From exact observability to identification of singular sources

Marius Tucsnak	George Weiss
Department of Mathematics	Department of EE-Systems
University of Nancy	Tel Aviv University

We list some recent results which are relevant in the identification of point sources for the wave equation, using boundary measurements. The results are in a more general framework, dealing with an arbitrary operator semigroup and an admissible observation operator for it. Our standing assumptions are that \mathbb{T} is a strongly continuous semigroup of operators on the Hilbert space X, with generator $A : \mathcal{D}(A) \to X$. For a Hilbert space $V, m \in \mathbb{N}$ and for $\tau > 0$ we set

$$\mathcal{H}_{R}^{m}(0,\tau;V) = \left\{ u \in \mathcal{H}^{m}(0,\tau;V) \mid u(\tau) = \dots = u^{m-1}(\tau) = 0 \right\}.$$

We denote $X_m^d = \mathcal{D}((A^*)^m)$, with the graph norm.

Proposition 1. Let $C \in \mathcal{L}(X_1, Y)$ be an admissible observation operator for \mathbb{T} . For $\tau > 0$ let Ψ_{τ} be the output map corresponding to the pair (A, C). Then, for each $\tau > 0$, Ψ_{τ} has a unique continuous extension $\Psi_{\tau} \in \mathcal{L}((Z_m^d)', [\mathcal{H}_R^m(0, \tau; Y)]')$, where

$$Z_m^d = X_m^d + (\beta I - A^*)^{-1} C^* U, \tag{1}$$

for some $\beta \in \rho(A)$. Here and below, dualities are computed with respect to the Hilbert spaces X and $L^2([0,\tau];Y)$, respectively.

Moreover, assume that (A, C) is exactly observable in some time $\tau_0 > 0$. Then for each $\tau > \tau_0$, there exists a constant $m_{\tau} > 0$ such that, for every $f \in (Z_m^d)'$, we have

$$\|\Psi_{\tau}f\|_{[\mathcal{H}^{m}_{R}(0,\tau;Y)]'} \ge m_{\tau}\|f\|_{(Z^{d}_{m})'}.$$
(2)

Theorem 2. Let X, Y be Hilbert spaces and assume that the pair (A, C) is exactly observable in some time $\tau_0 > 0$ and that $\lambda \in \mathcal{H}^1(0,\tau)$ with $\lambda(0) \neq 0$. We define $\mathbb{F}_{\tau} f$ as the convolution (on $[0,\tau]$) of λ with $\Psi_{\tau} f$. Then for every $\tau > \tau_0$, \mathbb{F}_{τ} is one-to-one from $(Z_m^d)'$ to $[\mathcal{H}_R^{m-1}(0,\tau;Y)]'$ and there exists a positive constant $\tilde{\kappa}_{\tau}$ such that

$$\|f\|_{(Z_m^d)'} \leqslant \tilde{\kappa}_\tau \, \|\mathbb{F}_\tau f\|_{(\mathcal{H}_R^{m-1}(0,\tau;Y))'} \qquad \forall f \in (Z_m^d)'.$$
(3)

The above theorem gives conditions to recover f from y, when the system is described by $\dot{z} = Az + \lambda f$, z(0) = 0, y = Cz (for $t \in (0, \tau)$). An interesting particular case is when A corresponds to the wave equation and f is the control operator that corresponds to a Dirac mass (point source) acting on the velocity component of the state.