Partial reconstruction of a source term in a linear parabolic problem

Davide Guidetti
Dipartimento di Matematica Piazza di Porta S. Donato, 5
40127 Bologna
Italy

We consider an abstract inverse problem of the form

$$
\left\{\begin{array}{l}
D_{t} u(t, x, y)=A\left(t, x, D_{x}\right) u(t, x, y)+B\left(t, y, D_{y}\right) u(t, x, y)+g(t, x) f(t, x, y) \tag{1}\\
(t, x, y) \in[0, T] \times \mathbf{R}^{m} \times \mathbf{R}^{n} \\
u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \mathbf{R}^{m} \times \mathbf{R}^{n} \\
u(t, x, 0)=\phi(t, x), \quad(t, x) \in[0, T] \times \mathbf{R}^{m}
\end{array}\right.
$$

with u and g unknown. A and B are strongly elliptic operators of order $2 p$, in \mathbf{R}^{m} and \mathbf{R}^{n} respectively. The last equation in (0.1) provides the further information, which is necessary to identify u together with g. Under suitable assumptions, we are able to prove a result of existence and uniqueness of a global solution.

