0

uε,η → uη as ε → 0+ (23)

in L∞(Ω′).
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Proof. Arguing as in [12], if δ ∈ (0, 1/10) there exist a countable family {Bδ
j = B

(xδ
j , rjδ), j ∈ N} of balls, a countable family of smooth functions {ϕδ

j , j ∈ N}, and
a geometric constant c > 0 such that:

1.
⋃

j
3
4Bδ

j = Ω, 1
4Bδ

j ∩ 1
4Bδ

i = ∅, i 6= j;

2. rjδ = δ dist (1
4Bδ

j , ∂Ω);

3.
∑

j χBδ
j

≤ cχΩ;

4. if Bδ
j ∩ Bδ

i 6= ∅, then 1
2riδ ≤ rjδ ≤ 2riδ;

5. ϕδ
j ∈ C∞(Rn);

6.
∑

j ϕδ
j ≡ 1 on Ω and ϕδ

j ≥ 0 for j ∈ N ;

7. suppϕδ
j ⊆ Bδ

j for j ∈ N ;

8. |∇ϕδ
j | ≤ c/rjδ for j ∈ N .

Now we put

uε,η =
∑

j

c(uε, B
δ
j )ϕδ

j

where δ = δ(η) will be fixed later, and

c(uε, B
δ
j ) =

∫
Bδ

j

uεdx

(note that uε, u ∈ L1
loc(Ω)). Let us prove for instance that (21) holds. Arguing as

in [12], page 108 and keeping in mind that, by (3), for any x ∈ Ω ϕδ
j(x) 6= 0 for at

most c values of j, we have

∫
Ω′

|uε − uε,η|pΛεdx =
∫

Ω′

∣∣∣∣∣∣
∑

j

(
uε −

∫
Bδ

j

uεdx

)
ϕδ

j

∣∣∣∣∣∣
p

Λεdx

≤ C
∑

Bδ
j
∩Ω′ 6=∅

∫
Bδ

j
∩Ω′

∣∣∣∣∣uε −
∫

Bδ
j

uεdx

∣∣∣∣∣
p

Λεdx

≤ C
∑

Bδ
j
∩Ω′ 6=∅

Λε(Bδ
j )

λε(Bδ
j )

rp
jδ

∫
Bδ

j

|∇uε|pλεdx

where C is a geometric constant and the last inequality follows from Proposition 4.
Thus, since by (2) rjδ ≤ δ diam(Ω), if δ is sufficiently small, then rjδ < r(η,Ω),
where r(η,Ω) is defined in Proposition 3, so that the last sum is bounded by

Cηp
∑

Bδ
j
∩Ω′ 6=∅

∫
Bδ

j

|∇uε|pλεdx ≤ Cηp

∫
Ω

|∇uε|pλεdx, (24)
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again by property (3) of our covering. On the other hand, to prove (22) it is
enough to repeat the same argument keeping in mind that ν ∈ Ap. Hence∫

Ω′
|u − uη|pνdx ≤ C

∑
Bδ

j
∩Ω′

∫
Bδ

j

∣∣∣∣∣u −
∫

Bδ
j

udx

∣∣∣∣∣
p

νdx

≤ C
∑

Bδ
j
∩Ω′

rp
jδ

∫
Bδ

j

|∇uε|pνdx

≤ Cδp(diamΩ)p

∫
Ω

|∇u|pνdx,

by [10], Theorem 45. Thus we have only to prove that uε,η → uη as ε → 0+

in L∞(Ω′). Note now that, if we put Jδ(Ω′) = {j ∈ N ;Bδ
j ∩ Ω′ 6= ∅}, then

#Jδ(Ω′) < ∞ (arguing as in [12], page 108). We have for x ∈ Ω′ and δ = δ(η):

|uε,η(x) − uη(x)| ≤
∑

j∈Jδ(Ω′)

ϕδ
i (x)

∣∣∣∣∣
∫

Bδ
j

(uε − u)dx

∣∣∣∣∣
≤ #Jδ(Ω′) max

j∈Jδ(Ω′)

∫
Bδ

j

|uε − u|dx → 0

as ε → 0 since uε → u in L1(Ω). ¨

Proof of Theorem 6. We must show that for any ϕ ∈ D(Ω) we have

〈aε,∇uε〉(ϕ) → 〈a,∇u〉(ϕ) (25)

as ε → 0. Let Φ ∈ D(Ω) be such that Φ ≡ 1 in a neighborhood Uϕ of suppϕ, and
put uε = uεΦ, u = uΦ; uε and u can be considered continued by zero on all of R

n.
Now for η > 0 we have∫

Ω
〈aε,∇ϕ〉uεdx =

∫
supp Φ

〈aε,∇ϕ〉Λ−1/p
ε (uε − uε,η)Λ1/p

ε dx

+
∫

supp Φ
〈aε,∇ϕ〉uε,ηdx = Iε

1 + Iε
2,

where, for sake of simplicity, we write uε,η instead of (uε)η. By Hölder inequality
and Lemma 2 we now have:

|Iε
1| ≤

(∫
Ω

|aε|p′
Λ−1/(p−1)

ε |∇ϕ|p′
)1/p′

η‖∇uε‖Lp(Ω,λε) ≤ Cϕα1α2η, (26)

provided ε is sufficiently small. Hence∣∣∣∣
∫

Ω
〈aε,∇ϕ〉uεdx −

∫
Ω
〈a,∇ϕ〉udx

∣∣∣∣ =
∣∣∣∣
∫

Ω
〈aε,∇ϕ〉uεdx − 〈a,∇ϕ〉udx

∣∣∣∣
≤ Cϕα1α2η +

∣∣∣∣
∫

Ω
〈aε,∇ϕ〉uε,ηdx − 〈a,∇ϕ〉udx

∣∣∣∣.
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Now, by Lemma 2, since uε → u in L1(Ω), uε,η → uη on L∞(supp Φ) as ε → 0+.
On the other hand, supp 〈aε,∇ϕ〉 ⊆ Uϕ, where Φ ≡ 1, and hence, if η is sufficiently
small, uη = uη on supp ϕ, so that, keeping in mind that aε → a weakly in
(L1(Ω))n, ∫

Ω
〈aε,∇ϕ〉uε,ηdx

ε→0+

→
∫

Ω
〈a,∇ϕ〉uηdx ≡

∫
Ω
〈a,∇ϕ〉uηdx. (27)

Therefore

lim sup
ε→0+

∣∣∣∣
∫

Ω
〈aε,∇ϕ〉uεdx −

∫
Ω
〈a,∇ϕ〉udx

∣∣∣∣
≤ Cη +

∣∣∣∣
∫

Ω
〈a,∇ϕ〉uηdx − 〈a,∇ϕ〉udx

∣∣∣∣ ≤ Cη,

since

∣∣∣∣
∫

Ω
〈a,∇ϕ〉(uη − u)dx

∣∣∣∣ ≤ Cϕ

(∫
Ω

|a|p′
ν−1/(p−1)dx

)1/p′(∫
Ω

|∇u|pνdx

)1/p

η. (28)

Hence ∫
Ω
〈aε,∇ϕ〉uεdx →

∫
Ω
〈a,∇ϕ〉udx. (29)

On the other hand∫
Ω
(div aε)uεϕdx =

∫
Ω

fuεϕdx →
∫

Ω
fuϕdx (30)

since fϕ ∈ L∞(Ω) and uε → u in L′(Ω). Thus we get

〈aε,∇uε〉 → 〈a,∇u〉 (31)

in D′(Ω), as required.

4 Convergence to the homogenized problem

To prove convergence to the homogenized problem we need the following results:

Theorem 7 Suppose λ satisfies hypothesis I) in the Introduction. Then there exist
two positive constants δ = δ(n, p, K) and C = C(n, p, K) such that( ∫

Q

λ1+δdx

)1/(1+δ)

≤ C

∫
Q

λdx,

( ∫
Q

λ−(1+δ)/(p−1)dx

)1/(1+δ)

≤ C

∫
Q

λ−1/(p−1)dx

for every cube Q with faces parallel to the coordinate planes.
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Proof. See [3], [8] and [13]. ¨

Lemma 3 Let f ∈ Lp
loc(R

n), 1 ≤ p < +∞ be Y-periodic. Then, if fε(x) = f(x
ε ),

fε →
∫

Y

fdy in Lp
loc(R

n) − weak. (32)

Proof. See [14] page 5. ¨

Lemma 4 1) The functions uε defined in Theorem 5, Problem (Pε), satisfy
(a), (b), (c) of Theorem 5 with ν ≡ 1 and u = u∗

0 suitable. Moreover, the
functions aε defined by aε(x) = a(x

ε ,∇uε), where uε is defined in Theorem
6, Problem (Pε), satisfy (e), (f), (g) of Theorem 6 with ν ≡ 1, f = f and
a = a0 suitable;

2) Analogously, the functions vε defined by vε = εv(x
ε ) := 〈ξ, x〉+ εṽ(x

ε ) (where
v is defined in Theorem 4 as the solution of Problem (11) and ṽ is defined in
the proof of Theorem 4) satisfy (a), (b) and (c) of Theorem 6 with ν ≡ 1 and
u = 〈ξ, ·〉. Moreover, the functions aε defined by aε(x) = a(x

ε ,∇vε), where
vε is defined in 2) above, satisfy (e), (f), (g) of Theorem 6 with ν ≡ 1, f ≡ 0
and a(x) = b(ξ);

3) If aε and uε are defined by one of the choices 1) or 2) independently (i.e.
the choice for instance of uε as in 1) and aε as in 2) is allowed), then
〈aε,∇uε〉 ∈ L1(Ω) for all ε ∈ (0, 1) ((d) of Theorem 6).

Remark 7 In fact, what will be proved below is not precisely 1), but, as for the
convergence, a slightly weaker statement, i.e. the convergence of a subsequence
to a suitable limit u∗

0 that might depend on the subsequence itself. However,
it will be proved at the end of the proof of Theorem 5 that u∗

0 is a solution of
Problem (P0) that in turn admits a unique solution, by Remark 2 after Theorem 5.
Thus, the statement 1) will be fully proved. However, we keep this formulation
to avoid cumbersome arguments. Notice the same difficulty does not arise as for
the statement 2).

Proof of Lemma 4. Let K ≥ 1 be such that λ ∈ Ap(K). For ε > 0, we put
λε(x) = λ(x

ε ), x ∈ R
n; we have λε ∈ Ap(K),∀ε > 0. To prove 1), we want to

verify that there exists a positive constant C1 = C1(n, p, K, Ω, f) such that∫
Ω
(|uε|p + |∇uε|p)λεdx ≤ C1 ∀ε > 0 (33)

First of all we notice that, thanks to a Poincaré type inequality (see [10]), we have,
for K ≥ 1 and Ω bounded∫

Ω
|uε|pλεdx ≤ C

∫
Ω

|∇uε|pλεdx (34)
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where C = C(n, p, K, Ω). Hence∫
Ω
(|uε|p + |∇uε|p)λεdx ≤ C

∫
Ω

|∇uε|pλεdx. (35)

The variational formulation of problem (Pε) gives that∫
Ω

〈
α

(
x

ε
,∇uε

)
A

(
x

ε

)
∇uε,∇uε

〉
dx =

∫
Ω

fuεdx, (36)

and hence, by assumption (S1), iii),

∫
Ω

〈
A

(
x

ε

)
∇uε,∇uε

〉p/2

dx ≤ C

∫
Ω

|fuε|dx. (37)

By using (35) and (37) we then have:

∫
Ω

〈
A

(
x

ε

)
∇uε,∇uε

〉p/2

dx ≤ C(n, p, K, Ω)
∫

Ω
|f ||uε|dx

= C(n, p, K, Ω)
∫

Ω
|f |λ−1/p

ε λ1/p
ε |uε|dx

≤ C(n, p, K, Ω)
(∫

Ω
|uε|pλεdx

)1/p(∫
Ω

|f |p′
λ−1/(p−1)

ε dx

)1/p′

.

Clearly, since f ∈ L∞(Ω),

(∫
Ω

|f |p′
λ−1/(p−1)

ε dx

)1/p′

≤ ‖f‖L∞

(∫
Ω

λ−1/(p−1)
ε dx

)1/p′

. (38)

To estimate
∫
Ω λε(x)−1/(p−1)dx we put x

ε = t and we notice that, being Ω bounded,
the dilated cube Ω/ε can be covered by a number of unit cubes Q proportional to
( 1

ε )n. We then have

∫
Ω

λ

(
x

ε

)−1/(p−1)

dx =
∫

1
ε Ω

λ(t)−1/(p−1)εndt

≤ C

(
1
ε

)n

εn

∫
Q

λ(t)−1/(p−1)dt

≤ C.

Thus, by Theorem 1, iv), we can conclude that

∫
Ω

〈
A

(
x

ε

)
∇uε,∇uε

〉p/2

dx ≤ C (39)
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and then (33) follows from (35), (39) and (S2). This proves (a) and (b). To prove
(e) holds we want to verify that there exists a positive constant C2, independent
of ε, such that:

∫
Ω

∣∣∣∣α
(

x

ε
,∇uε

)
A

(
x

ε

)
∇uε

∣∣∣∣
p′

Λ−1/(p−1)
ε dx ≤ C2 ∀ε > 0. (40)

We begin by estimating |A(x
ε )∇uε|. By definition we have

∣∣∣∣A(
x

ε
)∇uε| =

∣∣∣∣√A

(
x

ε

)√
A

(
x

ε

)
∇uε

∣∣∣∣
≤
∥∥∥∥√A

(
x

ε

)∥∥∥∥
〈

A

(
x

ε

)
∇uε,∇uε

〉1/2

= sup
|ξ|,|η|≤1

∣∣∣∣
〈√

A

(
x

ε

)
ξ, η

〉∣∣∣∣
〈

A

(
x

ε

)
∇uε,∇uε

〉1/2

≤ sup
|ξ|≤1

∣∣∣∣√A

(
x

ε

)
ξ

∣∣∣∣
〈

A

(
x

ε

)
∇uε,∇uε

〉1/2

= sup
|ξ|≤1

〈
A

(
x

ε

)
ξ, ξ

〉1/2〈
A

(
x

ε

)
∇uε,∇uε

〉1/2

≤ Λ
(

x

ε

)1/p〈
A

(
x

ε

)
∇uε,∇uε

〉1/2

,

where in the last inequality we have used (S2). Moreover, since by (S1), iii)
α (x

ε ,∇uε) ≤ C〈A(x
ε )∇uε,∇uε〉 p

2 −1, we have:

∫
Ω

∣∣∣∣α
(

x

ε
,∇uε

)
A

(
x

ε

)
∇uε

∣∣∣∣
p′

Λ−1/(p−1)
ε dx

≤ C

∫
Ω

〈
A

(
x

ε

)
∇uε,∇uε

〉p′(p/2−1)+p′/2

Λp′/p−1/(p−1)dx

≤
∫

Ω

〈
A

(
x

ε

)
∇uε,∇uε

〉p/2

dx

≤ C by (39).

To prove the convergence of (uε)ε and (aε)ε let us prove now that there exists

σ > 0 such that (uε)ε is bounded in
◦

W 1,1+σ(Ω) and (α(x
ε ,∇uε)A(x

ε )∇uε)ε is
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bounded in (L1+σ(Ω))n, uniformly with respect to ε ∈ (0, 1). Indeed (keep in
mind Theorem 1, ii)), by Hölder inequality we get

∫
Ω
(|uε| + |∇uε|)1+σdx

≤
(∫

Ω
(|uε| + |∇uε|)pλεdx

)1+σ
p
(∫

Ω
λ

− 1+σ
p−(1+σ)

ε dx

)1− 1+σ
p

≤ C

(∫
Ω

λ
− 1+σ

p−(1+σ)
ε dx

)1− 1+σ
p

by (33). We can choose σ > 0 such that 1+σ
p−(1+σ) = 1+δ

p−1 , where δ is defined in
Theorem 7. Now, putting ξ = x

ε ,

∫
Ω

λ
− 1+δ

p−1
ε (x)dx = εn

∫
1
ε Ω

λ− 1+δ
p−1 (ξ)dξ

≤
∫

Y

λ− 1+δ
p−1 (ξ)dξ,

by periodicity since 1
ε Ω can be covered by N copies of Y , with N ≤ C(1

ε )n.
Analogously, by (39)

∫
Ω

∣∣∣∣α
(

x

ε
,∇uε

)
A

(
x

ε

)
∇uε

∣∣∣∣
1+σ

dx ≤ C

(∫
Ω

Λ
1+σ

(p−1)(p′−1−σ)
ε dx

)1− 1+σ

p′
.

Without loss of generality we can assume 1+σ
(p′−1−σ) = 1 + µ (see condition II))

and then we can conclude as above. By reflexivity, it is then possible to find
u∗

0 ∈ ◦
W 1,1+σ(Ω) such that uε → u∗

0 in
◦

W 1,1+σ(Ω) − weak, and hence

uε → u∗
0 in L1+σ(Ω), (41)

and a0 ∈ (L1+σ(Ω))n such that

α

(
x

ε
,∇uε

)
A

(
x

ε

)
∇uε → a0 in ∈ (L1+σ(Ω))n − weak. (42)

Thus uε satisfy (a), (b) (by (33) and (c) (by (41)). Moreover aε satisfy (e) (by
40), (f) by definition and (g) (by (42)). Let us prove now 2).

To prove that (a) holds, let us show for instance that I =
∫
Ω |√A(x

ε )∇vε

(x)|pdx ≤ C < +∞ (remember vε ∈ W 1,1
loc (Rn), and hence its gradient belongs
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to L1
loc). Indeed, since v(y) = 〈ξ, y〉 + ṽ(y), with ṽ(y) ∈ W 1,p

A,#(Y ), we have

I = εn

∫
1
ε Ω

|
√

A(y)∇v(y)|pdy

≤ C

∫
Y

|
√

A(y)∇v(y)|pdy

≤ Cp

(∫
Y

|
√

A(y)ξ|pdy +
∫

Y

|
√

A(y)∇ṽ(y)|pdy

)

≤ Cp|ξ|p
∫

Y

Λ(y)dy + ‖ṽ‖W 1,p
A

(Y ) = Cṽ,

by definition of W 1,p
A,#. An analogous estimate holds for J =

∫
Ω |vε(x)|pλε(x)dx.

Since these estimates do not depend on ε, (b) follows. By Lemma 3, vε → 〈ξ, ·〉
weakly in W 1,1(Ω), and then, by Rellich’s theorem, vε → 〈ξ, ·〉 in L1(Ω). Thus,
(c) is proved. To prove (e), it is enough to repeat the argument yielding (40)
and replacing (39) by the estimates of I and J above. Assertion (f) (with f ≡ 0)
can be proved arguing as in Lemma 1.6 of [9]. Eventually, (g) follows from the
very definition of b(ξ) and Lemma 3. As for 3), by (a) both 〈a(x

ε ,∇uε),∇uε〉 and
〈a(x

ε ,∇vε),∇vε〉 ∈ L1(Ω). Moreover (for instance)

∫
Ω

〈
a

(
x

ε
,∇uε

)
,∇vε

〉
dx

≤ C

∫
Ω

|
√

A∇uε|p−2〈A∇uε,∇vε〉dx

≤ C

∫
Ω

|
√

A∇uε|p−1|
√

A∇vε|dx

≤ C

(∫
Ω

|
√

A∇uε|pdx

)1/p(∫
Ω

|
√

A∇vε|pdx

)1/p

< +∞

Proof of Theorem 5. To get the thesis we need only, with the notations of Lemma 4,
to prove that

u∗
0 ∈ ◦

W
1,p(Ω), a0(x) = b(∇u∗

0(x)) a.e. in Ω. (43)

Indeed, suppose (43) holds; then a limit argument shows that u∗
0 is a variational

solution of (P0), and then, by uniqueness (Remark 2), it follows that

u = u∗
0 a.e. in Ω.

Let us prove now that (43) holds. To prove that u∗
0 ∈ ◦

W 1,p(Ω) it is sufficient to
prove that

∇u∗
0 ∈ (Lp(Ω))n (44)
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since Ω is a regular bounded open set. For any ϕ ∈ C0
0 (Ω), using Hölder inequality,

for j = 1, . . . , n we have:∣∣∣∣
∫

Ω
∂juεϕdx

∣∣∣∣ ≤
∫

Ω
|∂juε|λ1/p

ε λ−1/p
ε |ϕ|dx

≤
(∫

Ω
|∂juε|pλεdx

)1/p(∫
Ω

λ−1/(p−1)
ε |ϕ|p′

dx

)1/p′

≤ C
1/p
1

(∫
Ω

λ−1/(p−1)
ε |ϕ|p′

dx

)1/p′

(45)

where in the last inequality we have used (33). Since by Lemma 3 we have∫
Ω

λ−1/(p−1)
ε |ϕ|p′

dx →
∫

Y

λ−1/(p−1)dy

∫
Ω

|ϕ|p′
dx, (46)

defining C3 = C
1/p
1 (

∫
Ω λ−1/(p−1)dy)1/p′

and taking the weak limit in (45) we
obtain: ∣∣∣∣

∫
Ω

∂ju
∗
0ϕdx

∣∣∣∣ ≤ C3‖ϕ‖Lp′ (Ω) ∀ϕ ∈ C0
0 (Ω), (47)

that implies (44). We prove now that a0(x) = b(∇u∗
0(x)) a.e. in Ω. Using inequality(40)

we have, for any ϕ ∈ (C0
0 (Ω))n:∣∣∣∣

∫
Ω

α

(
x

ε
,∇uε

)〈
A

(
x

ε

)
∇uε, ϕ

〉
dx

∣∣∣∣ (48)

≤
∫

Ω

∣∣∣∣α
(

x

ε
,∇uε

)
A

(
x

ε

)
∇uε

∣∣∣∣Λ−1/p
ε Λ1/p

ε |ϕ|dx

≤
(∫

Ω

∣∣∣∣α
(

x

ε
,∇uε

)
A

(
x

ε

)
∇uε

∣∣∣∣
p′

Λ−1/(p−1)
ε dx

)1/p′(∫
Ω

Λε|ϕ|pdx

)1/p

(49)

≤
(∫

Ω
Λε|ϕ|pdx

)1/p

, (50)

and arguing as in (46) and (47) we obtain that

a0 ∈ (Lp′
(Ω))n. (51)

Let ξ ∈ R
n, and let v be the solution of problem (11) and set vε = εv(x/ε). For

every ϕ ∈ D(Ω), with ϕ ≥ 0 in Ω, by the monotonicity of a(y, ξ) = α(y, ξ)A(y)ξ
(property (S3)) it follows that

0 ≤
∫

Ω
〈a(x/ε,∇uε) − a(x/ε,∇vε),∇uε − ∇vε〉ϕdx. (52)
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Now by the compensated compactness theorem and Lemma 4 we can pass to the
limit in inequality (52) and we finally obtain:

0 ≤
∫

Ω
〈a0(x) − b(ξ),∇u∗

0(x) − ξ〉ϕdx, ∀ξ ∈ R
n,∀ϕ ∈ D(Ω), ϕ ≥ 0. (53)

From the last inequality we deduce that there exists a subset N of Ω, of measure
zero, such that

〈a0(x) − b(ξ),∇u∗
0(x) − ξ〉 ≥ 0 ∀x ∈ Ω\N, ∀ξ ∈ Qn. (54)

Then by the continuity of b (Proposition 1, iv) we have that

〈a0(x) − b(ξ),∇u∗
0(x) − ξ〉 ≥ 0 ∀x ∈ Ω\N, ∀ξ ∈ R

n. (55)

Now, for a.e. x ∈ Ω, η ∈ R
n and t > 0 we set ξ = ∇u∗

0(x) − tη. Writing (55) with
this ξ an letting t → 0 we obtain (using again the continuity of b)

〈a0(x) − b(∇u∗
0(x)), η〉 ≥ 0, for a.e. x ∈ Ω\N, ∀η ∈ R

n. (56)

from which (43) follows.
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