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In this paper, we consider a problem of periodic homogenization in the context of the Heisenberdigrthgt is the 19

simplest noncommutative example of nilpotent stratified connected and simply connected Lie group, when the peric?&icity
is defined through group translations and intrinsic anistropic dilations. In particular, we consider a Dirichlet problem for a
generalized Kohn Laplacian operator with strongly oscillating (Heisenberg-)periodic coefficients in a domain that is perf(ﬁ%ted
by interconnected (Heisenberg-)periodic pipes. Convergence to the homogenized problem is obtained by a two-scale flethod
adapted to the geometry of the group with dilatian€002 Editions scientifiques et médicales Elsevier SAS. All rights reservezi.
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The two-scale convergence method of Nguetseidy dnd Allaire [1,2) has proved to be very powerful in the framework >*
of periodic homogenization. The method introduces a new notion of convergence, the “two-scale” convergence, whiczh in
particular implies weak convergence. The method has been successfully applied in several situations, always in a (pg;iodic)
Euclidean setting, including the homogenization of linear and nonlinear second order elliptic equations and the homogené%ation
of nonlinear operators (se#]]. 3

It could be interesting to investigate the applicability of this method to a more general periodic context, where the periogj'city
has to be meant with respect to a class of non-Euclidean translations and nonisotropic dilations. Indeed, the notion of twgfscale
convergence relies basically on the fact that derivatives commute with translations and scale appropriately with respect to
Euclidean homotheties. Thus, it is natural to imagine that such a procedure can be implemented in the more general getting
of stratified nilpotent Lie groups with dilations (the so-called Carnot groups, see, ., The simplest but nevertheless ,,
significant example of noncommutative Carnot group is provided by the HeisenberglfonpC” x R ~ R?"*+1 endowed 5
with the group multiplicationiz, r]- (¢, T] = [z + ¢, t + T 4+ 23m(z¢)], 2, ¢ € C, t, T € R and the family of anisotropic dilations %
8, A € R, given by§, [z, 1] = [Az, Azt]. In this case the left invariant operators afe = ax; + 2y;or andY; = dy; — 2xj0t, 47
j=1,...,n, and the associated second order model operator is the Kohn Lapkmi&mZ;?:l(ij. + sz). This operator, that 4s
will play the role for our geometry of the Laplace operator, is not elliptic at any point, since the lowest eigenvalue of its prineipal
quadratic form vanishes identically R2'*+1 However, we want to stress that we are not dealing here with a Riemanni@an
geometry and associated Laplace—Beltrami operator. In fact, because of the noncommutativity of the group multiplicatiéh, the

geometry of the Heisenberg group is not Euclidean and not even Riemannian at any scale (s&e,28]y., [ 52
53
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We point out that the two-scale procedure in the context of the Heisenberg group is not reduced-sedleversion of 1
the usual two-scale method (sé#g [Corollary 1.16), since such a method fits periodicity with respect to Euclidean translatiohs,
whereas we are here dealing with periodicity with respect to the group translations. 3

Deeply related to the structure &f” is the possibility to construct a periodic pavageHf by using group translations 4
and homotheties (seé8]). In this way one is enabled to develop a periodic homogenization theory, analogously to the clasSical
Euclidean setting. 6

There are several papers on homogenization in the Heisenberg group, but as far as we know this is the first time the twb-scale
method is generalized to the Heisenberg context. 8

The first paper concerning homogenization in the Heisenberg setting is due to Biroli, Mosco and 4]chothjs paper, °
the author construct explicitly a periodic pavage associated with the opexgt@nd they study the asymptotic behaviour of10
its eigenfunctions in a domain with isolated Heisenberg periodic holes with Dirichlet boundary conditions on their bound&ties.
To show convergence to the homogenized problem they use Tartar’'s energy method. 12

In a subsequent paper, sé&, Biroli, Tchou and Zhikov studied the same problem, i.e., homogenization in a domain with
holes periodically distributed with respect to the group, with Neumann boundary conditions on the holes. In this cas¥, the
method used in4], essentially based on an extension of the solutions of approximating problems in the holes, does notiork
due to a lack of regularity on the boundary of the holesSntp treat the problem the authors generalized to the Heisenbelfy
group a method which is independent from the extension property, introduced by ZBifan pn Euclidean setting to deal 7
with an homogenization problem for periodic measures. 18

None of the methods mentioned so far seems to work when one is interested in treating the case of not necessarily fSolated
holes. Indeed an interesting case to examine is the one of periodic holes which may be not isolated (for exI&?nphEin 20
can think of a domain perforated by interconnected pipes). This type of problems is quite common in physics or mecHanics,
think for example to the convection—diffusion of a liquid in a porous medium or to the viscoplasticity problem for a perforated
material. 2

A successful method to prove convergence to the homogenized problem in this context, in an Euclidean framework, has
turned out to be the two-scale method. The aim of the present paper is to verify the validity of the method in the same context
in the framework of the Heisenberg group. %

Let us conclude by mentioning few difficulties encountered in the present paper due to the noncommutative group strGtture.

The first one appears when dealing with interconnected holes (think for instance of a net of pipes): this problem is diséfissed
in detail at the beginning of Section 3. Basically, because of the distortion of the microscopic cells generated by the ﬁroup
action, the pipes must be adequately positioned and “twisted” in order to produce a periodic net.

A second technical difficulty arises when we want to generalize the well known result holding that a function orthogor?él to
all divergence-free vector fields is a gradient. The classical pfd®2f] relies on continuation properties of distributions in a?
bounded regular domain. Since continuation properties associated with noncommutative vector fields are quite differeritjfrom
the Euclidean case (for instance, even smoothness does not guarantee a positive result because of the presence of chaggcteristic
points on the boundary), we use a different approach based on Poincaré inequality, that is a more geometrical condition36
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2. Notationsand preliminaries 39

B W W
o ©

40
Few notations and geometric preliminaries are in order to state in a simpler way our results. We follow the notaii@ns ok{

as well as the ones o1(). 42
In this paper, we indicate b§" the n-dimensional Heisenberg groli’ ~ C" x R ~ R2+1 The points inH" will be 43
denoted ap = [z, t] =[x +iy, t]1 = [p1, p2. ..., P2n, P2n+1]. If p =1z, 1], g =[¢, r] € H* andr > 0, following the notations 44
of [21], we define the group operation 45
46

p~q:=[z+§,t+r+23m(z§_‘)] 47

48
49
50
51

It is also useful to consider the group translatiopsH" — H" defined ag — 1, (¢) := p - ¢ for any fixedp € H". We denote 52

asp~1:=[—z, —¢] the inverse ofp and as 0 the origin dk2+1, We shall endoviHl” with the homogeneous (with respect to
nonisotropic dilations) normip|lco := max|z|, |t|1/2} and with the distance, associated with the norm,
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and the family of nonisotropic dilatiors,
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1 We explicitly observe thaf is a distance ifil” (see [L0)]). 1
2 2
3 Proposition 2.1. The functiord defined by(1) is a distance ifHl” and the usual properties related to translations and dilations
4 hold, i.e., for anyp, ¢, ¢’ €« H" and for anyr > 0 4
5 5
6 d(tpq.7pq') =d(q.q") and d(5rq.8-q')=rd(q.q"). @ s
; In addition, for any bounded subsgt of H" there exist positive constantg(£2), c2(§2) such that ;
1/2
0 c1(2)p — glgais <d(p,q) <co(R)p—qlimy forp.geg. 0
10 10
11 In particular, the topologies defined lyand by the Euclidean distance coincidefi. 11
12 12

=
w

From now on,U (p, r) will be the open ball with centep and radius- with respect to the distanee We notice explicitly 13
thatU (p, r) is an Euclidean Lipschitz domain w2l (see Q). 14
There is a natural measurg dnH" which is given by the Lebesgue measur?tl = dz dr onC” x R. The measureidis 15
left (and right) invariant and it is the Haar measure of the group.df H" then|E| is its Lebesgue measure and whéh < co, 16
f € LY(E), f £ f di will denote the average of overE, i.e.,{ g f dh = (1/|E|) [ f di. We stress tha, (E)| = A2 F2|E| 17
for any measurable sét C H”. In addition, ifs > 0, we shall denote b§{* the s-dimensional Hausdorff measure obtained:8

e
0 N o g b

19 starting from Euclidean balls, wherez§; will stand for the Hausdorff measure obtained from the distahice(1). 19
20 The Lie algebra of the left invariant vector fieldsI&f is given by 20
21 21
a a a a a
22 Xj=—+2yj—, Yj:——ZXj—, j=1...,n, T =—, 22
23 8)6]' ot 3yj ot ot 23
24 and the only nontrivial commutator relations are 24
25 25
26 [X/,Yj]=—4T, j=1,,n 26

N
<

27
28

In the following, we shall identify vector fields and the associated first order differential operators. Notice thatif
then X ; (u(8,(p))) = M(X ju)(6x(p)), j =1,...,n, and the analogous statement holds ¥or The vector fieldsXy, ..., Xn,
Yq,.. Yn define a vector bundle ovéf” (the horlzontal vector bundl&iH") that can be canonically identified Wlth a vector?®
subbundle of the tangent vector bundl€igf'+1. Since each fiber of H” can be canonically identified with a vector subspacé0
of RZ+1 each sectiow of HH" can be identified with a map : H" — — RZ1*+1 At each pointp € H" the horizontal fiber is 3
indicated as IH-III" and each fiber can be endowed with the scalar profugt, and the nornj - |, that make the vector fields %
X1, ..., Xn, Yl, ..., Y, orthonormal. Hence we shall also identify a section &fHwith its canonical coordinates with respect
to this moving frame In this way, a sectigrwill be identified with a functionp = (¢4, .. ., ¢2,) :H" — R2", As itis common
in Riemannian geometry, when dealing with two sectigrendy» whose argument is not explicitly written, we shall drop the
index p in the scalar product writingy, ¢) for (¥ (p), ¢ (p))p. The same convention shall be adopted for the norm.

If $2 is an open subset @" andk > 0 is a nonnegative integer, the symbefs(s2), C*°(£2) indicate the usual (Euclldean)
spaces of real valued continuously differentiable functions. We denote by

W W W W w NN
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39
ck(e2;HE"), k>0, 40
41

the set of allCk-sections of HI" where theC¥ regularity is understood as regularity between smooth manifolds. The notiops
of C’(‘)(Q; HH"), C*°(£2; HH") andCg°($2; HH") are defined analogously. 43
To stress the similarity among some statement&inwith others inR2*+1 it is useful to use intrinsic notions of gradient 44
for functionsH” — R and of divergence for sections offH. 45
46

Definition 2.2. If 2 is an open subset 8", f < cl@) and¢ = (¢1, ..., ¢2,) € cl@;HH")isa continuously differentiable 47
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48 gection of HI"", we define 48

49 49

50 Vi f = X1fo. . Xnfi Yi S oo  Yaf) @3)

51 and 51

- " -

54 divgg ¢ = Z(Xj¢j+yj¢ﬂ+j) 4) 5
j=1

(%))
o

55
(noticethath:—Xj,Yl’fz—Yj,j=l,...,n). 56
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1 Notice that bothvy and divy are left invariant differential operators. Alternativelyg f can be defined as a section of1
2 HH" as 2
3 n 3
4 Vif =Y ((X;HXj+¥;)Yj), 4
5 j=1 °
6 where the canonical coordinates of this section(&tef, ..., X, f, Y1/, ..., Y» f). This is consistent with the identification we ©
7 mentioned of sections and their coordinates. 7
8 Finally, through this paper we shall use the following notatién= C(p) is the Z x (2n + 1) matrix whose rows are the &
®  components of the vectodéy, ..., Xy, Y1,..., Yy, that is ®
10 _ - _ - 10
" X1(p) 1 ... 00 ... 0 2900 1
12 : N 12
13 1 Xep| |0 ... 1 0 ... 0 2, 13
14 CP=lyim |Tlo ... 01 0 —2x | ®
15 . . . 15
16 : e : 16
17 LY»(p)l LO ... O 0O ... 1 —2x, | 17
18 We point out thatVyg = CV, whereV is the Euclidean gradient i®2"+1 and that the identification of a vectgr= 18
19 (&,...,5,) € H]HI’;, with a vectoré € R21+1 through the corresponding embedding of the horizontal fibers can be expressed
20 py usingC sinceé ='C(p)&. Analogously, ifp = (g1, . .., ¢2,) € CL(2; HH"), then divy ¢ = div(’Cg), where div is the 2°
21 Euclidean divergence &2 +1. 2
22 If ¥ € H" is a regular 2-dimensional manifold, then we can define an intrinsic normal vectoriiglthat is the section of 22
23 HH" defined as follows: if: is an Euclidean normal unit vector field 1, we defineny by means of its canonical coordinates??
24 aspp = Cn, o, alternatively, by means of the identificationi®f with R2’+1, as 2
25 o 25
26 26
o7 ny = Z(Z/a n)gat+1Z, o7
28 k=1 28
s WhereZi=X1,...,Zn=Xpn, Zyy1="1,...,Z2, =Y. In fact this notion arises in much more general situations (see, e.g,,
[10)) and we stress here it is coherent with the divergence theorem, in the sense fhas, & regular bounded open set in
30 i 30
a1 R21+1 andg e CL1(2; HH"), then .
- f divgz ¢ dh = f (. n)p do 1= f (@ (). nu(p), do 2
33 P 33
- Q a2 a2 ”
35 (again, seel0)). 35
36 Through this paper, we shall denote Bythe cube[—1, 12+l by Yg the interior ofY. We shall say thata set CH" is g
37 (H, Y)-periodic if for all p € A we havery (p) € A for anyk = (k1, ..., kp,41) € 721+1_ Notice that for anyseBCY we g
sg  can define gH, Y)-periodic setBy such thatBz N Y = B. Finally, if A C H" is (H, Y)-periodic, andf is a function defined 54
s in A, we shall say thaf is (H, ¥)-periodic if, for anyk € Z2*+1, 39
40 f(rx(p)) = f(p), VpeA. (6) 4o
41 41
» Moreover, we shall say that a sectiprof HH" defined on a[H, Y)-periodic setA is (H, Y)-periodic if for anyk e z21+1 »
3 and anyp € A, we have "
44 dror(p)(0(p) = ¢ (r2x (P)), (7)
4 j.e., if the canonical coordinates gfare (H, ¥)-periodic, sincelty (p) maps H, onto I—IHI’;Zk(p) preserving the canonical °
% coordinates. 4
4 As it is proved in B,4], there is a canonicalH, Y)-periodic pavageof H" associated with the structure Bf* as a group 4
8 \with dilations, defined as follows. 8
49 49
22 Definition 2.3. Let € > 0 be fixed. Then the family of subsetsIéf obtained by taking 22
5 8e(2k - Y) =8c(2K) -8 (Y), kez?tt @)
53 is apavageof H", i.e., 53
54 54
55 (i) 6c(2k-Y)NSc(2h-Y)=0 fk#h; 55

56 (i) H" =g 8c(2k-Y). 56
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1 In the rest of this paper we shall use several functions spaces. Let us list their definitions to avoid misunderstandings?
2 2
3 Definition 2.4. We define the following (nonperiodic) function spacesstebe an open subset &f", then: 3
4 4
5 . 1’2(5’2) denotes the set of functiorﬁe L2(£2) such thatx ; i f, Yjf belong toL2($2) for j=1,...,n, endowed with °
3 |ts natural norm. The spad¥. H IOC(5’2) is defined in the standard way. j
8 H’ (52) is the closure ofcg°(:z) in WH’ (52). Such a definition is natural, sind&>°(£2) N WH}I’Z(Q) is dense in g
o Wi2(Q). 9
10 e L2(£2; HH") denotes the space of all measurable secjors(¢1, ..., ¢2,) of HH" such thatp € (L2(52))2". 10
11 11
12 We then define the following periodic real-valued function spacest tletH” be a(H, Y)-periodic open subset &f", then: 12
13 13

° (COOH(Y A) denotes the space of &, Y)-periodic smooth real functiong defined onA. The spaces?k H(Y A), k>
are defined analogously When the domain of definition of the functions is the ifiokhe space will be denoted S|mply !
by C ) (C H(Y)) (dropping theA), and this notation will be adopted also for the spaces defined in the sequel.

18 e Let 1< p < oo, we denote b)L#H(Y A) the space of aliH, Y)-periodic functionsf on A such thatf|y € LP (Y N A), 5

19 endowed with the norrﬂf||Lp(yﬁA) 19

20 ° W (Y A) denotes the space of &ll, Y)-periodic real functiong on A such thatf WH}I’Z(SA(YO) NA)foralla>0, 20

endowed with the norrﬂf|| We prove below (Proposition 2.9) thﬁ/g}ﬁ(x A) is a Hilbert space.

22 Y2 (ronay” 22
23 ° (Y A) denotes the closure of the qate (C (Y, A): suppu C A} in W, H(Y, A). 23
24 24
25 In addition we define the following periodic vector-valued function spacearid A are as in the previous definitions): 25
26 26
27 o D(£2; (C (¥, A) denotes the space of all smooth functionss®rx H” such thatf (p, -) € (C Y, A) foranype 2, 27
28 and the mag; €N — f(p,)e C (¥, A) is compactly supported if2. 28

LZ(.Q Cym(Y, A)) denotes the set of measurable functiofison 2 x H" such that f(p,-) € C4p(Y,A) and
max | f (. )| € L($2).

22 Finally we define the following spaces of periodic sectiofisg as in the previous definitions): 22
z: . (C;;OH(Y, A; HH™) denotes the space of all smootfi, Y)-periodic sections of H" defined onA. The spaces 3:
36 (CQH(Y A;HH"™), k > 0, are defined analogously. By means of the canonical coordinatedltf €5, (Y, A; HH") 54
37 can be identified W|thj(C (Y. A))Z” as well asCk H(Y A; HH") can be identified W|thj(C H(Y, A))Z”. 37
22 . W# H(Y A; HH™) (respectlvelyL#H(Y A; HH™)) can be defined as above as thegset (¢1, ..., ¢2,) of all measurable 22
0 sections of HI" such thatp € ( #H(Y, A)?" (respectivelyp € (L2 11(Y, A)2"). 0
41 e V(Y, A)isthe closure irWi’]fH(Y, A; HH™) of the set 41
42 ’ 42
43 VY, A) = {uecgoH(Y A;HH"): suppu C A, divggu = 0}. 3
ig ° E# m(Y, A; HH") is the completion ofu (C (Y, A; HH™): suppu C A} with respect to the norm ig
46 2 46
i [T Sp— ”“”Lz Ay T danuan Ay *
48 " 48
4 Lemma2s. If o € (C (Y HH™), then 9
50 ) 50
51 /dIVdeh =0. © 5
52 52
53 In partlcular ifope C (Y, As HH™), suppp C A, then 53
54 54
55 / divgg o dh = 0. (10) 55
56 56
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1 Proof. Toprove the assertion, take> 0 and setF = {k € Z2'*1: 2. YNU(O, R) # 0}, Fo={k € F: 2k-YNJU(O,R) # ¥}, 1
2 Yp=UjerF: 2k-Y 2U(0, R). Taking into account thatk2 Y N2k - Y = for h # k and thaq2k-Y|=|Y|=22"+1,we have 2
3 3
. R = |U©, B)| < |Yg| =22 (cardF). .
5 Moreover,dYg € UkefOZk -9Y = Ukefoa(Zk - Y). Indeed, ifp € 9Yg, thenp € 2kg - Y for somekg € Fo; suppose 5
6 by contradictionkq ¢ Fp, since Ukef\FOZk .Y CUO,R) and it is a closed set, then there exists- 0 such that °
T <d(p,aU(0, R)). On the other handy € 9Yg and hence there existsc U(p, §/2) N Y§, yielding a contradiction, since !
z this would implyg € U(0, R) N Yy, € Yg N Y =@. Thus, by divergence theorem 2
1(1) (card]-‘)‘/divadh‘ < /diVdeh‘ < f (@, )| dH? < maxly| 3 ngg| dHZ 1(1)
1 Y Yr Yk keFo ok-ay 1
13 = max|g|(cardFp)|dY |y (H") = Cy(cardFp). 13
14 ay . 14
15 Now notice that, ifp € A := Uke]_—o 2k - Y, thend(p, dU (O, R)) < diamY = ¢q, and hence 15
16 16
- 81/r(AR) S {peH": d(p,dU(0,1)) <co/R} -
18 Sothat 18
19 c(cardFo)R™2"2 < |{p e H": d(p,dU(0,1)) < co/R}| 19
20 20
,,  andhence ”n
22 . . —on—2 o1 R n. o 22

divgedh| < Cy, lim (cardFp)R =Cyp lim —=limsup— H": d(p,oU (0,1 —

23 _/ He ‘ wR%oo( 0 (pR*)OO RﬁoopZCo {P € (p ( )) = R H 23
24 Y 24
25 =0, 25
26 sinceR/(2co)|{p € H": d(p,dU(0, 1)) < cg/R}| is bounded folR — oco. This follows basically the result for the Minkowski 26
27 content proved in I7]; however, sinceU (0, 1) is not smooth as required irlf], let us give a simple proof in this 27
28 very particular situation. Indeefp € H": d(p,dU(0,1)) < cg/R} S {p €e H": 1 — cg/R < d(p,0) < 1+ cg/R}, so that 28
29 |{peH": d(p,dU(0,1)) <co/R} ~ (L+ co/R)?"*2 — (1—co/R)2*2 ~ 1/R, and we are done. O 29
30 30
31 Proposition 2.6. Let A be a(H, Y)-periodic open set. Then 31

w
N

{u e C(Y. A): suppu C A} is dense inLZ (¥, A).

w w
B W

Analogously{u € C;OH(Y, A; HH™): suppu C A} is dense irLiH(Y, A; HH™). 34
’ ’ 35

w W
[ ]

Proof. If f e Lﬁ m(Y> A), then f can be approximated by smooth functions by means of the group convolution (sees]e.g.zj[
Proposition 1.20); since this convolution preserves(#ieY )-periodicity, then the proof can be carried out as in the Euclideagré
case. The second assertion follows arguing on canonical coordinates.

w W W
© o0 ~N

39

N
o

Remark 2.7. If A is a (H, Y)-periodic open set, we shall use the quotient spaéqm(l/,A)/R, endowed with the
quotient norm. Since infju is attained at = f gsnyudh, then LﬁH(Y, A)/R can be identified withu € 4,

LY
NP

h t”Lgm(Y,A)

B L2 (Y A) fanyudh =0}, 43

ig In addition, notice thatu € C;?H(Y, A u=v+ i 1LeR, supp C A, fAm, udh =0} is dense inLﬁ’H(Y, A)/R. Indeed, ig

w6 TueL2 (Y, A), [4nyudh =0, takev, € C3(Y, A), Suppu, C A, vy — 1 in L3 (¥, A), and notice that 5

47 47

48 vp dh| = (v —u)dh| < |ANY Y2 |v, —ull, 2 =1ANYY2vy —ul,» -0 48
n n X n L2(ANY) n L#H(Y,A) 5

49 ANY ANY 49

a1
o

asn — oo. Thus we can take, = v, — f 4ny v, di and the assertion is proved.

a o
N -

Proposition 2.8. As in the elliptic caseﬁ/ﬁ’z(ﬂ)* ={divyg f: f € L2(£2; HH")} is endowed with the norm 53

(S ) |
R ]

|| divyg f”ﬁ/éfz(ﬂ)* =1/ 2 HEn)-

o o
o O

In addition, {divyg f: f € D(§2; HH")} is dense invfi/ﬁ’l(ﬂ)*. 56
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1 Proposition 2.9. Let A C H" be a(H, Y)-periodic open set. TheWi’]fH(Y, A) is a Hilbert space. 1
2 2
3 3
4 Proof. We want to show thaWi’é(Y, A) is a complete metric space. Thus, (&},);,cn be a Cauchy sequencewﬁ’ﬁ(l/, A,
5 by definition of norm inWi’ﬁ(Y, A) there exists: € WH}I’Z(YO N A) such that, — u in WH}I’Z(YO N A). We need to prove that s
® 4 is the restriction of aH, Y)-periodic function belonging t(Wl’z(A N8, (Yp)). Let now IT be the operator of continuation ®
H
7 by (H, Y)-periodicity to all of A; we want to show thaZ ; (I1(u)) = I[1(Zu), j = 1,..., 2n, in the sense of distributions. If 7
z e (C8O (A;R), setKy = {k e z2n+1; suppy N 7 (Y) # @}; then, keeping in mind thaZ ; are left-invariant with respect to :
o group translations and thay, - to, = uj,, we have 0
11 11
” [nwwziemd = ¥ [ nwezewe= Y [ ww@e@am)d ”
13 A keKy o (Y)NA keKy yna 13
14 . ) 14
5 = im > / un(p)(Zjo)(t-24(p))dp = lim > / up(p)(Zjp)(p)dp 15
16 keKyyna keKy 1o (v)NA 16
17 . . 17
18 = hll)moo/uh(p)(ij)(p) dp = —hll)mm/(zjuh)(P)W(P) dp 18
19 A A 19
20 . 20
0 ——Jm > [ e d -
22 kKo 1y (¥)NA 22
23 . 23
o = lim >~ / ((Zjup) - 1—-26) (D)@ (T-2(p)) dp o
25 keKy YNA 25
2 =—lim )" / (Zjup-t—20)) (P (t—2x(p)) dp 2
27 h—o0 J 27
28 keKyoyna 28
o = lim >~ / Zjup(p)p(t—ak(p))dp=— Y / Zju(p)p(t—2c(p)) dp. o
kek kek
2 EReoyna EReynA a1
82 since, by definitionZ ju;, — Z;u in L2(Y N A) and in additionp — ¢(r_2¢(p)) again belongs td2(Y N A). Thus 32
33 33
34 /H(u)(p)sto(p)dp=— > / H(Zju)(p)w(p)dp=—/H(Zju)(p)so(p)dp 3
% A keKy 1y (Y)NA A %
36 % 36
37 and the assertion is proved. Thus}if 0, 37
38 2 2 2 38
39 |Z;(Tw)|~dp = / |I1(Z;w)|"dp < > / |I1(Z;u)|"dp 39
40 AN, (Yo) AN, (Yo) 2 NN WNAD 1y (¥)nA 40
41 41
a2 = cardk € ZZFL (V) N8 (Y) £ 0} - f 1Z jul?dp < oo, 42
43 YNA 43
44 44
45 and hencdT(u) belongs toWH}I’Z(A N 85 (Yo)). Sincell (u)|y, = u, the proof is complete. O 45
46 46
47 Proposition 2.10. Let A C H" be a(H, Y)-periodic open set. Then the set 47
48 48
40 {u € C%(Y, A): u e W?(ANS,(Yg)) for anyi > 0} 40
50 ) i 1,2 50
5 IS dense |r1W#,H(Y, A). 51
52 52
53 Proof. Firstwe notice that any functiome Wi’ﬁ(l/, A) such that supp € A can be approximated by smoaiH, Y)-periodic 53
54 functions supported in an arbitrary given neighborhood of supp means of the group convolution with suitable Friedrichs54
55 mollifiers for the group (seed] Proposition 1.20). Indeed, the group convolution preserveslihé )-periodicity, since group 55

a1
(&2}

translations and dilations do. Thus, to prove the assertion we can repeat verbatim the classical Meyers—Serrin’s proé$ (see,
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1 eg., [L3, Theorem 7.9), provided we can find a family @, ¥)-periodic open setgA ;: j € N}, suchthatd; € A; 1 and 1
2 Ujen A4 = A, and a partition of unityy;: j € N} subordinated to the coveriﬁg&j+1\,§j_1: jeN}(Ag=A_1=0)such 2
3 that Ve (C;OH(Y, A). Again by the group convolution, it is enough to prove the existence ofithesince we can obtain 8
4 the function{//j by a regularization of the characteristic function of, sy, 2\A;_». To this end, notice that the function 4
5  p—d(p,dA)is (H, Y)-periodic. Indeed, ifp € H", 5
6 6
7 d(2k-p,dA)=inf{d(2k - p.q): g €0A} =inf{d(2k - p,2k - (—2k) - q): g € IA} =inf{d(p, (—2k) - q): q € IA}. 7
8 Thus, to prove thad (2k - p, dA) =d(p, dA), we need only to prove that ardye dA can be written ag = (—2%) - ¢, for ¢ 8
®  suitable indA. But this is straightforward, sineg:= 2k - g € dA, by (H, Y)-periodicity. o
10 Then we can takel; = {p € A: d(p,dA) > 1/(j +m)}, wherem € N has to be chosen in such a way that # ¢ for 10
11 i>1. o 1
12 12
ij Theorem 2.11. Let A C H" be a(H, Y)-periodic open set. We have ij
15 Egm(Y. A)* = {f + Vgt feLy(Y. AsHH"), ge L (Y. A)) 15
16 16
17 and the action off + Vg ong € Ex g(Y, A) is given by the expression 17

[
[ee]

18
19
In particular, if ¢ € C;;OH(Y, A; HH") and suppp C A, then the action off + Vg on ¢ coincides with its action as a 20

distribution. Moreover, 21
22

2 o 2 2 -
V0, e =007 122 gy 18052 0 F =+ Vs, (11)
24

(f+ ngv o) =(f, (p>L2(YﬁA;H]H[") — (g, divyg (p>L2(YﬂA)'

N N NN NN
a b W N P O ©

Proof. Let us identify a section of the horizontal fibre bundle with its canonioal cBordinates. Consider the map %

S:Egm(Y, A) — LZ (Y, A)?"F1 given by S(u) = (u, divig u). By definition, S is an isometry on the closed subspates).  2°
o ’ 2

If F e Egp(Y, A)*, itdefines afunctionals on R(S), G = F o S~1suchthat|G| = || F||. By Hahn—Banach theorem, such 28

a functional can be continued on all bﬁH(Y, A2+l preserving its norm. Then we can conclude by Riesz’ representatigg
theorem. O ’ 30

31
Proposition 2.12. Let A C H" be a(H, Y)-periodic open set. The set 32

{f + Vg feCFy(Y. ATHH"), g € CFy(Y. A), suppy. suppg C A >

W W W W w w NN NN
a B W N P O © 0 N O

is dense iné#,H(Y, A)*. 35
36

Proof. If f+ Vg€ E#,H(Y, A)*, take fr € Cgoy (Y, A; HH"), gp € CZ34 (Y, A), suppf., suppg C A such thatfy — f in z;

Lﬁ’H(Y, A; HH™") andg; — g in LfﬁH(Y, A) (see Proposition 2.6). Then the assertion follows by (11). 39

40
Definition 2.13. Let A be a(H, Y)-periodic connected open set, we shall say thad of 2-Poincaré type if there exists> 0 41
such that 42

AN oW oW W W
NP O © ® N &

43 2 43
4 / u— ][ udh‘ dh <c / |Vygul? di (12) 44
45 ANY ANY ANY 45
46 12 i 46
a7 foranyu e W (Y, A). For sake of simplicity, from now on we shall wrifesnyudh = upny. a7

I
©

48
Remark 2.14. We stress the fact that, since periodic functions are involved, the above property does not depend on the boundary
of the unit cellY, but only on3A. Indeed, sincg;y lu — t|2dh attains its minimum for = Ffanyudh, an easy periodicity so
argument shows that (12) follows provided there exists a bounde®l, séth Y C B, such that the Poincaré inequality 51

/ ;

2
u— ][udh‘ dhgc/ |Vygul? dh 53
ANB ANB ANB

g g o a b
w N B O ©

(o)
5

54
55

holds for anyu WH%I’Z(A N B). For conditions implying (12), se®[11]. 56

o o
o O
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1 Sets of 2-Poincaré type will play a major role in our results, so that it is natural to look for simple assumptions insuring a
2 Poincaré type inequality. In general Carnot groups, this is a very difficult problem far from being well understood, but luekily
3 inthe setting of the Heisenberg group, a neat and very deep result has been proved recently by R. Monti and D. Mdipidedli [
4 for Step 2 Carnot groups. In our setting, their result reads as follows. 4
5 5
6  Theorem 2.15. Let A be a(H, Y)-periodic connected open set with-1-boundary(in the usual sengeThenA is of 2-Poincaré 6
7 type. 7
8 8
®  Theorem 2.16. Let A € H" be a(H, Y)-periodic connected open set2#Poincaré type, and leF € L2(82; E#,H(Y, A)*)be °
10 10
such that
11 11
12 [ Forew.)ap=0 (13
13 o 13

i
N

14
for anyg = ¢(p, ) € L?(2; E4 (Y, A)) withdivy , ¢ = Ofora.e.p € 2. ThenF = Vi , g, Withg € L2(2; L2 (Y, A)/R). 15
16
Proof. Consider the map 17
18
19

Bk R e
0 N o o

T:L2(2: L3 (Y. A)/R) — L2(2; Eg (Y. A)¥)

N =
o ©

given byTu = Vi ,u. We want to show that 20
21

Tl 200 £y iv,ay Z MllLac@inz v aymy: (14) 2
23
24

NN
w NP

Clearly, T is continuous, by (11). Arguing as in Remark 2.7 and again by continuity, we can assume

N
i

zz U=v+Ax, veLZ(Q;Cng(Y, A)),  supp(p,)CA foraepeR, Arel?(2,R) zz
27 and 27
28 q ; 28
29 u(p,q)dg =0 fora.epef2. 20
30 ANY 30
£ Let us fix the function: and notice that £
32 32
33 T(u)(p) = —/(u, divig,g ¢) r2(any) dp = /(VH,qu, @) L2(anyyz dp  foranyp e L2(~Q§ Egu(Y, A)). (15) 3
34 o o 34
35 35
36 To prove (14), consider now the bilinear form aR($2; W#’E(Y, A)/R) defined by 36
37 37
2 0w = [( [ FgeVaq0)dp. (1)
; o i ;
41 Clearly, Q is continuous. To prove th&? is coercive it is enough to notice that, by Poincaré inequality (12), 2
42 ) 5 42
43 Q(VMD)?C/( / lp —panyl df1> dP=C||§0||L2(Q;L§H(Y;A)/R)- 43
44 Q2 ANY ' 44
45 12 45
16 Hence, by Lax—Milgram theorem, there exists a (uniq.me)LZ(.Q; W#”H(Y, A)/R) such that 6
47 47
@ 0w =[( [ wods)ep an
49 o \Any 49
50 50
51 forally e L3(%2; W;’ﬁ(Y, A)/R). If we chooseyr = ¢, then, keeping in mind Poincaré inequality (12), in particular, we get 51
52 52
1
2
zj HVH’q(p”LZ(Q;LZ(YﬂA)) < ;”u”Lz(.Q;LZ(YﬁA))' (18) zj
85 In addition, since we knowf,~, u(p, q) dg = 0 for a.e.p € £2, identity (17) in particular holds when we chooge= u. 55

56 Suppose now for a while we know 56
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1 Vg9 € L2(2; Ey (Y, A))  with (19) 1
2 2
1
3 HVH’q(p”LZ(.Q;E#’H(Y,A)) < z”u”LZ(.Q;Lﬁ_H(Y,A)/R); (20) 3
4 4
: then we would have (by (15), (19), and (20)) 5
6 T ) (¥) T (u)(VH,q9) 6
7 ITull;20.7 o = sup > q ;
L2(@2: By (Y. 4)%) : W20 2 Vil 20 2
3 VeL2(2; Ex (Y, A)) L2(82; Eg (Y, A)) 4P NL2(2; Eg (Y, A)) 8
9 Ou, ) , 9
>c = (by A7) withy = u) cllull 20,2 (v a)/m
i: ”u”LZ(Q;LiH(Y,A)/R) (£2; #.HI( LA)/R) i:
12 and (14) would be proved. i 12
13 To prove (19) and (20), consider now the functiohgl on LZ(E#yH(Y, A)*; R) defined by 13
i: Lo(f + Vi,q8) = {f. Vi,q9) L2(2; 12(vna;HE) T (Vg8 VLGP L2(2; L2(YnA;HER))» i:
16 With f € L2(2; C3% (Y, A;HH")), g € L2(2; C(Y, A)), suppf C A, suppg C A (as we showed in Proposition 2.12, suchis
17 asetis dense in?(£2; E#,H(Y, A)¥)). Notice also that the definition df, is well posed, in the sense that it does not depend?
8 on the choice off, g associated with a given functional ity g (Y, A)*. 18
19 Keeping in mind (18), we have: 19
20 20
21 |Lo(f + Virg9)| 21
22 22
”3 = [(f: Vig®) L2(@2: L2(vna:HEm)) (8 W 12(0:2(vnay | ”3
24 S l2@  L2cynammny) IVELg #1122 L2y nasHmny) + 181 L2(2: L2(ynay) 141l L2(2: L2(vna)) 24
% 2 2 12 2 2 12 %
26 < (”f”LZ(Q;LZ(mA;HH")) + ”g”LZ(Q;LZ(YnA))) (”VH»CI‘/’”LZ(Q;LZ(YM;HH")) + ”””LZ(Q;LZ(mA))) 26
27 1 2 2 1/2 27
28 < Z(”f”LZ(Q;LZ(YﬂA;HH”)) t ”g”LZ(Q;LZ(mA))) Il z2@: L2(rnay)- 28
2% Taking the infimum with respect to all pairs g representing the same functional, we obtain that 29
30 ° ° 30
a1 Ly cEgu(Y. A" =Egu(¥.4) and | Lyl <llullp2@;r20vnay = Il 20.12 . a)- a1
2 Thus (19) and (20) are proved and hence (14) follows. %2
zj Hence, there existg € E4 (Y, A) such that zj
35 Lo(f + ViH,g8) = (f:¥)12(2; 12(vna;HEm) — (& AV 12(0.12(vna)) 35
36 36
L, forall fe L2(2; LZ (¥, A;HH")), g € L2(2; LE (Y, A)). o
a8 Taking g = 0, we getVyg ,¢ = v and statements (19), (20) together with (14) are proved, saRtti&y, the range of’, is -
s Closed inL2(2; Ey4 (Y, A)*). This implies thatR(T) = R(T)-+ = (kerT*)L. Let us show now that 39
40 kerT* = {¢ € L?(2; Ex (Y, A)): divyg , ¢ =0fora.ep € 2. (1)
41 4
42 Indeed, consider the map 42
43 S:L2(2; Eg(Y, A)) — L2(2; L3 (Y, A)/R) 43
44 ’ 44
s whereS(p) =divy , ¢ (remember thaf,y divy , ¢ di(q) =0 for a.e.p € 2, and Remark 2.7). I € L2(22; L2 (Y, A)), 5
46  then by (15) 46
47 47
48 [ T(u)((/)) dP = _<M5 S(¢)>L2(Q;L¢2¢_H(Y,A))’ 48
49 2 49
% 5o thatT* = —S and (21) follows. Thus the functiondl in (13) belongs to(ker7*)L = R(T) and hence the assertion %0
L follows. O o
52 52
53 The proof of Theorem 2.16 can be adapted (more precisely, simplified) in order to prove the following result: 53
54 54
55  Corollary 2.17. LetA € H" be a(H, Y)-periodic connected open set®Poincaré type, and lef E#,H(Y, A)* be suchthat ss5

a1
(&2}

F(p)=0foranyg € Ey (Y, A) with divg ¢ = 0. ThenF = Vyzg, with g € LZ 1, (Y, A)/R. 56
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Remark 2.18. It follows from the proof of Theorem 2.16 that if we drop the assumptois of 2-Poincaré type we still get 1
F=Vyg, butg € L2(; L#H 1ocYs A)/R). Indeed it is enough to repladg H(Y A) by the completion oC s A) with

respect to the norm given by (16), that is a true norm, by local Poincaré |neql]1ﬁj1ar{d by the connectednessA)f

We will need later the two following results:

Proposition 2.19. Let A be an oper(H, Y)-periodic setirH". If 8 € E#,H(Y, A), then the functiorf obtained by continuing
with zero outsideA still belongs tolz"#,H(Y, H") and divy B is divyg 8, i.e., the continuation aivy 8 by zero outsidet.

© 00 N o g b W N P

2
3
4
5
6
7
8
9

=
o

10
Proof. Let g € E4 (Y, A); theng is the limitin E4 (Y, A) of the sequencg, € (C;;OH(Y A; HH"), suppB, C A.Clearly,the 11

functionsg, obtained by continuing, by zero outside oft belong to(C (Y, H s HH), andB, — g in L (Y H HH?). 12
13

PR R
w N P

» Notice that(ﬂn)neN is a Cauchy sequence |E#,H(Y, H"), S|nce||ﬂn B ”E#,H(Y,H") =B — ﬂm||E#H(Y,A), so that

15 fBe E#,H(Y, H"). Thus to accomplish the proof we have to show thaﬁ(ﬁwm. 15
16 If ¢ € D(H"), then 16
17 17
18 /(ﬂ, Vie)dh = /(ﬂ, Vi) dh = ”imw/(ﬂn, Vi) dh = —n&moo f(divH Bn)odh = — f(divH B)gdh 18
19 Hr A A A A 19
20 o 20
21 = — /(dIVH ﬂ)(/) dh, 21
22 Hn 22

N
w

23
24
25
26

and we are done. O

NN
[S1I N

Lemma 2.20. Let A € H" be a(H, Y)-periodic connected open set. Lot R? be identified with a smooth sectiontdH" . If

N
(<2}

27 27
28 f (€, 9)dh =0 @2 °,
29 ANY 29
30  foranyg € V(A), thengé =0. 30

w
g

31
Proof. Let B cC A be any operH, Y)-periodic connected set and et E#,H(Y, B), with divig ¢ = 0, be fixed. Denote by 32
the continuation of by zero outsideB. By Proposition 2.1% € Ex (Y, H"). Arguing as in Proposition 2.6, using the group®

convolution we can approximatgin E#,H(Y, H") by means of smooth functions, supported inA and such that diy ¢, =0 34

(all this because the left invariant vector fields commute with the group convolution). In partigukad’(A) and hence 22

/(S,Wdh:/(é,(ﬁ)dh:”imoo / (E,on)dh =0 37

38
BNY Y ANY 39

AW W W W W W W W
O © 0 N o g b W N

by (22). Thus, we can apply Corollary 2.17 and Remark 2.18 to conclude that there zextstfsﬁH 1oc(Y> A)/R such 40
that £ = Vyw. In particular 0= divg(Vyw) = Agw in B, and hencew € C (Y, B), since the Khon Laplaciaig 41
is hypoelliptic ([L4]). Moreover, 9;w = —(1/4)(X1Y1 — Y1X1)w =0 in B and hencew is independent of, sinceB is %2
connected. Take now a poit € A; by connectedness, there exists a connected ¢fei)-periodic setB containingp

and g, (p), k= 1,...,2n. Letw € Cgy 1o(Y, B) be such that = VHw in B. As we saw abovev is independent of 44
45
in BandX jw = 8w/8xj, Yjw=09w/dy;, j=1,...,n so thatw = Z/ 1§jpj +cin B. On the other hand, by periodicity ,,

O0=w(p + 12, (p)) — w(p) = 2§, and hencé =0. O

A A D BN D DA
N o g b~ WwN P

47
The following result is completely analogous to the corresponding result for periodic functions with respect to the staflard

I
©

49 structure ofR” (see, e.g.,q], Theorem 2.6). As for the Heisenberg group, see @§d_pmma 3.4. 49

50 50

51 Lemma22l.Letl<p<-+ooandfe LﬁH(Y), then, as — 0, 51

52 ' 52

53 1 53

o fo 5]_/6 m [ fdn (23) 5
Y

(%))
o

55
weakly inL? (£2), for any bounded open subsetof H". 56

a1
(&2}
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1 Proof. Let £2 be a bounded open subsetIdf and, for sake of simplicity, letY;: k € N} = {r2,(Y): € € Z2"t1} be the 1
2 intrinsic pavage by unitary cubesii?, and letN () = {8 (Yy): 8¢ (Yr) C 22}, N'(€) = {8e (Yi): 8¢ (Yr) N OS2 # B}. We have 2
3 3
4 (1) lime_ge?" 2 cardN (e) = |2|/|Y]. 4
5 (2) limsup_ g2 lcardN/(¢) < C|aL2|y. 5
6 6
7 We begin by proving (1). Since’[e2'2 = |5, (Y})|, then 7
8 8

2042 _ —
9 cardN (e) - |Ye —‘ U SG(Yk)‘ —/XUae(yk)eN(E)ée(Yk)(p)dp- s
10 8(Yi)EN(©) R3 10
11 11
12 If we prove thatXuS oene () ™ X2 then (1) follows from the dominated convergence theoremp ¥ 2 we 12
e (Vi €) €
13 have x(p) = 0 for all €, which implies x| , dorenio 80 (P) = x2(p) for e — 0. Let p € £2, then there exists, >0 3
e (Y €) “€
i: such thatU(p,8,) € £2; on the other hand, ifp € 8¢(Y;) for a givenk € N, then for all £ € 8.(Yy), d(p,§) < i:
16 diamy (8¢ (Yx)) = e diam(Y) < §,, for smalle, and then for smak we haves. (Yy) < £2 which impliesée (Yx) € N(e) leading 16
o © XUse penvier 5. (v (P)=1. 17
18 We now prove (2). Ifp € Us_ (y,)en'(e) thend(p, 32) < Ce. Indeed there exists € 3¢ (Yy) N 92, and sod(p,92) < 18
19 d(p, &) < 2diamy (8 (Yy)) = 2¢e diamy (Y) = cq€. This implies thaUée/Cl(Yk)eN’(e/cl) 8¢ /¢, (Yr) is contained in &-neighbor- 19
20  hood ofd$2. But this implies 20
21 n42 21
2 ’USG/Cl(Yk)‘ = |Y|(i> cardN’(i) < |e-neighborhood 0 2| 22
23 c1 c1 23
> which in turn implies lim sup2”+1|Y| cardN’(e) < ¢1]092|g by [1 >
25 X1 H Oy [ 7] o 25
26 26
27 Definition 2.22. A family of functions {uc} € L2() is said to converge two-scale Iii"” to ug € L2(2 x V), if for any 27
28 Y eD(82; (C?H(Y)) we have 28
29 1 29
% lim fue(p)t//(p,él/e(p))dp= —//uo(p,q)t//(p,q)dq dp. (24)
31 e—0 Y] 31
32 $2 Y 32
% As in [1], Proposition 1.6, we have: ®
34 34
35 35
36  Proposition 2.23. Letu. be a sequence of functions irf(£2) which converges two-scales to a limi§ € L2(2 x Y). Thenu, 36
w7 converges weakly ih%(2) to ug(p) = rr fy uo(p. 9) dg. a7
38 38
39 Proposition 2.24. The following results hotd 39
40 40
a (i) ifY(p,q) =a(p)Bg),a € D(R), B € LF y(Y), thenyre(p) := ¥ (p, 81/c (p)) two-scale converges 1(p, g) ase -0, 41
42 and 42
43 1 43
s im [ 21826y dp = [ [ 2pp2@ dadp (25) @
5 e—0 Y| 45
Q Qv

46 46
47 (i) if v(p,q) € Lz(.Q; Cum(Y)), thenvre (p) := ¥ (p, 81/¢(p)) is a measurable function of? that two-scale converges to 47
48 ¥(p,q) ase — 0, and, moreover, 48
49 L 49
%0 lim /wz(p,Sl/e(p)) dp = —//wz(p,q)dq dp (26) *°
51 e—0 Y] 51
52 2 ey 52
53 ||W(P,51/6(P))||L2(Q) < “1//(177 fJ)HLz(Q;(C#H(Y)); (27) =3

ss (i) if v(p,q) € L2($2; Cym(Y)) and o(p, q) € D(2; CF(Y)), thengyr € L2(82; Cym(Y)) and hence the conclusions ss
56 of (i) still hold wheny is replaced bypy. ’ 56



ARTICLE IN PRESS

S0021-7824(01)01247-8/FLA AID:1247 Vol.eee(eee) P.13 (1-24)
ELSGMLTM(PXMP) :m4SC 2001/12/27 Prn:28/‘1)2/2001; 9:23 PXM P1247 by:IS p. 13
B. Franchi, M.C. Tesi/ J. Math. Pures Applee (seee) soe—osee 13
1 Corollary 2.25. If y satisfies the structure assumptiongipbr (ii) in Proposition2.24 then for any sequeneec)¢-o € L2(2) 1
2 such thatve — vg € L2(£2 x Y) two-scale, we have 2
3 3
4 /ve(p)w(p,h/e(p)) dp — — v //vo(p @)¥(p,q)dg dp, 4
5 o 5
6 6
7 i.e., we can take i24) ¥ as a test function. 7
8 8
9  Proof of Corollary 2.25. The statement follows from Proposition 2.24 and the following lemma, that can be provedsby
10  repeating verbatim the argument of Theorem 1.81]n [ 10
11 11
12 | emma 2.26. Let (uc )¢~ o be a sequence ih2(£2) that two-scale converges i € L2(2 x Y) and such that 12
13 13
“ / 2(pydp — —//uo(p q)dq dp. 14
15 Y] 15
16 2 16
17 Then, if(ve)c 0 is a sequence il 2(52) such thatve — vg € L2(£2 x Y) two-scale, we have 17
18 18
1

19 UeVe — —/ug(-, @vo(-,q)dg inD'(L2) ase— 0. 19
20 Y| 20
21 21
zz In fact, to prove the corollary, let us consider first the case withas in Proposition 2.24(ii). Ify > 0, take ¥ € zz
0 D(82; C4p(Y)) such that 04
25 - 2 2 25
26 /“1//(177 ) —=¥(p, .)“C#,[-H(Y) dp <n”. 26
27 2 27
28 ~ ~ 28
0 BY Proposition 2.24(ii) the limit (26) holds faf and hence we can apply Lemma 2.26 witl{p) = ¥ (p, 81/¢ (p)), to conclude 20
5 that 20
31 ~ 31
- ¥ (p.81/¢(P))ve (p) > mfw 9)vo(p,q) dg 28)
33 33
¥ inD/(2). Now 3
35 35
36 36
» [ (s )verrdn - M / ¥ (p, )vo(p, @) dg dp .
38 2 38
39 ~ ~ ~ 39
20 <[|l//(17751/e(17)) =¥ (p.81/¢(P))]|ve(p)| dp + fl//(p,(sl/e(p))ve(p) dp — m/fl//(p,q)vo(p,q)dq dp 0
41 2 2 Y 41
42 1 ~ 42
i +m//!l//(p,q)—l//(p,q)llvo(p,q)ldqdp 3
44 LY 44
45 =1+ L+ 13 45
46 . ) 46
47 We now have the following estimate: p
48 _ 1/2 48
49 11</||1//(p, V=V @) ey [ve @] dp < (/Ive(p)lzdp) n<Cn, 49
50 Q Q 50
51 51
52 since(ve)e~o Weakly converges ih2(£2) (Proposition 2.23). 52
53 Analogously: 53

g o o
[S2 B B

1 . ) 1/2 X 1/2
I3< m(//!w(p,q)—w(p,q)l dqdp) (//!vo(p,q)l dqdp) <C. 55
Y Y %
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1 Take nowyp € D(£2), ¢ = 1 on suppy (-, ¢), then 1
2 i 1 ) )
3 I = /l//(p, 81/¢(P))ve(p)e(p)dp — Gl / / Y (p,9)vo(p.q)dge(p)dp| <n 3
4 4
. Q Qv .
e I e<e(n),by(28), and we are done. 6
- It remains the case witlr as in Proposition 2.24(i). In this case, by Proposition 2.24(i) and Lemma 2.26, we have -
8 8
. V(e P)ve(p) = f ¥ (p.@)vo(p. ) dg .
10 10
1 in D'(£2). Taking nowy = 1 on suppx we can conclude. O 1
12 12
13 Proof of Proposition 2.24. Let us prove (i). We want to show that 13
14 1 14
15 [ @)ooy o | / A(PB@(p.q)dg dp (29) 1
16 k7] k7] 16
i; ase — 0 for anyg € D(£2; (C mg¥). To this end, notice first that i;
;3 Hﬂ(&[/e()) HLZ(.Q) < C”ﬂ”LZ(Y) ;3
»1  since, arguing as in Lemma 2.21, 21
22 22
. / Floye)dp =242 [ p2ardg, .
24 8176 (£2) 24
25 25
26 andsy(£2) can be covered by, (¢) copies of the unit cub&, with Ng (¢) < Coe 22, 26
27 Let nown be given, and lep; (p, ¢) = Zlyl,léléMn c‘y’apyqa be a polynomial such that 27
28 28
20 max|g(p, q) — pn(p,@)| <. 2

2xY
30 30
31 Thenset 31
- (P )= Y. cysr?8s(q). =
Iy 1181< My
34 34
35  wheregs(g) € L°°(H") is obtained by continuing the functian;,‘;q‘S by (H, Y)-periodicity on all of H". Clearly 35
36 36
a7 sup |¢(p,q) —en(p.9)| <n. a7
QX 71

38 38
40 1 40
“ ‘/a(p)ﬁ(él/e(p))w(p,51/e(p))dp - m//a(p)ﬁ(q)w(p,q)dq dp' a
42 Q QY 42
43 43
" < [la @86y lo(p. 53e®) = on(p- 517 (0) .
45 2 45
46 46
s + a(p)ﬁ(él/e(p))wn(p, 81/¢(p)) dp — IYI a(p)ﬁ(q)(ﬂn(p q)dg dp s
48 48
49 49
S + //!a(p)Hﬂ(q)Hson(p 9) —e(p, q)ldqdp 0
51 51
52 —11+12+13- 52
53 We have now the following inequalities: 53
54 54
:Z 11<n/|a(P)||ﬂ(51/e(P))|dPSnllalle(Q)llﬂlle(y), :z

2
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1 and analogously 1
2 2
s I3 < nllall L1 o) l1Bll 2y 1Y 17 5
: On the other hand, the functiay(¢)8(q) belongs toLﬁH(Y), and henceg;sp) o 81/c converges weakly iL2(2) to its :
¢ average orY foranys, |§| < M. Sincea(p)p” belongs taL.2(£2), we conclude that 6
7 1 7
8 /a(p)ﬂ((sl/e(p))p”ga(h/e (p))dp — o /a(p)p” /ﬂ(q)gs(q)dq dp. 8
9 Q Q Y 9
10 ase — 0. Summing up fow, 8, |y |, 18| < M, we conclude thaf, < n for € < e(n, ¢,;) = €(n) and then (29) is proved. 10
u We want to prove now that (25) holds.M > 0, putfy = min{||, N}. Sincefy € LgF;(Y), by Lemma 2.21, 1
12 12
13 i 2 2 2 2 18
iy llem_lgf/a (P)B*(31/e(p))dp > lim / (P)BR (81/¢(p) dp = 7 /f ()% (9)dg dp 14
15 2 15
16 2 2 2 16

dgdp — — d
N > o // (PP ddp ~ - [ apyap e
18 2 18
19 if N> N(n), by dominated convergence theorem. On the other hand, arguing as in the first part of the proof, we have: 19
20 20
2 | D15 03e) = B Gy dp < maxa2e 42 [ [520) - B )] o 2
22 o 51/0(2) 22
23 23
2 < Comaxe? f (2@ — R (@)]dg <7 24
25 2 v 25
26 26
7 If N> N(n),sothat 27
- l 2(p)B2(s dp < i 2(p)B2 (s dptn= — 2(p)B% () dg d .
20 imsup | «“(p)B“(81/¢(p))dp < lim | a“(p)B3y (81/e(p))dp +n= a“(p)B(q)dgdp +n 20
-0 e—0 Y|

30 2 Y 30
31 1 31
" < i [ [Por@ddra, i
33 QY 33
34 and (25) follows sincey > 0 is arbitrary. 34
35 Coming to point (ii), for the measurability of(p,é1/c(p)) see [, Lemma 1.8 We want to show here that given 35
%y e L?(£2; Cyp(Y)) we have %
37 37
38 1 38
. fW(p,Sl/e(p))w(p,Sl/e(p)) dp — m//W(p,q)w(p,q)dq dp 0
40 2 40
41 foranyg € D(£2; (C w(Y)). By the very definition of the spaobz(.Q Cy m(Y)) we have the following inequality: 41
42 42
43 m 43
44 / v(p,-) — Z Otj(P)l//j(') dp <n, (30) 4
45 o j=1 Cam(Y) 45
jj whereo ; € Lz(.Q) andy; are continuou¢ -periodic functions irtl". Thus we have: jj
48 48
49 ’/w(p,51/e(p))<p(p,51/e(p)) dp — — 7] //w Qe(p.q)dq dp’ 49
50 Q 50
51 m 51
2 < f (1) = 3 @i (517 ()|l (0 81/ (1) | dp 52
53 o j=1 53
54 m m 54
55 + fzaj(p)wj' (81/¢(P))¢(p. 81/¢(p)) dp — ff > aj (P (@e(p.q)dgdp 55
56 56

o Jj=1 y j=1
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1 1
) (V@) =¥ (p.|le(p. )| dg dp 2
3 3
4 =11+ 1+ I3. 4
Z Using (30) we immediately have Z
7 I1+13<Cn. 7
8 . ) 8
9 On the other hand, the functiah; (81/¢ ()¢ (-, 31/¢(+)) converges weakly ||1L2(.Q) to 1/|Y| fY Vi(@)¢(-, q)dg ase — 0 (see 9
10 forinstance §, page 17}), and sincex; € L2(£2) we have 10
11 m 11
12 / > ;i (P (51/¢ ()@ (p. 81/ (p)) dp — T // Za,(p)w, (@)¢(p.q)dg dp 12
13 o =1 13
14 14
15 ase — 0, which impliesly < 5 for € < €(n). This gives the desired result. The proof of (26) and (27) is completely analogogs
16 totheonein], Lemma 1.R In our case one still works with Euclidean cubes, the only difference being that the periodicity; of
17 the functions involved is respect to the Heisenberg group. 17
18 To prove (iii) notice thayy — ¥ (p, ¢)e(p, q) is continuous andH, Y)-periodic for everyp € £2, and that supg¢o C 9. 13
19 Moreover, 19
20 2 2 20
21 f(maﬂw(p,q)x//(p,q)l) dp< |<p|2/<ma2<11//(p,q)|) dp <o 21
qeY 9 gey
22 Q Q 22
23 2 . 23
,q  Sothatpy € L2(52; Cy4 y(Y)), and the proof is completed.0 04
25 We now state and prove a crucial compactness result concerning two-scale convergence. The proof is basically the or#é given
26 in[6]. 26
27 27
28 Theorem 2.27. Let{u¢} be a bounded sequencelif(s2). Then there exists a subsequefcg } and a functionig € L2(2 xY) %
29 such that{ue, } two-scale converges iH" to uq. 2
30 30
z; Proof. Lety € L2(0; Cy m(Y)). Then from the boundednessf{af }, Holder inequality and Proposition 2.24 we have z;
33 33
34 [MG(P)W(Psal/e(P)) dr(p)| < C”W”LZ(Q;C#H(Y))v (31) 34
35 35
36 with C not depending oa. 36
37 So we can consider, as an element/, of the dual space af2($2; Cym(Y)). From (31) it follows 37
38 38
. 2(0.
% IUell 22 ey = SUKUe V) r2@icpurms 12@iconry’ ¥ €L CorM) Wl 2@icymoy <1 %
40 40
i <C, (7
42 and recalling thal.2(2; Cy m(Y)) is separable, there exists a subsequepcich that 42
43 43
44 Ue, = Up weakly" in (L?(2; Cxm(Y)))*. a4
50 we have: s
46 46
47 T 47
i (Uo, 1//>(LZ(Q;(C#’H(Y)))*’LZ(_Q;(C#_H(Y)) = eilmof Ue, (P)‘//(P, 31/e, (P)) dr(p). (33) 18
49 $ 49
50 On the other hand, from (31) we have 50
51 51
52 6“@()‘[ Ue, (P)l//(P, 51/en (P)) dh([’)‘ < C||1//||L2(_Q><y)~ (34) 52
53 Bt 53

(o)
5

54
55

(U0 V) (12(2: Comr i 122: oy | S CIVlIL2@xyys V¥ € L2(2: Cam(Y)). (35) 6

From (34) and (33) it follows the estimate

o o
o O
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1 But the spaceL?(£2; Cxp(Y)) is dense inL?(22 x Y) (indeed D(Y) is dense inL?(Y) which implies L?(2; D(y)) 1
2 dense inL?(£2; L2(Y)). Then the inclusion.2(22; D(Y)) C L2(£2; Cy(Y)) C L2(£2; L3(Y)) gives the assertion, since 2
3 L2(2;L%(y)) = L% x Y)). Thus inequality (35) holds for any functiop € L2(£2 x Y), and soUg can be extended 3
4 continuously toL2(22 x Y). But then from the Riesz representation theor& can be identified with an elemente 4
5 L2(Q x Y) such that 5
6 6
; (UOa w>(LZ(Q;(C#,H(Y)))*,LZ(Q;C#H(Y)) = f M(P, 11)1//(17, (I) dh(P) dh(f])- (36) ;

2xY
9 9
10 But(36) with (33) gives 10
11 ) 11
” lim f e, PV (P, 1/, (1)) dh(p) = f u(p, ¥ (p, q) dh(p) dh(q) @ o,
n—0

13 Q 2xyY 13
14 which implies the assertion, witly = |Y|u. O 14
15 15
16 16
17 3. Homogenization in perforated domains 17

[
[ee]

18

=
©

As an example of the two-scale technique applied in the Heisenberg group we will consider homogenization in perféated
domains. We will concentrate here on the case of domains perforated with nonisolated holes (the case of isolated holes i#as been
treated in B,4] essentially using the compensated compactness method). 21

We recall thatt is the cubg—1, 1[2**1 in R2**+1, Let nowY* C Y be a relatively open set such thatJfitis connected 22
and the seE™* obtained by(H, Y)-periodicity fromY* is a smooth connected open subseRéf 1, with 9 E* that coincides 23
with the set we obtain i§Y*\dY is continued by(H, Y)-periodicity. We can think of* as a perforated domain, usually called24
the material domain, and &\ E* as a family of periodic holes, the void domains?fC H" is a bounded open set, then we25

NN
w N B O

NN
[S1I N

26 define a sequenc®, of periodically perforated subdomains as follows: 26
27 27
28 Q¢ Z{PE-Q: X(Sl/é(p))zl}a 28
29 wherey is the characteristic function d@*. Clearly the sets2, are (H, €Y *)-periodic. 29
30 We notice that we are not assuming tlfatr* € Y, so that the holes need not to be isolated. 30
31 For instance, consider= 1 and letp = (x, y, t) be a point inHL. Let UrandU_,U_eYN{y=-1, Uy eryn{y=1 3
32 be open smooth sets such that 32

w
w

33
34
and letY\Y* be a “pipe" connecting/ — andU + and not touchingY outside ofU — andU . 35
Obviously, we need further assumptions on the shape of the pipe rearl in order to get the regularity of the global pipe 36
obtained by periodicity. Notice that a certain degree of regularity guarantegs’tiega 2-Poincaré domain (Theorem 2.15), s®7
that all our previous theory applies. 38
For instance, we might assume that there exist smooth fungieng(x, t) andz = h(y) such that the pipe is the restriction 39
to Y of a smooth manifold that can be written &éy) = g(x,r) when|y + 1] < §, and ash(y — 2) = g(x,t — 4x) when 40
ly —1] <. 41
The conditionU_ € Y N {y = —1} requires thakg(x,7) = h(—1) implies|x| <1, |t| < 1; analogoushU; € Y N{y=1} 42
requiresg(x,t — 4x) = h(—1) implies |t| < 1. For instance, if we strength the first assumption (correspondifig_tee 43
Y N {y = —1}) by requiring thatg(x,t) = h(—1) implies |x| < «, |t| < B with 8 + 4o < 1, then the second property 44
is automatically satisfied. Indeed if the above condition is satisfied, then in the-sét4d y < 1 the pipe continued by 45
periodicity has the equatioh(y — 2) = g(x,t — 4x), whereas in the set & y < 1+ §, it is given by the family of points 46
{E.n1)E=x, n=y+2, t=t+4, h(y) =g, 1)} ={h(y — 2) = g(x,t — 4x)}, and clearly, by our choice, the two a7
pieces well fit across = 1. 48
We stress the fact that the above example is only the most elementary we can produce. For instance, we can replace the
assumption0,2,0) - U— = U4 by (0, 2, 2k) - U— = U4 for somek € Z. This means roughly speaking that the second end af
the pipe inY well fits the first end of the pipe we obtain by translating first insttdérection and then in the-direction. 51
Again, more generally, we can imagine a network of pipes originated by periodicity by a system of 3 pipes smogthly
connecting opposite regios*, U}, U, Uy, UL, U where(2,0,0) - U* =U¥, (0,2,0)-UY =U7, (0,0, - U_ =U%. 53
To produce a mind picture of the situation we are considering, supgose {(x, —1, t): x2 42 < r2}, wherer < 1/5; 54
then a pipe satisfying our assumptions can be obtained by taking a smooth fumcfied, 1] — [0, 4] such thato =0 in 55
[—1,—1+7], 0 =4in[1— 7, 1] and the pipe being defined b + (r — o (y)x)2 < r2, 1< y < 1. 56

0,2,0)- U_ = Uy,
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1 Consider now a2 x 2n symmetric matrixA = A(p, q), p € 2, q € H", A being(H, Y)-periodic ing fora.e.p e 2 and 1
2 such that the entries of = (A); ; are admissible functions in the sense of Proposition 2.24 and 2
3 3
s MEZ <(A(p. 9)8.8) < AlgI? (38) 4
5 5
6 with A > A > 0, for& e R?*. The mapp — A(p, 81/¢(p)) can be identified through the canonical moving frame with a sectiogq
; of the vector bundle of symmetric linear endomorphisms of the horizontal fibers. ;
s We put 8
9 Leu = —divg(AVyu) +u 39 o
10 ) ) 10
11 Or incoordinates, "
12 Leu:_sz(Ai,j(Psal/e(P))Zi”)+u- 1?2’
14 b 14
15 Consider now the following boundary value problem: 15
. Leue = f € L3(2) in £, o
18 (Pe) <A(p,61/€(p))VHu€,nH(p)>p=0 on 32:\952, 18
19 Ue = 0 on 896 nos2 , 19
20 20
,,  Or more precisely, its weak formulation: we look for a functigne V., whereV, is the completion irwﬁ’z(ﬂe) of the space 1
2 {ueC®(R) NC(2e) N Wi (2e): u=00n32 N 32}, such that for allp € C(2¢) N C($2e), ¢ =0 0N N 2, -
23 23
24 (PVG)/(AGVHMG,Vqu)dh+/u€¢dh=/fqbdh; 24
25 2 Q¢ Q¢ 25
26 . . 26
»;  Or incoordinates, >
28 28
2 2 | Aij(pSyep) ZineZodn+ [ uepdn= [ fodh. 2
30 L Qe ¢ ¢ 30
81 Clearly, problem(PV,) has a unique solution, by Lax—Milgram theorem. Moreover, 81
32 32
33 ||u6”W[_1H’2(-Qs) < C||f||L2(_Q€) < C”f”LZ(Q) (40) 33
34 34
35 foranye € (0,1). Following [1, Theorem 2. put iie and Vygu, the continuation respectively af. and Vyue by zeroin 35
36 .Q\.Qe. We have: 36
37 37
38 Theorem 3.1. Suppose:™ is a connected open setPoincaré type. The following two-scale convergences:hold 38
39 39
4 (1) ae—>ulp)x(q); 40
a (2) Vaue — x(@)(Vuu(p) + Vi qui(p. q)), s
42 42
43 wherey = 1g+, and(u, u1) is the unigue variational solution in the space 43
44 ° 1,2 2 1,2 44
45 Wi “(82) x L5($2; Wim (Y, E™)/R) 45
46 of the following two-scale homogenized problem 46
47 47
48 —divg, / A(p.q)(Vgu(p) + Vi gua(p. @) di(q) + [Y*lu(p) = [Y*| f(p) ae.in £, 48
49 49
50 . r . X 50
5 —divy ¢ [A(p, ¢)(Vgu(p) + VE qu1(p. ¢))] =0 a.e.in 2 x Y*, 5
52 (A(p. ) (Vgu(p) + Vi qui(p. 9)). ni) =0 on dY*\ay. 52
53 53
54 Remark 3.2. If we drop the assumptioR™* is a set of 2-Poincaré type, then the assertion still holds with 54
55 55

uy € L3(2; L3 gy 1o(Y. E¥)/R) and VH,quleLz(Q;Lﬁ’H(Y, E®)). =

a1
(&2}
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Proof of Theorem 3.1. By (40) and Theorem 2.27, there exists a subsequfdecy such that, ag — oo, 1
2

fie; — ug(p.q) € L%(22 x Y) and VHu, — £0(p.9) € L2(2; L2(Y,HH")) 3

4

5

two scales. We claim thaig(p, ) = 0, £&(p,-) = 0 in Yo\Y* for a.e. p € 2. To prove this, it is enough to choose in

Definition 2.22v(p, q) = g(p)h(q), whereg € D(£2) andh € (CSO(YO\Y_*); without loss of generality we can think &f

as continued byH, Y)-periodicity to all of H" so that supp € (E¥). Then, keeping into account thia = 0 andVTﬁu6 =0

in £2\$2¢, and then for instancé. (p) = iic (p) x (81/¢ (p)), Wherey is the characteristic function dai*, we have 8
9

1
0=fue(p)g(p)h(81/e(p)) dp - — (fuo(p,q)h(q)dq)g(p) dp. 10
2 |Y|Q Y 1

© 00 N o g b W N P

PR e
N P O

12
Since the set{g € (CSO(YO\Y*)} is dense ian(Yo\Y*), which is separable, we can extract a countable subfamiky

C S C(Yo\Y*) that is dense iL2(Yo\Y™). Since/,, (fy uo(p, )h(q) dg)g(p)dp = O for anyg € D(s2) and foranyh e C, 14

B
)

15 we can conclude thaig(p, -) =0 onYg\Y* for a.e.p € £2. An analogous argument works f&. 15

16 We want to show now thaitg and&g are as in (1) and (2), respectively. To this end, it turns out simpler to work in coordinatés,

17 j.e., to identify sections of H" with their canonical 2-dimensional coordinates. Thus, take 17

18 18
2n

19 v =v(p,q) € (D(2:Cgu(M))”".  suppy(p,-) S E* forpe. 1

N
o

20
21

, 1 22
/(VHue(p), V(P 81/¢(P)))gzn dp = — / ue(P)[(dlvH,p V(P 81/¢(p) + —(dive g ¥) (P, 81/ (p))] dp. (41) 5
¢ ¢ 24
25
26
27
28
29

Choose now) = g(p)h(q), h = (h1, ..., hy,) Whereg is arbitrary inD(£2) andh (C;OH(Y))Z", supph NY Cint(Y*). The 30

mapp — [y« uo(p.q) divy,4 ¥ (p, q) dg belongs toL2(£2), and then, arguing as above it follows that z;

By definition, supp/ (-, 81/¢(-)) € £2¢, and we can write

N NN NN
a B W N P

Since divy, , ¥ and divy , ¥ are admissible test functions, taking the limiteas- O we get

N NN
o N o

/dp/dquo(p,q)diVH,q ¥(p.q)=0.
2 Y*

W W W N
N B O ©

33 ) 33
34 fuo(p, q)divigh(g)dg =0 42) ,
35 Y* 35
%  fora.e.pe . 36

w
3

In turn, this implies thakg(p, -) is constant oY * for a.e.p € £2. This statement is well known in the Euclidean setting, bu$’
it deserves few further words in our case. Indeed (42) impliesXhap(p, -) =0 andYjug(p,-) =0ininY™*), j=1,...,n, 38

in the sense of distributions. By Theorem 6.4 if][this impliesuq(p, ) € Wﬁ’z(int(Y*)), and then thatg(p, -) is locally jz
constant, by Poincaré inequality. SinceIfit) is connected, the assertion follows. Thus, we can assge q) = u(p) x (q), “
wherey is the characteristic function af*. By the way,u € L2(2).

; ; . : 42
The following lemma will provide the tool to achieve the proof. a3

44
45

46
/W(Pa‘[)dh(@:@(P)a pESL, ||W||L2(Q,V) <C||9”(L2(_Q))2’l~ 47
Y* 48
49
50

A B B D D oW oW
A W N P O © ©

Lemma 3.3. For any 6 € (L2(£2))2" there existsy € L2(£2, V) such that

P T
© 0o N o o

More precisely,¥ (p, q) = Z?’;l(Bfle(p),eﬂvj (q), where B is a positive definite constant matrix ang € V, j =

a1
o

51 L...,2n. Hence,ifd € D(£2)?" theny € D(2; V)?". 5
52 52
53  Proof. We consider the bilinear form ovi = V (Y, E*): 53
54 n 54
55 O, p) = Z[(vij’vH(p”dh’ 55
56 56



ARTICLE IN PRESS

50021-7824(01)01247-8/FLA  AID:1247 Vol.eee(eee) P.20 (1-24)
ELSGMLTM(PXMP) :m4SC 2001/12/27 Prn:28/12/2001; 9:23 PXM P1247 by:IS p. 20
20 B. Franchi, M.C. Tesi/ J. Math. Pures Apjplee (eeee) soe—see
(1 2n _ (1 2n ; ; .
1 wherev= (v, ..., v"), 0= (¢, ..., 97", and the linear functionals ow: 1
2 2
5 L,-(w>=/<e,-,<p>dh, i=1...2n, ;
4 y* 4
5 5
¢ Wheree; is theith vector of the canonical orthonormal basisR#!. We can prove that each of the problems 5
7 QW,p)=Li(p), i=1...,2n, 43) 7
z has a unique solutioyy = (vil, R viZ”) in V by the Lax—Milgram lemma. To this end, let us prove that the f@rs coercive :
o Oon V. For this it will be enough to show that 0
1 /|vHv|2dh>c/|v|2dh for all v € C$%(Y), suppv € E*. (49 H
12 ’ 12
13 : v 13
14 By Proposition 2.1 we haveE C U(0, v/n) C Uc (0, /n/c). Let us prove preliminarily that/c (0, «/n/c) overlaps only a finite 14
15 number of the tiles on théH, Y)-periodic pavage. Indeed, jf € 2k - Y, thenp = 2k - ¢, with ¢ € Y, and we have 15
16 16
1 Jn
17 dc(p,0) = dc(2k,0) —dc(2k-q,2k) =dc(2k,0) —dc(q,0) > —d(2k, 0 - — 17
C
18 18
1 n n
;‘; = zmax{2|(k1,...,k2n o1 —max{\/_,...,\/kzn,\/kznﬂ}—§> % ;3
21 provided maky/k1, ..., vk2,, Vkont1} = 24/n/2, so thatUC(O, J/nj/c) N2k - Y is nonempty only for a finite family ok. 21
22 Denote now byn the average of on Uc (0, \/n/c); by [15], we have 22
23 23
24 / v —m|?dh < 2 / Vvl dh, 24
> Uc (0. /c) Uc(0./n/e) >
o7 which implies 27
28 28
" 2 / |VHU|2dh>/|v—m|2dh>/|v—m|2dh. 2
30 Uc(0,4/n/c) Y r* 30
z; On the other hand, keeping in mindthegt N Y =Y* andv=0onY \ Y*, we have, z;
zz 2 / Vvl dh > f lv—m|?dh =m?(]Y] — |Y¥)), zz
35 UC(Ov\/E/C) Y\Y* 35
36  so that, by(Y, H)-periodicity, we have 36
87 1/2 1/2 Y] 1/2 1/2 87
38 /|v|2dh < /lv—mlzdh + 1P Y2m<en(14 [ f |Vygvl? dh 38
39 Y] —Y*| 39
20 rr v Uc(0,4/n/c) 20
41 5 1/2 5 1/2 41
2 <c / |Vygvl? dh =c /|VHU| dh =c f|VHv| dn) . 2
43 (2k- Y)ﬂUc(O /OB dy Y Y 43
44 Consider now the constank Z 2n matrix B defined by 44
45 45
46 2 46
4 Blj = / Z(VHU VHU >dh 47
y+ k=1
48 48
49 wherev;, i =1,...,2n, are the solutions of the above mentioned problems. Let us proveBthat 0. To this end take 49
50 E:(El,...,én)eR".We have 50
51 51
52 52
D T = [ et s [ So(Ten) ve(Son) Jo ;
y* k=1 ij
54 54
55

= Q(ZE:’WvZE}'W)?Q 55
i J

a1
(&2}
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1 andzij B;j&;&; =0ifand only if )_; &v; = 0. Suppose no}_; &v; =0, and takep € V. Then 1
2 2
3 f<Zs,-e,-,<p>dh=Zaﬂei,w)dh:ZsiQ(vi,w:Q(Zsivi,gz))=o. 3
4 pro iy i i 4
5 5
¢ Hence, by Lemma 2.20y; &¢; =0, that in turn implie§ = 0. ThusZij B;;j§;&; > 0, whené # O; in particular the matrix B ¢
7 isinvertible and|B~1|| < co. 7
8 Then, for givery € (L2(52))2", the function 8
9 on 9
10 v(p.) =Y (B 0(p).ejv(@) (45)
11 N 11
12 j=1 12
13 satisfies all the required properties. Indeed, concerning the first property we have: 13
14 2n 14
15 </¢(P,61)dq,ei> = 2(3_19(P),€j></vj(éi)dq,ei> (noticing thatB; =<ei7/Uj(CI)dLI>> »
17 on 17
18 -1 -1 k il -1 18
19 = D_(BT0Wej)Bji= 3 (BN ubipej Bji =Y (B7) ; Bjioh = Y (B ) Bjith '
20 j=1 L, j.k Lj 1,j 20
21 = 2918” =0;. 21
22 1 22
2 Concerning the second property, notice th|mj||%, < QWj,vj)=Lj(;) < llvjlly, so that|v; |y <C, and hence we 2
24 ) 24
have:
25 25
26 ) 1/2 2n . 2 1/2 2n 9 ) ) 1/2 06
2 (fl\ww, ~)|\Vdp> = f Y (BT ej;()| dp)  <C fZI(B 0(p),ej)“lv; O dp 2
28 Q oJ 14 Q 28
29 2 2 1/2 29
% < c( / 1571200 dp) <Clollgzym O %
31 o 31
22 Take nowyr € D(£2; V), so that supgr(p, -) € E* for p € 2, divy 4 ¥ (p, -) =0. From (41) we get 22
34 . 34
a5 /(VHue (p), l//(177 31/e (P))>2n dp=-— f ue(p) dNH,p W(Pv 31/e (17)) dp. s
36 2 2 36
37 Taking the two-scale limit, and taking into account what we proved agpahdug, we obtain 37
38 38
- [ [teotr. 0.0}, 80 = [ wimavis o [ wv.ar00) ap. (46)
40 Qv Q Y* 40
41 41
2 In particular, ify = Y7, &; (p)Bi (), m € N, with o; € D(2) andp; € V for i = 1,...m, (46) takes the form R
43 43
" [ [teotr.a0 000, dadp = -3 f u(p)| Vi ). [ Fi@r g . an
45 2v* o) y* 45
4 Clearly, by density, (47) still holds fg8; € V,i =1,...,m. Thus, by Lemma 3.3 (45), i € D(£2)2" identity (46) still holds ~ *°
47 for the functiony associated witl# as in (45). Sinc® = ;. ¥(p, ) dg, we get 4
48 48
o f f (go(p. @), ¥ (p, @)y, dg dp = — / u(p) diveg 6(p) dp. (48) ¥
51 2 yx $2 51
5,  Hence, since foralp € 2, ¥ (p,-) € V, then 52
53 . 53
54 ‘/M(P) divg 0(p) dP‘ < ||¥O||(L2(Qxy*))2n ||W||(L2(Qxy*))2u < ||§0||(L2(_Q><y*))2n ||W||L2(_Q,V) 54
55 Q 55
56 56

< Clidoll z2(2 xy+) 2 101l £2(2yy2:-
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1 Thus,u can be identified with a linear continuous mgpfrom div(D(£2)%") C (Vci/]}lﬂ’z(fz))* toR. Since di¥D(£2)2") isdense 1
2 in (Wg2(2)*, thens, € (W52(2)**, and hencer € Wi 2($2). 2
3 o ~ = 3
. Take nowp € Ex (Y, A), with divg = 0 and letg be as in Proposition 2.19. Obviously giv= 0. If o € D(£2), set 4
s ¥(p.g)=a(p)B(g),and let, (C;?H(Y))Z” be such thaB, — A in Exu(Y). In (41) take 5
° ¥ (p.q) =Vn(p.q) =a(p) Pu(q) °
8 and get 8
9 9
10 / a(p)(Vige (p). Bu(81/¢(p)))dp = — / ue (p)(Vga (p), Bn(81/¢(p)))dp 10
11 2 2 11
12 1 (49) 12
13 +- / ue (p)a(p)(divyg Bn ) (81/¢(p)) dp. 13
14 Q¢ 14
15 B B B 15
16 We want to show that the above identity still holds wthreplaced bys. To this end remember thaf, — B, divg, —div 16
17 in (L2(2))2" and L2(£2), respectively, and notice thatVyue|, ue Vg, uce belong toL?(£2). Since divs = 0, we get 17
18 18
19 f a(p)(Vigue(p), B(81/¢(p)))dp = — f ue (p)(Vge(p), B(31/¢(p)))dp. 19
20 20

¢ 2
21 21
22 By Proposition 2.19, we can take now the limitas> 0T and we get 22
23 23
24 //(%‘o(p,q),a(p)ﬂ(q))dq dp = —//u(p)(VHa(p),ﬁ(q))dq dp (since supp C ¥*) 24
25 Oy Oy 25
26 26
27 = —//u(p)diVH,p(a(p)ﬁ(q))dqdp=//(VHu(p),a(p)ﬁ(q))dq dp. 27
28 o v o7 28
29 29
30 Hence, 30
31 31
» / a(p)( [teotv. ) = Vguto ﬂ(q))dq) dp=0. (50) =
33 Q Y* 33
34 o 34
35 With p € 2 we can associaté(p) € (Eg (Y, E*))* given by 35
36 36
37 F(p)(p) = /(Eo(p,q) — Vu(p), ¢(q))dg 37
38 Y* 38
39 . 39
w0 forgeEgp(Y, E*). Indeed 20
41 1/2 41
2
. [P < /(|éo<p,q>| + [ Vegu(p)|) o (a)| dg < ((/Isomq)! dq) + |Y*|1/2|vHu<p)|)||¢||L§[ﬂ(y,E*) .
44 r* rr 44
1/2

45 2 45
e < ((f!som 9| dq) + |Y*|1/2|vHu(p>|) e 2, . vy s
47 Y* 47
48 and 48
49 49
50 2 1/2 %1/2 50
o [FD £y v, oy < éo(p.@)|“dg |+ 1Y*IVE|Vgu(p)| ) <00 o
52 r= 52
53 fora.e.p € 2. Moreover, 53
54 54
55 55

JIF@, oy 8 < 2006002y, + 1Vl

3200
2

a1
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1 Thus (50) reads as 1
2 2
3 [ Foraws) = (51) 3
4 A 4
5 5
6 foranya € D(£2) andg € E#,H(Y, E*) with divg = 0. 6
7 Since the map 7
8 8
o a— f F(p)(a(p)B)dp X
10 10
Q
11 11
12 js continuous wher € L2(£2), then (51) still holds whem is a characteristic function, so that 12
13 13
1 / F(p)(¥(p.q))dp=0 (62) “
15 15
16 2 16
7 foranyy = Z;V:l XE;(P)Bj(9), with B; € E#,H(Y, E*), divB; =0, j=1,...,N. On the other hand, these functions are*’
12 dense inL2(2; H), whereH = { € Ey (Y, E*): div g =0}, and hence (52) holds with € L2(2; H). 12
20 By Theorem 2.16, there existg = u1(p, q) € L%($2; L% (Y, E*)/R) such that 20
21 * 21
2 §0(p. q) — Vygu(p) = Vg qu1(p.q) ONE”. 2
z 2. wl2 * ; ; P 23
.y Henceuy € L9(2; Wy (Y, E*)/R) and since is supported irY*, then o4
25 25
% Eo(p.9) = x(@)(Vgu(p) + VE qu1(p. 9)). s
2" (If E* is not of 2-Poincaré type, then is only in L2(2; LZ 1 (Y. E¥)/R).) 2
28 We can conclude now as iri]f in (PVe), choosegp of the form ¢ (p) + €p1(p, 1/¢(p)), whereg € D(£2) and ¢1 € 28
23 D(£2; (C?H(Y)). Since the vector fieldZ ; are homogeneous with respect to the dilati®nsve can conclude that 23
31 31
32 Z[fAi,j(p,q)(Ziu(p) + Ziqui(p. @) (Zj¢(p) +Zj 491(p.q)) dpdg + IY*Ifu(p)qﬁ(p) dp 32
33 ij by o 33
34 34
2 =¥ [ 7m0 dp. 3s
36 o 36
37 37
38 Thus, the paiXu, u1) € Wir2(2) x L3(2; w;’]fﬂ(y, E*)/R) satisfies 38
39 39
40 40
i Z/(/Ai,j(P,fI)(ZiM(P)+Zi,q”l(P,fj))d‘Z)Zj¢(P)dP+ |Y*|/u(p>¢(p>dp= |Y*|/f(p>¢(p>dp i
12 Lj o Y* 2 2 42
3 and 43
44 44
4 Z/[Ai,j(P,Q)(ZiM(P)+Zi,qul(P,q))Zj,qM(P,Q)dq dp=0 45
46 A 46
47 2 47
48 so that(u, uq) is the variational solution of the system 48
49 49
50 —diVH,p/A(p,q)(VHu(p)+VH,qu1(p,q)) dg +Y*ju(p) = Y*|f(p) ae.in2 50
51 v 51
52 52
53 and 53
:‘5‘ —diveg 4 [A(p. @) (Vigu(p) + Vi 4qu1(p. )] =0 ae.in2 x ¥*, . 2‘5‘
56 (A(p. ) (Vgu(p) + Vi qui(p. 9)), ni) =0 on dY*\aY. 56
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