An identification problem with evolution on the boundary of hyperbolic type

Alfredo Lorenzi and Francesca Messina (Milan)

We consider an equation of the type

$$
\begin{equation*}
A(u+k * u)=f \tag{0.1}
\end{equation*}
$$

where A is a linear second-order elliptic. operator, k is a scalar function depending on time only and $k * u$ denotes the standard time convolution of functions defined in $(-\infty, T)$ with their supports in $[0, T]$. The previous equation is endowed with a second-order dynamical boundary condition of the flux form,

$$
D_{t}^{2} u+b D_{\nu_{A}} u=g, \quad \text { on } \quad(0, T) \times \partial \Omega
$$

where $D_{\nu_{A}}$ stands for the conormal derivative.
The identification problem we deal with in the present paper is concerned with identifying the unknown convolution scalar kernel k. To recover k we prescribe an additional condition of the form

$$
\Phi[u(t, \cdot)]=l(t), \quad t \in[0, T],
$$

Φ and l being a given functional and a given function. Global existence, uniqueness and continuous dependence results can be shown.
To our knowledge the problem of determining the memory kernel k is new under dynamical boundary conditions.
First we observe that our treatment to solve our identification problem leads to the following (equivalent) identification problem, for the new unknown v such that

$$
\begin{equation*}
v=u+k * u \quad \Longleftrightarrow \quad u=v+h * v \tag{0.2}
\end{equation*}
$$

$$
\begin{align*}
& A v=f \quad \text { in }(0, T) \times \Omega, \tag{0.3}\\
& D_{t}^{2} v+D_{t} h * D_{t} v+h(0) D_{t} v+u_{0} D_{t} h+b D_{\nu_{A}} v+b h * D_{\nu_{A}} v=g \quad \text { on }(0, T) \times \partial \Omega, \tag{0.4}\\
& v(0, \cdot)=u_{0} \quad \text { on }(0, T) \times \partial \Omega, \tag{0.5}\\
& D_{t} v(0, \cdot)=u_{1}-h(0) u_{0} \quad \text { on }(0, T) \times \partial \Omega, \tag{0.6}\\
& \Phi[v(t, \cdot)]+h * \Phi[v(t, \cdot)]=l(t), \quad t \in[0, T] . \tag{0.7}
\end{align*}
$$

Note that the unknown kernel h convolves not only with the space operator $D_{\nu_{A}} v$, but also with the time derivative $D_{t} v$.
For such a kind of identification problems, to the authors' knowledge, the global in time existence of the solution (v, h) is not a standard result.

In this paper this difficulty is overcome by using a suitable estimate strategy and a fixed-point approach strictly related to the problem itself - we could say "suggested" by the problem itself. In particular we transform our problem into an equivalent problem related to the boundary of Ω.
Finally, we observe that a simple treatment of the elliptic problem (0.1) (endowed with auxiliary nonhomogeneous Dirichlet conditions) forces to choose for u - and consequently for $v-$ an $L^{2}(\Omega)$ framework.
In contrast to this, we have chosen for the time dependence of v and h the Hölder spaces C^{α}, $\alpha \in(0,1)$, to ensure a good regularity for the unknown kernel h - and consequently for k.

