INGHAM TYPE THEOREMS AND GAP CONDITIONS

PAOLA LORETI

We recall a classical theorem due to Ingham (1936)[1]:

Let $(\lambda_k)_{k\in\mathbb{Z}}$ be a given sequence of real numbers, and consider the functions of the form

(1)
$$f(t) = \sum_{k \in \mathbb{Z}} a_k e^{i\lambda_k t}$$

with complex coefficients (a_k) .

Theorem 1. Assume that

$$\gamma := \inf_{j \neq k} |\lambda_j - \lambda_k| > 0 \qquad \text{gap condition},$$

and let I be a bounded interval of length $|I| > 2\pi/\gamma$. There exist two constants $c_1, c_2 > 0$ such that

$$c_1 \sum_k |a_k|^2 \le \int_I |f(t)|^2 dt \le c_2 \sum_k |a_k|^2$$

for all square summable sequences (a_k) of complex numbers.

In this talk we briefly recall Ingham type theorems and gap conditions [2], and we describe some recent results obtained in collaboration with Daniela Sforza.

References

 A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z. 41 (1936), 367–379.

[2] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer, New York 2005.

DIPARTIMENTO DI METODI E MODELLI MATEMATICI, PER LE SCIENZE APPLICATE, SAPIENZA UNIVERSITÀ DI ROMA VIA SCARPA 16, 00161 ROMA, ITALY

Date: May 29, 2007.