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Introduction

Interactive PDE systems: composite systems of evolutionary PDEs

(thermoelastic systems, PDE models for acoustic-structure or

fluid-structure interactions, . . . )

Challenging features: they may comprise dynamics

• of different type (e.g., hyperbolic/parabolic),

• acting on manifolds of different dimensions,

• coupled by means of boundary traces.

A strong motivation for a PDE analysis: control problems

More recent contribution: analysis of some nonlinear coupled PDE

systems, within the context of dynamical systems theory  exis-

tence of global attractors, . . .
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A linear model for fluid-solid interactions

Ωf , Ωs ⊂ Rn (fluid and solid domains), Ω is the interior of Ωf ∪Ωs.

Γs := ∂Ωs (interface), Γf := ∂Ωf \ ∂Ωs

ut − div ε(u) +∇p = 0 in Ωf × (0, T )

div u = 0 in Ωf × (0, T )

wtt − div σ(w) = 0 in Ωs × (0, T )

u = 0 on Γf × (0, T )

wt = u on Γs × (0, T )

σ(w) · ν = ε(u) · ν − pν − g on Γs × (0, T )

u(0, ·) = u0 in Ωf

w(0, ·) = w0 , wt(0, ·) = w1 in Ωs .

(1)

u: velocity of the fluid, p: pressure; w: displacement of the solid.

ν: unit outward normal to Ωs

σ: elastic stress tensor; ε: strain tensor

[Lions, 1969], [Du, Gunzburger, Hou & Lee, 2003]

3



The uncontrolled problem

Applications range from naval and aerospace engineering to cell bi-

ology and biomedical engineering.

Numerical studies: Shulkes, 1992; Errate, Dasser, 1995; Esteban &

Maday, 1994; Farhat, Lesoinne & LeTallec, 1998, . . .

Existence of solutions has been explored in many papers:

San Martin, Starovoitov & Tucsnak, 2002;

Du et al., 2003;

Da Veiga, 2004; Boulakia, 2004;

Feireisl, 2003; Coutand & Shkoller, 2005;

. . .

• Barbu, Grujić, Lasiecka & Tuffaha, 2007: existence of energy-

level weak solutions (using a novel trace regularity result for

the linear elastic equation);

• Avalos & Triggiani, 2007: they show (i) well-posedness, (ii)

uniform stability properties, (iii) backward uniqueness.
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A new trace regularity result

Lemma (Barbu et al., 2007). Let (w,wt) be a solution to an elastic

wave equation defined on Ω× (0, T ),

wtt − div σ(w) = 0 ,

driven by the following data:

w(0) ∈ H1(Ωs) , wt(0) ∈ L2(Ωs) , wt|Γs ∈ L2(0, T ;H1/2(Γs)) .

Then

σ(w) · ν ∈ L2((0, T )× Γs)⊕C([0, T ), H−1/2(Γs)) .
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Weak solutions

H :=
{
u ∈ L2(Ωf) : div u = 0 , u ·ν|Γf = 0

}
, Y = H×H1(Ωs)×L2(Ωs)

V :=
{
v ∈ H1(Ωf) : div v = 0 , u|Γf = 0

}
(Note: (L2)n, (Hs)n  L2, Hs)

Definition (Weak solution). Let (u0, w0, w1) ∈ H and T > 0. We

say that a triple (u,w,wt) ∈ C([0, T ], H ×H1(Ωs)× L2(Ωs)) is a weak

solution to the PDE system (1) if

• (u(·,0), w(·,0), wt(·,0)) = (u0, w0, w1),

• u ∈ L2(0, T ;V ),

• σ(w) · ν ∈ L2(0, T ;H−1/2(Γs)), wt|Γs = u|Γs ∈ L2(0, T ;H1/2(Γs)),

and

• the following variational system holds a.e. in t ∈ (0, T ):
d
dt(u, φ)f + (ε(u), ε(φ))f + 〈σ(w) · ν + g, φ〉 = 0

d
dt(wt, ψ)s + (σ(w), ε(ψ))s − 〈σ(w) · ν, ψ〉 = 0 ,

(2)

for all test functions φ ∈ V and ψ ∈ H1(Ωs).
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Semigroup (abstract) formulation

state: y(t) := (u(t), w(t), wt(t)) ∈ Y ≡ H ×H1(Ωs)× L2(Ωs)

control: g(t) ∈ U := L2(Γs)

The PDE problem (1)  

y
′(t) = Ay(t) +Bg(t) , 0 < t ≤ T

y(0) = y0 ∈ Y

where

• A : D(A) ⊂ Y → Y is the generator of a C0-semigroup eAt on Y ,

t ≥ 0 ([Barbu et al., 2007]);

• B ∈ L(U, [D(A∗)]′); equivalently, A−1B ∈ L(U, Y ) ([Lasiecka & Tuffaha,

2008]).
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Technical details

A =

 Af AfNσ(·) · ν 0
0 0 I
0 div σ 0

 , B =

 AfN

0
0


D(A) =

{
y = (u,w, z) ∈ H : u ∈ V, Af(u+Nσ(w) ν) ∈ H, z ∈ H1(Ωs)

div σ(w) ∈ L2(Ωs), z|Γs = u|Γs
}

where

• Af : V → V ′ is defined by

(Afu, φ) = −(ε(u), ε(φ)) ∀φ ∈ V ,

• while the (Neumann) map N : L2(Γs) → H is defined as follows:

Ng = h⇔ (ε(h), ε(φ)) = 〈g, φ〉 ∀φ ∈ V .
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The linear-quadratic control problem

Cost functional:

J(g) =
∫ T

0

(
|Ry(t)|2Z + |g(t)|2U

)
dt+ |Gy(T )|2W , (3)

R ∈ L(Y, Z) , G ∈ L(Y,W )

The problem:

min
g∈L2(0,T ;U)

J(g) , where y solves

y
′ = Ay+Bg

y(0) = y0 .

One needs to explore the properties satisfied by ‘the couple’ (A,B):

the regularity of the operator eAtB (equivalently, of B∗eA
∗t) plays

a key role.

The application of abstract theories calls for a deep regularity analysis

of a dual (uncontrolled) PDE problem.
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Solvability of the optimal control problem

Y−α := H ×H1−α(Ωs)×H−α(Ωs), 0 < α < 1
4

Theorem (Lasiecka & Tuffaha, Preprint 2008). The semigroup eAt

and the control operator B arising from the PDE problem (1) satisfy

the following singular estimate: there exists a constant C such that

|eAtBg|Y−α ≤
C

t1/4+ε
|g|L2(Γs)

, 0 < t ≤ T . (4)

Critical consequence: In view of (4), when G ≡ 0 the theory developed

in [Avalos & Lasiecka, 1996], [Lasiecka & Triggiani, 2004] applies,

provided that

R ∈ L(Y−α, Z) ; (5)

for the Bolza problem, i.e. when G 6= 0, one needs both

R ∈ L(Y−α, Z) , G ∈ L(Y−α,W )

[Lasiecka & Tuffaha, 2008].
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Then, one has, in particular ([Lasiecka & Triggiani, 2004], [Lasiecka

& Tuffaha, 2008]),

(i) the feedback synthesis of the optimal control:

ĝ(t) = −B∗P (t) ŷ(t) , 0 ≤ t < T ;

(ii) the operator P (t) solves the Differential Riccati Equation

d
dt(P (t)x, z)Y + (P (t)x,Az)Y + (P (t)Ax, z)Y + (Rx,Rz)Y

−(B∗P (t)x,B∗P (t)z)U = 0 ∀x, z ∈ D(A) , t ∈ [0, T ) ;

(iii) the operator B∗P (t) is bounded: Y → U , 0 ≤ t < T .



Let us observe that the functional

J(g) =
∫ T

0

(
|R1u(t)|20,Ωf

+ |g(t)|20,Γs
)
dt+ |u(T )|20,Ωf

,

is allowed, with any R1 ∈ L(L2(Ωf)), while

J(g) =
∫ T

0

(
|u(t)|20,Ωf

+ (σ(w(t)), ε(w(t)))s + |wt(t)|20,Ωs︸ ︷︷ ︸
E(t)

+|g(t)|20,Γs
)
dt

is not allowed.

Our goal: (G ≡ 0) to remove the assumption (5) on R, yet showing

well-posedness of Riccati equations.
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Question: does the couple (A,B) satisfy the following conditions?

Assumptions (Acquistapace, B. & Lasiecka, 2005). For each t ∈
[0, T ], the operator B∗eA

∗t can be represented as

B∗eA
∗tx = F (t)x+G(t)x, t ≥ 0, x ∈ D(A∗), (6)

where F (t) : Y → U , t > 0, and G(t) : D(A∗) → U are bounded linear
operators satisfying the following assumptions:

(i) there exists a constant γ ∈ (1
2,1) such that

‖F (t)‖L(Y,U) ≤
cT
tγ

∀t ∈ (0, T );

(ii) the operator G(·) belongs to L(Y, Lp(0, T ;U)) for all p ∈ [1,∞),
with

‖G(·)‖L(Y,Lp(0,T ;U)) ≤ cp <∞ ∀p ∈ [1,∞);

(iii) there is an ε > 0 such that:

(a) the operator G(·)A∗−ε belongs to L(Y,C([0, T ], U)), and in par-
ticular

‖A−εG(t)∗‖L(U,Y ) ≤ c <∞ ∀t ∈ [0, T ] ;
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(b) there exists q ∈ (1,2) (which, in general, will depend on ε) such

that the operator B∗eA
∗·R∗RAε has an extension which belongs

to L(Y, Lq(0, T ;U)).

If so, we shall assume that the observation operator R is such that

(c) the operator R∗R belongs to L(D(Aε),D(A∗ε)), i.e.

‖A∗εR∗RA−ε‖L(Y ) ≤ c <∞ .

Remarks:

• Assumption (iii)(c) just requires that the observation operator

‘maintains’ regularity (for instance, it allows R = I);

• Under assumption (iii)(c), condition (iii)(b) holds true if there

exists q ∈ (1,2) such that the operator B∗eA
∗·A∗ε has an extension

which belongs to L(Y, Lq(0, T ;U)).



The PDE counterpart

Regularity of the (unbounded) operator B∗eA
∗·  regularity of u|Γs

Regularity of the operator B∗eA
∗·A∗ε  regularity of ut|Γs
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The corresponding Riccati theory (in short)

Under the listed assumptions, [Acquistapace, B. & Lasiecka, 2005]

establishes the existence of a unique optimal pair {ŷ(·), ĝ(·)}, along

with several properties. In particular,

(i) For each y0 ∈ Y the optimal pair {ŷ, ĝ} satisfies

ŷ(·) ∈ C([0, T ], Y ) , ĝ(·) ∈
⋂

1≤p<∞
Lp(0, T ;U) .

(ii) The gain operator B∗P (t) is bounded: D(Aε) → C([0, T ], U)), and

the feedback synthesis of the optimal control holds:

ĝ(t) = −B∗P (t) ŷ(t) , 0 ≤ t ≤ T .

(iii) The operator P (t), which is selfadjoint and positive, solves the

Differential Riccati Equation

d
dt(P (t)x, z)Y + (P (t)x,Az)Y + (P (t)Ax, z)Y + (Rx,Rz)Y

−(B∗P (t)x,B∗P (t)z)U = 0 ∀x, z ∈ D(A) , t ∈ [0, T ) .
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The corresponding Riccati theory

Theorem (Acquistapace, B. & Lasiecka, 2005). Under the listed as-
sumptions, the following statements are valid.

• For each x ∈ Y the optimal pair (ĝ(·, s;x), ŷ(·, s;x)) satisfies

ŷ(·, s;x) ∈ C([s, T ], Y ), ĝ(·, s;x) ∈
⋂

1≤p<∞
Lp(s, T ;U).

• The operator Φ(t, s)) ∈ L(Y ) defined by

Φ(t, s)x = ŷ(t, s;x) = eA(t−s)x+ [Lsĝ(·, s;x)](t) , s ≤ t ≤ T , x ∈ Y ,
(7)

is an evolution operator, i.e.

Φ(t, t) = IY , Φ(t, s) = Φ(t, τ)Φ(τ, s) for s ≤ τ ≤ t ≤ T .

• For each t ∈ [0, T ] the operator P (t) ∈ L(Y ) defined by

P (t)x =
∫ T

t
eA

∗(τ−t)R∗RΦ(τ, t)x dτ , x ∈ Y ,

is self-adjoint and positive; it belongs to L(Y,C([0, T ], Y )) and is
such that

(P (s)x, x)Y = Js(ĝ(·, s;x), ŷ(·, s;x)) ∀s ∈ [0, T ] .
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• The gain operator B∗P (t) belongs to L(D(Aε), C([0, T ], U)) and

the optimal pair satisfies, for s ≤ t ≤ T ,

ĝ(t, s;x) = −B∗P (t)ŷ(t, s;x) ∀x ∈ Y .

• The operator Φ(t, s) defined by (7) satisfies, for s < t ≤ T ,

∂Φ

∂s
(t, s)x = −Φ(t, s)(A−BB∗P (t))x ∈ L

1
γ(s, T ; [D(A∗ε)]′)

for all x ∈ D(A), and

∂Φ

∂t
(t, s)x = (A−BB∗P (t))Φ(t, s)x ∈ C([s, T ], [D(A∗)]′)

for all x ∈ D(Aε).

• The operator P (t) satisfies the following Differential Riccati Equa-

tion on [0, T ):

( ddtP (t)x, y)Y + (P (t)x,Ay)Y + (P (t)Ax, y)Y

+(R∗Rx, y)Y − (B∗P (t)x,B∗P (t)y)Y = 0 ∀x, y ∈ D(A).



The trace regularity results

Theorem (B. & Lasiecka). Consider the PDE system (1) with g ≡ 0.
Let y(t) = (u(t), w(t), wt(t)) be the solution corresponding to an initial
datum y0 = (u0, w0, w1). The fluid component u admits a splitting
u(t) = u1(t) + u2(t), and the following statements pertain to the
regularity of the traces of u1, u2 and ut on Γs, respectively.

(i) The component u1 satisfies a pointwise (in time) “singular esti-
mate”, namely there exists a positive constant CT such that

|u1(t)|Γs|L2(Γs)
≤

CT

t1/4+δ
|y0|Y ∀y0 ∈ Y , ∀t ∈ (0, T ]

(for arbitrarily small δ > 0).

(ii) The component u2 satisfies the following regularity:

(iia) if y0 ∈ Y , then u2|Γs ∈ Lp(0, T ;L2(Γs)) for all (finite) p ≥ 1;

(iib) if y0 ∈ D(Aε), ε ∈ (0, 14), then u2|Γs ∈ C([0, T ], L2(Γs)).

(iii) Let now y0 ∈ D(A1−ε), with ε ∈ (0, 14). Then, the fluid compo-
nent u of the corresponding solution satisfies, with q ∈ (1,2),

ut|Γs ∈ Lq(0, T ;L2(Γs)) . (8)
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Remarks about the result

1. The trace regularity results do not follow from the interior reg-

ularity.

2. The proof exploits

• the parabolic regularity of the fluid component,

• sharp trace results pertaining to the ‘solid’ component obtained

(by using microlocal analysis arguments) in [Barbu et al., 2007]

and [Lasiecka & Tuffaha, 2008],

and utilizes interpolation techniques.
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The ‘source of inspiration’

A boundary control problem for a system of thermoelastic plate equa-

tions:

Ω ⊂ R2, Γ = ∂Ω smooth



wtt − ρ∆wtt + ∆2w+ ∆θ = 0 in (0, T ]×Ω

θt −∆θ −∆wt = 0 in (0, T ]×Ω

w = ∂w
∂ν = 0 (clamped B.C.) on (0, T ]× Γ

θ = g (Dirichlet boundary control) on (0, T ]× Γ

w(0, ·) = w0, wt(0, ·) = w1; θ(0, ·) = θ0 in Ω .

[B. & Lasiecka, 2004], [Acquistapace, B. & Lasiecka, 2005]
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