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We list some recent results which are relevant in the identification of point sources for
the wave equation, using boundary measurements. The results are in a more general
framework, dealing with an arbitrary operator semigroup and an admissible observation
operator for it. Our standing assumptions are that T is a strongly continuous semigroup
of operators on the Hilbert space X, with generator A : D(A) — X. For a Hilbert space
V, m € N and for 7 > 0 we set

HEO,7V) = {ue H"(0,7;V) |u(r) = =u"" (1) =0} .
We denote X¢ = D((A*)™), with the graph norm.

Proposition 1. Let C € L£(X1,Y) be an admissible observation operator for T. Fort >0
let W be the output map corresponding to the pair (A,C). Then, for each T >0, V. has
a unique continuous extension V. € L((Z3),[HB(0,7;Y)]"), where

Zy, = Xj, + (BT — A")7'C*U, (1)
for some B € p(A). Here and below, dualities are computed with respect to the Hilbert
spaces X and L?([0,7];Y), respectively.

Moreover, assume that (A, C) is exactly observable in some time 9 > 0. Then for each
T > 79, there exists a constant m, > 0 such that, for every f € (Z%)', we have

H\IITfH[Hg(Qﬂ—;y)]/ > mTHfH(Zgl)’ (2)

Theorem 2. Let X, Y be Hilbert spaces and assume that the pair (A,C) is exactly ob-
servable in some time 79 > 0 and that A € H*(0,7) with A\(0) # 0. We define F,f as the
convolution (on [0,7]) of A with W, f. Then for every T > 19, I, is one-to-one from (Z%)'
to [HR~1(0,7;Y)]" and there exists a positive constant . such that

1fllzay < 5 I fllpmsomyy ¥ F € (24, (3)

The above theorem gives conditions to recover f from y, when the system is described
by 2= Az + \f, 2(0) =0, y = Cz (for t € (0,7)). An interesting particular case is when
A corresponds to the wave equation and f is the control operator that corresponds to a
Dirac mass (point source) acting on the velocity component of the state.



