Inverse problem for a degenerate parabolic equation

Nataliya Saldina
Department of Mechanics and Mathematics
Ivan Franko National University of Lviv,
1 Universytetska st., 79602, Lviv, Ukraine
E-mail: saldinan@ rambler.ru

The main purpose of the paper is to study the possibility of identification the time-dependent coefficient in a degenerate parabolic equation.

Let $Q_{T} \equiv\{(x, t): 0<x<h, 0<t<T\}$. Consider the following equation

$$
\begin{equation*}
u_{t}=a(t) \psi_{0}(t) u_{x x}+b(x, t) u_{x}+c(x, t) u+f(x, t), \quad(x, t) \in Q_{T} \tag{1}
\end{equation*}
$$

with unknown coefficient $a(t)>0, t \in[0, T]$, initial condition

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad x \in[0, h], \tag{2}
\end{equation*}
$$

boundary conditions

$$
\begin{equation*}
u(0, t)=\mu_{1}(t), \quad u(h, t)=\mu_{2}(t), \quad t \in[0, T], \tag{3}
\end{equation*}
$$

and overdetermination condition

$$
\begin{equation*}
a(t) \psi_{0}(t) u_{x}(0, t)=\mu_{3}(t), \quad t \in[0, T] . \tag{4}
\end{equation*}
$$

It is supposed that the function $\psi_{0}(t)$ is given monotone increasing function, $\psi_{0}(t)>0, t \in(0, T]$ and $\psi_{0}(0)=0$. We considered the cases of weak and strong degenerations. The degeneration is called weak if for $t \rightarrow+0$ the expression $\int_{0}^{t}\left(\int_{\tau}^{t} \psi_{0}(\sigma) d \sigma\right)^{-1 / 2} d \tau$ tends to zero, and it is called strong if the named expression tends to infinity when t tends to zero.

With the aid of the Green function for the heat equation

$$
\begin{equation*}
u_{t}=a(t) \psi_{0}(t) u_{x x}+f(x, t), \quad(x, t) \in Q_{T}, \tag{5}
\end{equation*}
$$

we reduce the direct problem (1)-(3) to the system of integral equations

$$
\begin{align*}
& u(x, t)=u_{0}(x, t)+\int_{0}^{t} \int_{0}^{h} G(x, t, \xi, \tau)(b(\xi, \tau) v(\xi, \tau)+c(\xi, \tau) u(\xi, \tau)) d \xi d \tau \tag{6}\\
& v(x, t)=u_{0 x}(x, t)+\int_{0}^{t} \int_{0}^{h} G_{x}(x, t, \xi, \tau)(b(\xi, \tau) v(\xi, \tau)+c(\xi, \tau) u(\xi, \tau)) d \xi d \tau \tag{7}
\end{align*}
$$

where $u_{0}(x, t)$ is solution of the heat equation with conditions (2), (3). From the condition (4) we obtain

$$
\begin{equation*}
a(t)=\frac{\mu_{3}(t)}{\psi_{0}(t) v(0, t)}, \quad t \in[0, T] . \tag{8}
\end{equation*}
$$

Applying the Schauder fixed point theorem to the system of equations (6)-(8), we find the conditions of existence of classical solution of the problem (1)-(4). The uniqueness of solution of the problem is also established.

