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Overview of related results

Detection of small conductivity inclusions from the asymptotic
expansion of eigenvalue perturbations.

Determination of small perturbations of an interface from the
asymptotic expansion of the boundary voltage potential.
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Part I

The direct problem
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Small perturbations of the conducting interface

Ω ⊂ R
2 is a plane re-

gion occupied by a homoge-
neous isotropic conducting ma-
terial containing an inclusion D

strictly contained in Ω.
Let γe and γi be two positive
constants representing the con-
ductivities in Ω \ D and D re-
spectively.

Ω

D

The conducting profile in Ω is given by

γD = γeχΩ\D + γiχD ,
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The forward problem

Let u0 be the solution of the following eigenvalue problem:



















∇ · (γD∇u0) = −ω2
0u0 in Ω,

γD
∂u0

∂ν
= 0 on ∂Ω,

∫

Ω
u2
0 = 1.

Then u0 ∈ H1(Ω) and it satisfies the transmission conditions







ui
0 = ue

0

γi
∂ui

0

∂ν
= γe

∂ue
0

∂ν

on ∂D,

where
ue
0 = u0|Ω\D and ui

0 = u0|D .

Ammari, Beretta, Francini, Kang, Lim () Vibration testing Cortona 7 / 34



The forward problem

Let u0 be the solution of the following eigenvalue problem:



















∇ · (γD∇u0) = −ω2
0u0 in Ω,

γD
∂u0

∂ν
= 0 on ∂Ω,

∫

Ω
u2
0 = 1.

Then u0 ∈ H1(Ω) and it satisfies the transmission conditions







ui
0 = ue

0

γi
∂ui

0

∂ν
= γe

∂ue
0

∂ν

on ∂D,

where
ue
0 = u0|Ω\D and ui

0 = u0|D .

Ammari, Beretta, Francini, Kang, Lim () Vibration testing Cortona 7 / 34



The perturbed problem

Let Dǫ an ǫ-perturbation of the
domain D with

∂Dǫ =

{

x+ǫh(x)ν(x), x ∈ ∂D

}

,

ν(x) unit outer normal vector
to ∂D at x , h smooth function
and ǫ positive small parameter.

γD ǫ = γeχΩ\Dǫ
+ γiχDǫ

,

Ω

DD

D

ε
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The perturbed problem

Let uǫ ∈ H1(Ω) be the solution to



















∇ · (γDǫ
∇uǫ) = −ω2

ǫ uǫ in Ω,

γDǫ

∂uǫ

∂ν
= 0 on ∂Ω,

∫

Ω
u2

ǫ = 1.

Then uǫ satisfies the transmission conditions across ∂Dǫ.
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Assumptions

d(D, ∂Ω) ≥ K

∂Ω ∈ C 1,α and ∂D ∈ C 2,α

h ∈ C 1,α and ‖h‖C1,α ≤ H
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Asymptotic expansion of eigenvalue perturbation

Theorem

Let ω2
0 be a simple eigenvalue. Then, there exists ω2

ǫ such that ω2
ǫ → ω2

0

as ǫ → 0 and

ω2
ǫ − ω2

0 = −ǫ(γi − γe)
∫

∂D
h(x)

(

(

∂ue
0

∂τ (x)
)2

+ γe

γi

(

∂ue
0

∂ν (x)
)2

)

dσx

+o(ǫ)

where τ and ν are the tangential and outward normal vector to ∂D.
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Proof

Osborn result on convergence of eigenvalues of sequences of
self-adjoint collectively compact operators.

Gradient estimates for solutions of elliptic equations
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Proof

Lemma [Osborn]

Let X be a real Hilbert space and let T : X → X and Tǫ : X → X be
compact, self-adjoint linear operators such that {Tǫ}ǫ>0 are collectively
compact and Tǫ → T pointwise as ǫ → 0. Let µ0 be a nonzero simple
eigenvalue of Tand u0 the corresponding eigenfunction. Then there is an
eigenvalue µǫ of Tǫ such that µǫ → µ0 for ǫ → 0. Moreover there exists a
constant C (independent of ǫ) such that

|µ0 − µǫ− < (T − Tǫ)u0, u0 >| ≤ C ‖(T − Tǫ)u0‖
2
X

and
‖uǫ − u0‖X ≤ C ‖(T − Tǫ)u0‖X

where uǫ is an eigenfunction corresponding to µǫ.
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Proof

Let X = {f ∈ L2(Ω) :
∫

Ω f = 0} and T : X → X the linear operator given
by Tf = v0 where v0 is the solution to



















∇ · (γD∇v0) = f in Ω,

γD
∂v0

∂ν
= 0 on ∂Ω,

∫

Ω
v0 = 0.

Let Tǫ : X → X given by by Tǫf = vǫ, where vǫ is the solution to



















∇ · (γDǫ
∇vǫ) = f in Ω,

γDǫ

∂vǫ

∂ν
= 0 on ∂Ω,

∫

Ω
vǫ = 0.
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Proof

Tǫ and T are compact and self-adjoint.

{Tǫ}ǫ≥0, (T0 = T ) are collectively compact i.e.

{Tǫf : ‖f ‖X ≤ 1, ǫ ≥ 0} is sequentially compact. In fact , if
v ∈ {Tǫf : ‖f ‖X ≤ 1, ǫ ≥ 0}, then

‖v‖H1(Ω) ≤ C

where C is independent of ǫ.

Tǫ → T pointwise in X as ǫ → 0. For f ∈ X , let vǫ = Tǫ(f ) and
v0 = Tf . Then,

‖∇(vǫ − v0)‖L2(Ω) ≤ C‖∇v0‖L2(Dǫ△D).

and by the Poincaré inequality

‖vǫ − v0‖H1(Ω) ≤ C‖∇v0‖L2(Dǫ△D).

Finally, using the last inequality and the fact that |Dǫ△D| → 0 as
ǫ → 0 and that ∇v0 ∈ L2(Ω), Tǫ → T pointwise as ǫ → 0 in L2(Ω).
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‖vǫ − v0‖H1(Ω) ≤ C‖∇v0‖L2(Dǫ△D).

Finally, using the last inequality and the fact that |Dǫ△D| → 0 as
ǫ → 0 and that ∇v0 ∈ L2(Ω), Tǫ → T pointwise as ǫ → 0 in L2(Ω).

Ammari, Beretta, Francini, Kang, Lim () Vibration testing Cortona 15 / 34



Proof

Tǫ and T are compact and self-adjoint.

{Tǫ}ǫ≥0, (T0 = T ) are collectively compact i.e.

{Tǫf : ‖f ‖X ≤ 1, ǫ ≥ 0} is sequentially compact. In fact , if
v ∈ {Tǫf : ‖f ‖X ≤ 1, ǫ ≥ 0}, then

‖v‖H1(Ω) ≤ C

where C is independent of ǫ.

Tǫ → T pointwise in X as ǫ → 0. For f ∈ X , let vǫ = Tǫ(f ) and
v0 = Tf . Then,

‖∇(vǫ − v0)‖L2(Ω) ≤ C‖∇v0‖L2(Dǫ△D).

and by the Poincaré inequality
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Proof

By Osborn’s result we have that for small ǫ, there is an eigenvalue µǫ of
Tǫ such that µǫ → µ0 and

∣

∣

∣
µ0 − µǫ− < (Tǫ − T )u0, u0 >

∣

∣

∣
≤ C‖(Tǫ − T )u0‖

2
L2(Ω),

where u0 is such that Tu0 = µ0u0,
∫

Ω u2
0 = 1 and µ0 = − 1

ω2
0
.

Moreover

‖uǫ − u0‖L2(Ω) ≤ C‖(Tǫ − T )u0‖L2(Ω),

where uǫ is the eigenfunction corresponding to µǫ = − 1
ω2

ǫ

such that
∫

Ω u2
ǫ = 1.
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Proof

We are now left with estimating the terms in the formula

∣

∣

∣
µ0 − µǫ− < (Tǫ − T )u0, u0 >

∣

∣

∣
≤ C‖(Tǫ − T )u0‖

2
L2(Ω).

We have

< (T − Tǫ)u0, u0 > = < µ0u0 − ṽǫ, u0 >

= −µ0

∫

Ω
(γDǫ

− γD)∇ṽǫ · ∇u0

where ṽǫ is the solution to



















∇ · (γDǫ
∇ṽǫ) = u0 in Ω,

γDǫ

∂ṽǫ

∂ν
= 0 on ∂Ω,

∫

Ω
ṽǫ = 0.
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Proof

We now write

< (T − Tǫ)u0, u0 >= −µ0

∫

Ω
(γDǫ

− γD)∇ṽǫ · ∇u0

= −µ0

∫

Dǫ\D
(γi − γe)∇ṽ i

ǫ · ∇ue
0 + µ0

∫

D\Dǫ

(γi − γe)∇ṽ e
ǫ · ∇ui

0.

Using gradient estimates established by Li and Vogelius we have that

‖ui
0‖C1,α′ (D̄) ≤ C

and
‖ṽ i

ǫ‖C1,α′ (D̄ǫ)
≤ C

and analogous estimates hold in Ω \ D̄ and in Ω \ D̄ǫ so that we can
approximate ∇u0 and ∇ṽǫ at points inside Dǫ△D with ∇u0 and ∇ṽǫ at
points of ∂Dǫ.
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Proof

Using the transmission conditions and the fact that
‖ṽǫ − µ0u0‖H1(Ω) ≤ ǫ1/2 we get that

< (T − Tǫ)u0, u0 >=

−µ2
0ǫ(γi − γe)

∫

∂D
h(x)

(

(

∂ue
0

∂τ (x)
)2

+ γe

γi

(

∂ue
0

∂ν (x)
)2

)

dσx

Finally from a result by Capdeboscq and Vogelius we can estimate the
remainder term using

‖(Tǫ − T )u0‖
2
L2(Ω) = ‖ṽǫ − µ0u0‖

2
L2(Ω) ≤ Cǫ1+η

for some η > 0.
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Part II

The inverse problem
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Problem:

From knowledge of eigenvalues and eigenfunctions we want to determine
the perturbation ǫh
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Dual asymptotic formula

Let u0 be an eigenfunction of problem



















∇ · (γD∇u0) = −ω2
0u0 in Ω,

γD
∂u0

∂ν
= 0 on ∂Ω,

∫

Ω
u2
0 = 1.

For g ∈ L2(∂Ω) such that
∫

∂Ω gu0 = 0, let wg be the solution to



















∇ · (γD∇wg ) = −ω2
0wg in Ω,

γD

∂wg

∂ν
= g on ∂Ω,

∫

Ω
wgu0 = 1.
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Dual asymptotic formula

Multiplying the first equation by uǫ and integrating over Ω, we get from
the divergence theorem

∫

∂Ω
guǫ + ω2

0

∫

Ω
wguǫ =

∫

Ω
γD∇uǫ · ∇wg .

Since
∫

∂Ω gu0 = 0 and

ω2
ǫ

∫

Ω
wguǫ =

∫

Ω
γDǫ

∇uǫ · ∇wg ,

we obtain
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Dual asymptotic formula

∫

∂Ω
g(uǫ − u0) + (ω2

0 − ω2
ǫ )

∫

Ω
wguǫ = −

∫

Ω
(γDǫ

− γD)∇uǫ · ∇wgdx .

We now use

Gradient estimates for uǫ ad wg

The asymptotic expansion of the eigenvalues

ω2
ǫ − ω2

0 = O(ǫ)

L2 estimates for uǫ − u0

‖uǫ − u0‖L2(Ω) ≤ Cǫ
1
2
+η

for some positive η

Energy estimates and trasmission conditions
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Dual asymptotic formula

We derive

Theorem

The following asymptotic formula holds as ǫ → 0:

∫

∂Ω
g(uǫ − u0) + (ω2

0 − ω2
ǫ )

∫

Ω
wgu0

= ǫ(γi − γe)

∫

∂D

h(x)

(

∂ue
0

∂τ
(x)

∂w e
g

∂τ
(x) +

γe

γi

∂ue
0

∂ν
(x)

∂w e
g

∂ν
(x)

)

dσx

+O(ǫ1+β)

(1)

for some β > 0.
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Reconstruction algorithm

With the measurements (ω2
ǫ − ω2

0, (uǫ − u0)|∂Ω) and a finite number of
linearly independent functions g1, . . . , gL on ∂Ω satisfying

∫

∂Ω glu0dσ = 0,
define the functional J(ǫh) by

J(ǫh) :=
L

∑

l=1

∣

∣

∣

∣

∫

∂Ω
gl (uǫ − u0) + (ω2

0 − ω2
ǫ )

∫

Ω
wgl

u0

−ǫ

∫

∂D

h(x)(γi − γe)

(

∂ue
0

∂τ
(x)

∂w e
gl

∂τ
(x) +

γe

γi

∂ue
0

∂ν
(x)

∂w e
gl

∂ν
(x)

)

dσx

∣

∣

∣

∣

2

Algorithm:

Find min J(ǫh)
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Reconstruction algorithm

Advantage:

ǫ

∫

∂D

h(x)(γi − γe)

(

∂ue
0

∂τ
(x)

∂w e
gl

∂τ
(x) +

γe

γi

∂ue
0

∂ν
(x)

∂w e
gl

∂ν
(x)

)

dσx

filters less oscillations of h because of the flexibility we have in choosing
wg .
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Multiple eigenvalues

The method for reconstructing the shape deformation in the case of a
multiple eigenvalue ω2

0 is to minimize the functional J(ǫh) over ǫh where J

is given by

J(ǫh) :=
L

∑

l=1

∣

∣

∣

∣

1

m

m
∑

j=1

∫

∂Ω
gl (u

j
ǫ − u0,j) −

1

m

m
∑

j=1

(ωj
ǫ)

2 + ω2
0

−
ǫ

m

m
∑

j=1

∫

∂D

h(x)(γi − γe)

(

∂ue
0,j

∂τ
(x)

∂w e
gl

∂τ
(x) +

γe

γi

∂ue
0,j

∂ν
(x)

∂w e
gl

∂ν
(x)

) ∣

∣

∣

∣

2

where {u0,j}j=1,...,m be L2-orthonormal eigenfunctions corresponding to

ω2
0, (ωj

ǫ)2 be the associated eigenvalues and for u
j
ǫ be the associated

eigenfunction (normalized with respect to L2) such that (ωj
ǫ)2 → ω2

0 and

u
j
ǫ → u0,j as ǫ → 0 and finally g1, . . . , gL are linearly independent functions.
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Numerical experiments

Ω is the unit disk at the origin and D is the disk centered at (0,−0.2)
with radius 0.4.

We fix the conductivities:

γe = 1 and γi = k = 1.5.

To acquire data we use boundary integral methods corresponding to
the first and second eigenvalue.

The function g is of the form

gl = al + bl cos θ + cl sin(l + 1)θ + dl cos(l + 1)θ, 1 ≤ l ≤ L(= 8),

We simulate the reconstruction method for the perturbation function
h given by

h(θ) = 1 − 2 sin(jθ), j = 0, 3, 6, 9, and ǫ = 0.02, 0.04.
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Example 1

h(θ) = 1 − 2 sin(jθ), j = 0, 3, and ǫ = 0.02.

−1 0 1
−1

−0.2

1

−1 0 1
−1

−0.2

1

−1 0 1
−1

−0.2

1

−1 0 1
−1

−0.2

1

−1 0 1
−1

−0.2

1

−1 0 1
−1

−0.2

1
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Example 1

h(θ) = 1 − 2 sin(jθ), j = 6, 9, and ǫ = 0.02.
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Example 2

h(θ) = 1 − 2 sin(jθ), j = 0, 3 and ǫ = 0.04.
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Example 2

h(θ) = 1 − 2 sin(jθ), j = 6, 9, and ǫ = 0.04.
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Concluding remarks

Resolution limit of our procedure.

Resolution limit increases as the used eigenfrequency increases.
Indeed, we have showed that multi-modal measurements yield better
reconstruction than those obtained by only one pair of modal
parameters.

Extension to the elastic case.

Ammari, Beretta, Francini, Kang, Lim () Vibration testing Cortona 34 / 34


	References
	Outline
	The direct problem
	Perturbation of the conducting interface
	Assumptions

	The inverse problem
	Dual formula
	Algorithm
	Multiple eigenvalues


