MATHEMATICAL STRUCTURE FOR FOREST KINEMATIC MODEL

A. YAGI

1. ABSTRACT

We study the initial-boundary values problem for a parabolic-ordinary system

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \beta \delta w - \gamma(v)u - fu \\
\frac{\partial v}{\partial t} &= fu - hv \\
\frac{\partial w}{\partial t} &= d \Delta w - \beta w + \alpha v \\
w &= 0 \\
u(x, 0) &= u_0(x), \ v(x, 0) = v_0(x), \ w(x, 0) = w_0(x)
\end{align*}
\]

This system has been introduced by Kuznetsov et al. [4] in order to describe the kinetics of forest from the viewpoint of the age structure. For simplicity they consider a prototype ecosystem of a mono-species and with only two age classes in a two-dimensional domain \(\Omega \).

The unknown functions \(u(x, t) \) and \(v(x, t) \) denote the tree densities of young and old age classes, respectively, at a position \(x \in \Omega \) and at time \(t \in [0, \infty) \). The third unknown function \(w(x, t) \) denotes the density of seeds in the air at \(x \in \Omega \) and \(t \in [0, \infty) \). The third equation describes the kinetics of seeds; \(d > 0 \) is a diffusion constant of seeds, and \(\alpha > 0 \) and \(\beta > 0 \) are seed production and seed deposition rates respectively. While the first and second equations describe the growth of young and old trees respectively; \(0 < \delta \leq 1 \) is a seed establishment rate, \(\gamma(v) > 0 \) is a mortality of young trees which is allowed to depend on the old-tree density \(v \), \(f > 0 \) is an aging rate, and \(h > 0 \) is a mortality of old trees.

For \(w \), the Dirichlet boundary conditions are imposed on the boundary \(\partial \Omega \).

The initial value \((u_0, v_0, w_0)\) is taken from the space

\[
K = \{(u_0, v_0, w_0); 0 \leq u_0, \ v_0 \in L^\infty(\Omega) \text{ and } 0 \leq w_0 \in L^2(\Omega)\}.
\]

And Problem (FK) is handled in the underlying product space \(X = L^\infty(\Omega) \times L^\infty(\Omega) \times L^2(\Omega) \).

The domain \(\Omega \) is a \(C^2 \) or convex, bounded domain in \(\mathbb{R}^2 \). We assume as in [4] that the mortality of young trees is given by a square function of the form

\[
\gamma(v) = a(v - b)^2 + c,
\]

where \(a, b, c > 0 \) are positive constants. This means that the mortality takes its minimum when the old-age tree density is a specific value \(b \). As mentioned, \(d, f, h, \alpha, \beta > 0 \) are all positive constants and \(0 < \delta \leq 1 \).

In this talk, we intend to construct a global solution to (FK) for each initial function \(U_0 \in K \) and to construct a dynamical system \((S(t), K, X)\) determined from the problem. Furthermore, we notice that \((S(t), K, X)\) enjoys a Lyapunov function and, using the
Lyapunov function, we investigate the omega limit set $\omega(U_0)$ for $U_0 \in K$. Especially, we will show a remarkable fact that, even if U_0 is an initial value consisting of continuous functions, $\omega(U_0)$ can contain an element $(\overline{u}, \overline{v}, \overline{w})$ which consists of some discontinuous functions.

This is a joint work with L. H. Chuan (Department of Mathematics, Hanoi University of Science, Ha Noi, Vietnam) and T. Tsujikawa (Miyazaki University, Miyazaki, Japan).

References

Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan