An ultraparabolic problem arising from age-dependent population diffusion

Gabriella Di Blasio

We study well-posedness and regularity results for solutions to a class of differential equations of the form

$$
u_{t}(t, a, x)+u_{a}(t, a, x)=-\mu(t, a, x) u(t, a, x)+\Delta u(t, a, x), \quad t>0, a>0, x \in \Omega
$$

supplemented by the boundary conditions
$u(t, 0, x)=\int_{0}^{+\infty} \beta(t, \alpha, x) u(t, \alpha, x) d \alpha, t>0, x \in \Omega ; \quad u(t, a, x)=0, t>0, a>0, x \in \partial \Omega$,
and initial condition

$$
u(0, a, x)=u_{0}(a, x), a>0, x \in \Omega
$$

Problem of this kind occur in the study of the dynamics of a population subject to birth, death and diffusion, in a given domain $\Omega \subset \mathbb{R}^{n}$, where the function $u(t, a, x)$ represents the density of members of age a at time t and position x. The terms $d(t, a, x)$ and $b(t, x)$ defined by

$$
d(t, a, x):=\mu(t, a, x) u(t, a, x), \quad b(t, x):=\int_{0}^{+\infty} \beta(t, \alpha, x) u(t, \alpha, x) d \alpha
$$

represent the death process and the birth process, and the functions μ and β denote the mortality rate and the fertility rate, respectively.

