Asymptotic expansion of the solutions of an inverse problem

Davide Guidetti
Dipartimento di Matematica
Piazza di Porta S. Donato, 5
40127 Bologna
Italy

We consider the abstract parabolic inverse problem

$$
\begin{cases}u^{\prime}(t)=A(t) u(t)+f(t) z(t)+h(t), & t \in[0,+\infty) \tag{1}\\ u(0)=u_{0}, & t \in[0,+\infty) \\ \Phi(u(t))=g(t),\end{cases}
$$

with u and f unknown. We assume that, $\forall t \in[0,+\infty), A(t)$ is a sectorial operator in the Banach space X, z and h are functions with values in X, and f is an unknown scalar-valued function, Φ is a proper linear functional in X, g is a givn scalar valued function. The knowledge of $\Phi(u(t))$ should provide the further information, which is necessary to determine f together with u.

We show that, under suitable assumption on the data $A(t), z, h, u_{0}, g$, (1) has a unique global solution in $[0,+\infty)$. Moreover, under further conditions, if $A(t)=A_{0}+t^{-1} A_{1}+\ldots+t^{-k} A_{k}+o\left(t^{-k}\right)(t \rightarrow+\infty)$, and z, h and g admit analogous expansions, even u and f can be expanded in the same way.

