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@ u = u(t,x) € R" vector of the unknowns
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General systems of conservation laws

Otu+3xf(u) =0
XeER,t>0
U(O7X) = UO(X)

@ u = u(t,x) € R" vector of the unknowns
@ f:Q CR" — R” smooth flux
@ The system is strictly hyperbolic

Df(u)r(u) = Ac(u)re(u) k=1,...,n
0 < A(u) < Xo(u) <--- < Ap(u) <1
@ No classical Lax assumptions on VA - rg

°
Tot. Var{up} <« 1
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Loss of regularity

otu+0x(f(u)) =0, ue R,

smooth sol. u = u(t, x) satisfy
Oru+ f'(u)dxu=0.
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Loss of regularity

otu+0x(f(u)) =0, ue R,

smooth sol. u = u(t, x) satisfy
Oru+ f'(u)dxu=0.

@ Gradient Catastrophe (f”(u) > 0)
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Existence theory

= look for (discontinuous) weak sol'ns

/ {udig + f(u) Oxp} dxdt =0

for all ¢ € C' with compact support.

@ Solutions u(t,-) € BV are constructed by
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Existence theory

= look for (discontinuous) weak sol'ns

/ {udig + f(u) Oxp} dxdt =0

for all ¢ € C' with compact support.

@ Solutions u(t,-) € BV are constructed by

e Glimm scheme
e Wave-front tracking algorithm
e Vanishing viscosity approximations

OpUF + Oy (F(UF)) = ed2 (e — 0)

Fabio Ancona and Andrea Marson Convergence Rate of Glimm Scheme



Introduction General setting
Review of Glimm scheme and wave tracing
Convergence rate

Riemann Problem (GNL systems)

L .
u if x<0O
U(07 X) - R .
u if x>0
u
" —— Shocks
— Rarefactions
Time goes on ....
ur
X
Riemann datum Packs of i-th waves
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The Glimm scheme

J. Glimm, CPAM 1965
@ Meshsizes Ax = At=ec<<1 (0<X(u)<1)
@ Equidistributed sampling sequence {9 }ken CJ0, 1]

lim (A =0 VA €]0,1]

n—oo

t{k <n:v9x <A}
B n

4e T , sample at (j + V4)e

sample at (j + vJ3)e

sample at (j + ¥2)e = solve the Riemann problems

sample at (j + v)e

/
s‘ )
e 3 "4e be
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Glimm Functional

A-priori bounds on total variation

V(t) = Total strength of waves in u(t,-) ~ Tot. Var.{u"(t,-)}
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A-priori bounds on total variation

V(t) = Total strength of waves in v (t,-) ~ Tot. Var.{u°(t,-)}
Q(t) = Wave interaction potential

@ f+— V(t)+ cQ(t) non increasing
@ Uniform BV bounds — compacteness
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Glimm Functional

A-priori bounds on total variation

V(t) = Total strength of waves in v (t,-) ~ Tot. Var.{u°(t,-)}
Q(t) = Wave interaction potential

@ f+— V(t)+ cQ(t) non increasing
@ Uniform BV bounds — compacteness
@ —u inLl, ase—0

@ {¥x}k equidistributed — u weak solution
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The wave tracing

T.P. Liu CMP 1977, Memoirs AMS 1981 - T.P. Liu, T. Yang, CMP 2002

t
]

— primary waves s

— secondary waves s

t
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The wave tracing

T.P. Liu CMP 1977, Memoirs AMS 1981 - T.P. Liu, T. Yang, CMP 2002

o]

t

— primary waves s

— secondary waves s

@ primary waves s can be traced in a time interval [t;, t]
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The wave tracing

T.P. Liu CMP 1977, Memoirs AMS 1981 - T.P. Liu, T. Yang, CMP 2002

ol

t

— primary waves s

— secondary waves s

@ primary waves s can be traced in a time interval [t;, t]

@ secondary waves s are generated or cancelled at
interactions
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Lax Systems

Choose a sampling sequence{v }ken C]0, 1] such that

A C

_Hk<n:i9 <A _ 1+logn
n - n

VA €]0,1]

J.G. Van der Corput, Compositio Math. 1935
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Lax Systems

Choose a sampling sequence{v }ken C]0, 1] such that

A C

_jj{kﬁn,iq,ﬁkSA} < VA €]0,1]

1+logn
n

J.G. Van der Corput, Compositio Math. 1935

u® Glimm approximate solution with mesh size ¢ = Ax

|5(T, ) = u(T, )l = o(1) - Vel loge|

GNL or LD systems: A. Bressan, A.M., ARMA 1998
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Analyze convergence rate of Glimm approximate solutions
for general hyperbolic systems

otu+ A(u)oxu =0
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Analyze convergence rate of Glimm approximate solutions
for general hyperbolic systems

otu+ A(u)oxu =0

@ no assumption on A(u) besides strict hyperbolicity

@ in non conservative case solutions are limits of vanishing
viscosisty

O UF + AU)OxUF =2 F (e — 0)
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Estimate of the error

A. Bressan, A.M., ARMA 1998
In a time interval [t, [

[ (2, ) —u(te, ) = [[u(t, ) — ulty, |+

+0(1) - [ > 8] |change in speed of 5|+

primary waves

+ > 5] + (error in speeds)] (—t)

secondary waves
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Estimate of the error

A. Bressan, A.M., ARMA 1998
In a time interval [t, [

[ (2, ) —u(te, ) = [[u(t, ) — ulty, |+

+0(1) - [ > 8] |change in speed of 5|+

primary waves

+ > 5] + (error in speeds)] (—t)

secondary waves

Z G’ =0(1)- [A[H,b[v—’_ COA[HJZ[Q}

secondary waves

et i speeds — o). 1100 1)z
> —H
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S., 85 >0

S, 0p
Sa; Oa

ona and Al
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S5, 03
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Convergence Rate of Glimm Scheme



Error estimates

nvergence rate for Glimm schem . ’
Convergence rate for G seheme Differences with the Lax case

Estimate of the main term

f(u
5o (v)
Sas Oa Sps 03
S., 85 >0
S3, 0 u
Sas Oa S, 0

N Sa0q + 8303

S~ S S
o + Sp o Sut 55

(Sa, Sg size of waves, o,,03 speed of waves)
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Estimate of the main term

SaSglloa — o
Sal|0a — 0| +|S3llog — 0| =

(=01 Isussl )
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Estimate of the main term

1SaS8]|0a — o8]
Salloa — ol + [8gllog — 0| =~ ( =01)-]|s,8 )
Sulloe = o] + Isyllos — o] ~ B2 (1) [sa55]

e For genuinely nonlinear systems

’Sasﬁ‘

AQ| > 5
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Estimate of the main term

‘SaSgHUa — Uﬁ|
|Sal + [Sg]

|Salloa — o +[8s|los — o =

(=01 Isussl )
e For genuinely nonlinear systems

’Sasﬁ‘

AQ| > 5

e In atime interval [, b

>~ 8] |change in speed of 5| =

primary waves

= O(1)- [ |8 V] + ¢l Ap Q|
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No global quadratic interaction potential

Convergence rate for Glimm scheme

Qu) = > |SaS5]

approaching waves
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Differences with the Lax case

Convergence rate for Glimm scheme

No global quadratic interaction potential

Qu) = > |SaS5]

approaching waves

f(u)
, S//
S
Sp
/
S(\
u
S 1s"] >>[sg]  AQ = —|sass| +[s's"[ >0
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AIM: define interaction potential Q for non Lax systems so that
@ t— V(t)+ cQ(t) non increasing
@ [wave size] x [change in speed] = O(1) - |AQ)|

Consider:

@ Systems with finite number of connected linearly
degenerate hypersurfaces {u : Vg re(u) = }
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Convergence rate for Glimm scheme B it s L GEss

New interaction potentials

AIM: define interaction potential Q for non Lax systems so that
@ t— V(t)+ cQ(t) non increasing
@ [wave size] x [change in speed] = O(1) - |AQ)|

Consider:

@ Systems with finite number of connected linearly
degenerate hypersurfaces {u : Vg re(u) = }

@ General case
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Finite number of linearly degenerate manifolds

We assume that
V Ak - I vanishes on finite number of hypersurfaces

transversal to ry
V)\k I’k 0
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Error estimates

Convergence rate for Glimm scheme B it s L GEss

Finite number of linearly degenerate manifolds

We assume that
V Ak - I vanishes on finite number of hypersurfaces

transversal to ry
V)\k I’k

Scalar case: f has a finite number of inflection points
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A locally quadratic interaction potential

For “one inflection point” systems
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A locally quadratic interaction potential

For “one inflection point” systems

Sp

s’ =0(1) - sz
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A locally quadratic interaction potential

For “one inflection point” systems

s’ =0(1) - |sg]

AQ = —|s,s3] +[5's"| = (O(1) = 1) - |sass
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The cubic part
New interaction potentials Conclusion

A locally quadratic interaction potential

F.A, A.Marson, JDE 2001

Qty=2 > sasgl+ Y. Isaf+

same family rarefactions
SaS3>0

+k{ Z + Z }|sus,3\

same family  approaching waves
SaS3<0 different families
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A locally quadratic interaction potential

F.A, A.Marson, JDE 2001

Qty=2 > sasgl+ Y. Isaf+

same family rarefactions
SaS3>0

+k{ DY }ISuSa\

same family  approaching waves
SaS3<0 different families

AQ =2|8's"| +|8|* ~ klsass| = O(1) - [8aSs|—K|SaSs]

]
g—é\sas,g , k>>1
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The quadratic part
The cubic part
New interaction potentials Conclusion

A locally quadratic interaction potential

F.A, A.Marson, JDE 2001

Qty=2 > sasgl+ Y. Isaf+

same family rarefactions
SaS3>0

+k{ DY }ISuSa\

same family  approaching waves
SaS3<0 different families

AQ =2|8's"| +|8|* ~ klsass| = O(1) - [8aSs|—K|SaSs]

]
g—é\sas,g , k>>1

Construct an interaction potential quadratic in “small waves”
crossing one inflection point
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A deeper look at interactions

f(u) one inflection point involved

an interaction occurs

s(‘
Sg
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A deeper look at interactions

f(u) one inflection point involved

an interaction occurs

s(‘
Sg

Choose dp small so that if [s,| < dp, then

new rarefactions = O(1) - |sg|
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New interaction potentials Conclusion

A deeper look at interactions

f(u) one inflection point involved

an interaction occurs

s(‘
Sg

Choose dp small so that if [s,| < dp, then
new rarefactions = O(1) - |sg|

u € Bs,(inflection point) = D?\y - rc(u) # 0
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Intrinsic interaction potential

keR

N

leS

Q'(s) =2 Isysil + > als) + D Iskl?

l#k eS keR

q(s¢) = 0if |s¢| < 4y, intrinsic potential
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Intrinsic interaction potential

keR

N

teS

Q'(s) =2 Isysil + > als) + D Iskl?

£k leS keR

q(s¢) = 0if |s¢| < 4y, intrinsic potential

The quadratic part is

QQ(t) =2 Z SaSp| + Z OI(su)

same family
SaS3>0

+k[ oo+ > }]sasﬂ\

same family ~ approaching waves
SaS3<0 different families
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Intrinsic interaction potential

What's q(-)?

Large shocks

io Ancona and A a Marson Convergence Rate of Glimm Scheme



The quadratic part
The cubic part
New interaction potentials Conclusion

Intrinsic interaction potential

What's q(-)?
Large shocks

S3

q(Sa) = 2|515| + 2|sp53| + 2|5183| + |82/

Takes into account of (possible) future splitting of s, [s.| > do
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Bianchini’s interaction potential

S. Bianchini, DCDS 2003

A=Y

same family

Sa Sp
/ / loa(T) — 05(7')\ drdr’
0 0
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Bianchini’s interaction potential

S. Bianchini, DCDS 2003

A=Y

same family

Sa Sp
/ / loa(T) — 05(7')\ drdr’
0 0

@ 0,(-) speed of the wave s, associated to manifold of
travelling profiles

_U,UX+Df(U)UX: U)()(7 0—/%)\,
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Bianchini’s interaction potential

S. Bianchini, DCDS 2003

A=Y

same family

Sa Sp
/ / loa(T) — 05(7')\ drdr’
0 0

@ 0,(-) speed of the wave s, associated to manifold of
travelling profiles

_U,UX+Df(U)UX: U)()(7 0—/%)\,

@ If s,, sg are shocks

Sa S@
/0 /0 loa(T) — 05(7")\ drdr'| = |SaSs| - |00 — 03]
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The new interaction potential

Q(t) = Qq(t) + k(1)
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Q(t) = Qq(t) + k(1)

@ Q, decreases at interactions between “small” waves (< dy)
of the same family
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The new interaction potential

Q(t) = Qq(t) + k(1)

@ Q, decreases at interactions between “small” waves (< dy)
of the same family

@ possible increase of Q4 due to interactions of “large” waves
(> dp) is controlled by the corresponding decrease of @
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The new interaction potential

Q(t) = Q(t) + k(1)

@ Q, decreases at interactions between “small” waves (< dy)
of the same family

@ possible increase of Q4 due to interactions of “large” waves
(> dp) is controlled by the corresponding decrease of @

For suitable ¢, k >> 1 at each interaction

AV +cAQ< —%AO
[wave size] x [change in speed] = O(1) - |AQ)|
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The general case

Q)= > lsassl+ D T(Sa8p)

approaching waves same family
different families

fésa‘ f(lsﬁ‘ loa(T) — op(r’)| drdr’
‘Soc‘ + ‘Sﬁ‘

I(sasp) =
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The general case

Q)= > lsassl+ D T(Sa8p)

approaching waves same family
different families

5 oa(r) — op(r)| drdr’

7(s,.,s
S Sl +]55]

For suitable ¢ >> 1 at each interaction

AV +cAQ< —%AQ
[wave size] x [change in speed] = O(1) - |AQ)|
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Outline

© New interaction potentials

@ Conclusion
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The final estimate

t

TE: fixn>>¢
b—— choose a partition of [0, T] such that
t2 E:

T DtV CoBppg Q@ (i — B =
e —
1;:7 number of subintervals ~ 1/n

T X
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The final estimate

TEt: fixn >>¢
b gg choose a partition of [0, T] such that
tzgg AtttV + CoBr [ Q+ (s —Bi) =
f gg number of subintervals ~ 1/n
—
- 1 log(n/e
65T = o(T )l ~ O(1) - 3 - [ + 207
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The final estimate

AtttV + CoBr [ Q+ (s —Bi) =

t
L= fix n >> e
5 choose a partition of [0, T] such that
o]

number of subintervals ~ 1/n

2 1y 10900/2)

e 1
e (T, ) = u(T, ) NO(1)«5. e
If = \/zlog|log e, then

[u*(T,-) = u(T, )l = o(1) - Velloge

Fabio Ancona and Andrea Marson Convergence Rate of Glimm Scheme



The quadratic part
The cubic part
New interaction potentials Conclusion

The final estimate

t

TH—— fixp>>¢
b—— choose a partition of [0, T] such that
t2 E:

T DtV CoBppg Q@ (i — B =
o —
1;:7 number of subintervals ~ 1/n

T X

1L /090/0)
y e

[u*(T, ) = u(T, )l = O(1) -

If n = /elog|loge|, then
[u*(T,-) = u(T, )l = o(1) - Velloge

Same convergence rate, different potential:
J. Hua, Z. Jiang, T. Yang, preprint 2008
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Thank you for your attention!
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