Uniqueness in nonlinearly coupled PDE systems

Pavel Krejčí

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany,

and

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic, E-mail: krejci@wias-berlin.de, krejci@math.cas.cz

Consider in $\Omega \times (0,T)$, $\Omega \subset \mathbb{R}^N$, the system

(1)
$$\theta_t - \Delta \theta = r(\theta, c)$$

(2)
$$c_t - \operatorname{div}(D(\theta, c)\nabla c) = 0$$

of heat balance and carbon diffusion equations, complemented with nonhomogeneous boundary conditions on $\partial \Omega$

(3)
$$\frac{\partial \theta}{\partial \nu} + h(x)(\theta - \theta_{\Gamma}(x, t)) = 0$$

(4)
$$-D(\theta,c)\frac{\partial c}{\partial \nu} = b(x,t),$$

and initial conditions for θ and c, as a model problem arising in steel hardening processes. Here, θ represents the absolute temperature, c is the carbon concentration, and $r(\theta, c)$, $D(\theta, c)$, h(x), $\theta_{\Gamma}(x, t)$, and b(x, t) are given functions. We mainly focus on the proof of uniqueness and Lipschitz continuous data dependence, which is based on a variant of the " L^p -Gronwall" inequality (joint work with Lucia Panizzi).