Optimal control and regularity of boundary traces for some interactive PDE systems

Francesca Bucci
Università degli Studi di Firenze, Italy

Based on joint work with Irena Lasiecka (University of Virginia)
"Direct, Inverse and Control Problems for PDE's" (DICOP 2008)
Cortona, September 22-26, 2008

Introduction

Interactive PDE systems: composite systems of evolutionary PDEs (thermoelastic systems, PDE models for acoustic-structure or fluid-structure interactions, ...)

Challenging features: they may comprise dynamics

- of different type (e.g., hyperbolic/parabolic),
- acting on manifolds of different dimensions,
- coupled by means of boundary traces.

A strong motivation for a PDE analysis: control problems

More recent contribution: analysis of some nonlinear coupled PDE systems, within the context of dynamical systems theory \rightsquigarrow existence of global attractors, . . .

A linear model for fluid-solid interactions

$\Omega_{f}, \Omega_{s} \subset \mathbb{R}^{n}$ (fluid and solid domains), Ω is the interior of $\bar{\Omega}_{f} \cup \bar{\Omega}_{s}$. $\Gamma_{s}:=\partial \Omega_{s}$ (interface), $\Gamma_{f}:=\partial \Omega_{f} \backslash \partial \Omega_{s}$

$$
\begin{cases}u_{t}-\operatorname{div} \epsilon(u)+\nabla p=0 & \text { in } \Omega_{f} \times(0, T) \tag{1}\\ \operatorname{div} u=0 & \text { in } \Omega_{f} \times(0, T) \\ w_{t t}-\operatorname{div} \sigma(w)=0 & \text { in } \Omega_{s} \times(0, T) \\ u=0 & \text { on } \Gamma_{f} \times(0, T) \\ w_{t}=u & \text { on } \Gamma_{s} \times(0, T) \\ \sigma(w) \cdot \nu=\epsilon(u) \cdot \nu-p \nu-g & \text { on } \Gamma_{s} \times(0, T) \\ u(0, \cdot)=u_{0} & \text { in } \Omega_{f} \\ w(0, \cdot)=w_{0}, w_{t}(0, \cdot)=w_{1} & \text { in } \Omega_{s} .\end{cases}
$$

u : velocity of the fluid, p : pressure; w : displacement of the solid.
ν : unit outward normal to Ω_{s}
σ : elastic stress tensor; ϵ : strain tensor
[Lions, 1969], [Du, Gunzburger, Hou \& Lee, 2003]

The uncontrolled problem

Applications range from naval and aerospace engineering to cell biology and biomedical engineering.

Numerical studies: Shulkes, 1992; Errate, Dasser, 1995; Esteban \& Maday, 1994; Farhat, Lesoinne \& LeTallec, 1998, ...

Existence of solutions has been explored in many papers:
San Martin, Starovoitov \& Tucsnak, 2002;
Du et al., 2003;
Da Veiga, 2004; Boulakia, 2004;
Feireisl, 2003; Coutand \& Shkoller, 2005;

- Barbu, Grujić, Lasiecka \& Tuffaha, 2007: existence of energylevel weak solutions (using a novel trace regularity result for the linear elastic equation);
- Avalos \& Triggiani, 2007: they show (i) well-posedness, (ii) uniform stability properties, (iii) backward uniqueness.

A new trace regularity result

Lemma (Barbu et al., 2007). Let $\left(w, w_{t}\right)$ be a solution to an elastic wave equation defined on $\Omega \times(0, T)$,

$$
w_{t t}-\operatorname{div} \sigma(w)=0
$$

driven by the following data:

$$
w(0) \in H^{1}\left(\Omega_{s}\right), \quad w_{t}(0) \in L_{2}\left(\Omega_{s}\right),\left.\quad w_{t}\right|_{\Gamma_{s}} \in L_{2}\left(0, T ; H^{1 / 2}\left(\Gamma_{s}\right)\right)
$$

Then

$$
\sigma(w) \cdot \nu \in L_{2}\left((0, T) \times \Gamma_{s}\right) \oplus C\left([0, T), H^{-1 / 2}\left(\Gamma_{s}\right)\right)
$$

Weak solutions

$$
\begin{aligned}
H & :=\left\{u \in L_{2}\left(\Omega_{f}\right): \operatorname{div} u=0,\left.u \cdot \nu\right|_{\Gamma_{f}}=0\right\}, Y=H \times H^{1}\left(\Omega_{s}\right) \times L_{2}\left(\Omega_{s}\right) \\
V & :=\left\{v \in H^{1}\left(\Omega_{f}\right): \operatorname{div} v=0,\left.u\right|_{\Gamma_{f}}=0\right\}\left(\text { Note: }\left(L_{2}\right)^{n},\left(H^{s}\right)^{n} \rightsquigarrow L_{2}, H^{s}\right)
\end{aligned}
$$

Definition (Weak solution). Let $\left(u_{0}, w_{0}, w_{1}\right) \in H$ and $T>0$. We say that a triple $\left(u, w, w_{t}\right) \in C\left([0, T], H \times H^{1}\left(\Omega_{s}\right) \times L_{2}\left(\Omega_{s}\right)\right)$ is a weak solution to the PDE system (1) if

- $\left(u(\cdot, 0), w(\cdot, 0), w_{t}(\cdot, 0)\right)=\left(u_{0}, w_{0}, w_{1}\right)$,
- $u \in L_{2}(0, T ; V)$,
- $\sigma(w) \cdot \nu \in L_{2}\left(0, T ; H^{-1 / 2}\left(\Gamma_{s}\right)\right),\left.w_{t}\right|_{\Gamma_{s}}=\left.u\right|_{\Gamma_{s}} \in L_{2}\left(0, T ; H^{1 / 2}\left(\Gamma_{s}\right)\right)$, and
- the following variational system holds a.e. in $t \in(0, T)$:

$$
\left\{\begin{array}{l}
\frac{d}{d t}(u, \phi)_{f}+(\epsilon(u), \epsilon(\phi))_{f}+\langle\sigma(w) \cdot \nu+g, \phi\rangle=0 \tag{2}\\
\frac{d}{d t}\left(w_{t}, \psi\right)_{s}+(\sigma(w), \epsilon(\psi))_{s}-\langle\sigma(w) \cdot \nu, \psi\rangle=0
\end{array}\right.
$$

for all test functions $\phi \in V$ and $\psi \in H^{1}\left(\Omega_{s}\right)$.

Semigroup (abstract) formulation

state: $y(t):=\left(u(t), w(t), w_{t}(t)\right) \in Y \equiv H \times H^{1}\left(\Omega_{s}\right) \times L_{2}\left(\Omega_{s}\right)$
control: $g(t) \in U:=L_{2}\left(\Gamma_{s}\right)$

The PDE problem (1) $\rightsquigarrow\left\{\begin{array}{l}y^{\prime}(t)=A y(t)+B g(t), \quad 0<t \leq T \\ y(0)=y_{0} \in Y\end{array}\right.$
where

- $A: D(A) \subset Y \rightarrow Y$ is the generator of a C_{0}-semigroup $e^{A t}$ on Y, $t \geq 0$ ([Barbu et al., 2007]);
- $B \in \mathcal{L}\left(U,\left[\mathcal{D}\left(A^{*}\right)\right]^{\prime}\right)$; equivalently, $A^{-1} B \in \mathcal{L}(U, Y)$ ([Lasiecka \& Tuffaha, 2008]).

Technical details

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
A_{f} & A_{f} N \sigma(\cdot) \cdot \nu & 0 \\
0 & 0 & I \\
0 & \operatorname{div} \sigma & 0
\end{array}\right), \quad B=\left(\begin{array}{c}
A_{f} N \\
0 \\
0
\end{array}\right) \\
& \mathcal{D}(A)=\left\{y=(u, w, z) \in H: u \in V, A_{f}(u+N \sigma(w) \nu) \in H, z \in H^{1}\left(\Omega_{s}\right)\right. \\
&\left.\operatorname{div} \sigma(w) \in L_{2}\left(\Omega_{s}\right),\left.z\right|_{\Gamma_{s}}=\left.u\right|_{\Gamma_{s}}\right\} \\
& \text { where }
\end{aligned}
$$

- $A_{f}: V \rightarrow V^{\prime}$ is defined by

$$
\left(A_{f} u, \phi\right)=-(\epsilon(u), \epsilon(\phi)) \quad \forall \phi \in V
$$

- while the (Neumann) map $N: L_{2}\left(\Gamma_{s}\right) \rightarrow H$ is defined as follows:

$$
N g=h \Leftrightarrow(\epsilon(h), \epsilon(\phi))=\langle g, \phi\rangle \quad \forall \phi \in V
$$

The linear-quadratic control problem

Cost functional:

$$
\begin{equation*}
J(g)=\int_{0}^{T}\left(|R y(t)|_{Z}^{2}+|g(t)|_{U}^{2}\right) d t+|G y(T)|_{W}^{2} \tag{3}
\end{equation*}
$$

$$
R \in \mathcal{L}(Y, Z), G \in \mathcal{L}(Y, W)
$$

The problem:

$$
\min _{g \in L_{2}(0, T ; U)} J(g), \quad \text { where } y \text { solves } \quad\left\{\begin{array}{l}
y^{\prime}=A y+B g \\
y(0)=y_{0}
\end{array}\right.
$$

One needs to explore the properties satisfied by 'the couple' (A, B) : the regularity of the operator $e^{A t} B$ (equivalently, of $B^{*} e^{A^{*} t}$) plays a key role.

The application of abstract theories calls for a deep regularity analysis of a dual (uncontrolled) PDE problem.

Solvability of the optimal control problem

$Y_{-\alpha}:=H \times H^{1-\alpha}\left(\Omega_{s}\right) \times H^{-\alpha}\left(\Omega_{s}\right), \quad 0<\alpha<\frac{1}{4}$
Theorem (Lasiecka \& Tuffaha, Preprint 2008). The semigroup $e^{A t}$ and the control operator B arising from the PDE problem (1) satisfy the following singular estimate: there exists a constant C such that

$$
\begin{equation*}
\left|e^{A t} B g\right|_{Y_{-\alpha}} \leq \frac{C}{t^{1 / 4+\epsilon}}|g|_{L_{2}\left(\Gamma_{s}\right)}, \quad 0<t \leq T \tag{4}
\end{equation*}
$$

Critical consequence: In view of (4), when $G \equiv 0$ the theory developed in [Avalos \& Lasiecka, 1996], [Lasiecka \& Triggiani, 2004] applies, provided that

$$
\begin{equation*}
R \in \mathcal{L}\left(Y_{-\alpha}, Z\right) \tag{5}
\end{equation*}
$$

for the Bolza problem, i.e. when $G \neq 0$, one needs both

$$
R \in \mathcal{L}\left(Y_{-\alpha}, Z\right), \quad G \in \mathcal{L}\left(Y_{-\alpha}, W\right)
$$

[Lasiecka \& Tuffaha, 2008].

Then, one has, in particular ([Lasiecka \& Triggiani, 2004], [Lasiecka \& Tuffaha, 2008]),
(i) the feedback synthesis of the optimal control:

$$
\widehat{g}(t)=-B^{*} P(t) \widehat{y}(t), \quad 0 \leq t<T
$$

(ii) the operator $P(t)$ solves the Differential Riccati Equation

$$
\begin{aligned}
& \frac{d}{d t}(P(t) x, z)_{Y}+(P(t) x, A z)_{Y}+(P(t) A x, z)_{Y}+(R x, R z)_{Y} \\
&-\left(B^{*} P(t) x, B^{*} P(t) z\right)_{U}=0 \quad \forall x, z \in \mathcal{D}(A), t \in[0, T) ;
\end{aligned}
$$

(iii) the operator $B^{*} P(t)$ is bounded: $Y \rightarrow U, 0 \leq t<T$.

Let us observe that the functional

$$
J(g)=\int_{0}^{T}\left(\left|R_{1} u(t)\right|_{0, \Omega_{f}}^{2}+|g(t)|_{0, \Gamma_{s}}^{2}\right) d t+|u(T)|_{0, \Omega_{f}}^{2}
$$

is allowed, with any $R_{1} \in \mathcal{L}\left(L_{2}\left(\Omega_{f}\right)\right)$, while

$$
J(g)=\int_{0}^{T}(\underbrace{|u(t)|_{0, \Omega_{f}}^{2}+(\sigma(w(t)), \epsilon(w(t)))_{s}+\left|w_{t}(t)\right|_{0, \Omega_{s}}^{2}}_{E(t)}+|g(t)|_{0, \Gamma_{s}}^{2}) d t
$$

is not allowed.

Our goal: $(G \equiv 0)$ to remove the assumption (5) on R, yet showing well-posedness of Riccati equations.

Question: does the couple (A, B) satisfy the following conditions?
Assumptions (Acquistapace, B. \& Lasiecka, 2005). For each $t \in$ $[0, T]$, the operator $B^{*} e^{A^{*} t}$ can be represented as

$$
\begin{equation*}
B^{*} e^{A^{*} t} x=F(t) x+G(t) x, \quad t \geq 0, \quad x \in \mathcal{D}\left(A^{*}\right), \tag{6}
\end{equation*}
$$

where $F(t): Y \rightarrow U, t>0$, and $G(t): \mathcal{D}\left(A^{*}\right) \rightarrow U$ are bounded linear operators satisfying the following assumptions:
(i) there exists a constant $\gamma \in\left(\frac{1}{2}, 1\right)$ such that

$$
\|F(t)\|_{\mathcal{L}(Y, U)} \leq \frac{c_{T}}{t^{\gamma}} \quad \forall t \in(0, T) ;
$$

(ii) the operator $G(\cdot)$ belongs to $\mathcal{L}\left(Y, L^{p}(0, T ; U)\right)$ for all $p \in[1, \infty)$, with

$$
\|G(\cdot)\|_{\mathcal{L}\left(Y, L^{p}(0, T ; U)\right)} \leq c_{p}<\infty \quad \forall p \in[1, \infty) ;
$$

(iii) there is an $\epsilon>0$ such that:
(a) the operator $G(\cdot) A^{*-\epsilon}$ belongs to $\mathcal{L}(Y, C([0, T], U))$, and in particular

$$
\left\|A^{-\epsilon} G(t)^{*}\right\|_{\mathcal{L}(U, Y)} \leq c<\infty \quad \forall t \in[0, T] ;
$$

(b) there exists $q \in(1,2)$ (which, in general, will depend on ϵ) such that the operator $B^{*} e^{A^{*}} \cdot R^{*} R A^{\epsilon}$ has an extension which belongs to $\mathcal{L}\left(Y, L^{q}(0, T ; U)\right)$.

If so, we shall assume that the observation operator R is such that
(c) the operator $R^{*} R$ belongs to $\mathcal{L}\left(\mathcal{D}\left(A^{\epsilon}\right), \mathcal{D}\left(A^{* \epsilon}\right)\right)$, i.e.

$$
\left\|A^{* \epsilon} R^{*} R A^{-\epsilon}\right\|_{\mathcal{L}(Y)} \leq c<\infty .
$$

Remarks:

- Assumption (iii)(c) just requires that the observation operator 'maintains' regularity (for instance, it allows $R=I$);
- Under assumption (iii) (c), condition (iii)(b) holds true if there exists $q \in(1,2)$ such that the operator $B^{*} e^{A^{*}} A^{* \epsilon}$ has an extension which belongs to $\mathcal{L}\left(Y, L^{q}(0, T ; U)\right)$.

The PDE counterpart

Regularity of the (unbounded) operator $B^{*} e^{A^{*}} \rightsquigarrow$ regularity of $\left.u\right|_{\Gamma_{s}}$

Regularity of the operator $B^{*} e^{A^{*}} . A^{* \epsilon} \rightsquigarrow$ regularity of $\left.u_{t}\right|_{\Gamma_{s}}$

Under the listed assumptions, [Acquistapace, B. \& Lasiecka, 2005] establishes the existence of a unique optimal pair $\{\widehat{y}(\cdot), \widehat{g}(\cdot)\}$, along with several properties. In particular,
(i) For each $y_{0} \in Y$ the optimal pair $\{\hat{y}, \hat{g}\}$ satisfies

$$
\widehat{y}(\cdot) \in C([0, T], Y), \quad \widehat{g}(\cdot) \in \bigcap_{1 \leq p<\infty} L^{p}(0, T ; U)
$$

(ii) The gain operator $B^{*} P(t)$ is bounded: $\left.\mathcal{D}\left(A^{\epsilon}\right) \rightarrow C([0, T], U)\right)$, and the feedback synthesis of the optimal control holds:

$$
\widehat{g}(t)=-B^{*} P(t) \widehat{y}(t), \quad 0 \leq t \leq T
$$

(iii) The operator $P(t)$, which is selfadjoint and positive, solves the Differential Riccati Equation

$$
\begin{aligned}
& \frac{d}{d t}(P(t) x, z)_{Y}+(P(t) x, A z)_{Y}+(P(t) A x, z)_{Y}+(R x, R z)_{Y} \\
&-\left(B^{*} P(t) x, B^{*} P(t) z\right)_{U}=0 \quad \forall x, z \in \mathcal{D}(A), t \in[0, T)
\end{aligned}
$$

The corresponding Riccati theory

Theorem (Acquistapace, B. \& Lasiecka, 2005). Under the listed assumptions, the following statements are valid.

- For each $x \in Y$ the optimal pair $(\hat{g}(\cdot, s ; x), \widehat{y}(\cdot, s ; x))$ satisfies

$$
\widehat{y}(\cdot, s ; x) \in C([s, T], Y), \quad \widehat{g}(\cdot, s ; x) \in \bigcap_{1 \leq p<\infty} L^{p}(s, T ; U) .
$$

- The operator $\Phi(t, s)) \in \mathcal{L}(Y)$ defined by

$$
\begin{equation*}
\Phi(t, s) x=\widehat{y}(t, s ; x)=e^{A(t-s)} x+\left[L_{s} \widehat{g}(\cdot, s ; x)\right](t), s \leq t \leq T, x \in Y \tag{7}
\end{equation*}
$$

is an evolution operator, i.e.

$$
\Phi(t, t)=I_{Y}, \quad \Phi(t, s)=\Phi(t, \tau) \Phi(\tau, s) \quad \text { for } s \leq \tau \leq t \leq T
$$

- For each $t \in[0, T]$ the operator $P(t) \in \mathcal{L}(Y)$ defined by

$$
P(t) x=\int_{t}^{T} e^{A^{*}(\tau-t)} R^{*} R \Phi(\tau, t) x d \tau, \quad x \in Y
$$

is self-adjoint and positive; it belongs to $\mathcal{L}(Y, C([0, T], Y))$ and is such that

$$
(P(s) x, x)_{Y}=J_{s}(\widehat{g}(\cdot, s ; x), \widehat{y}(\cdot, s ; x)) \quad \forall s \in[0, T] .
$$

- The gain operator $B^{*} P(t)$ belongs to $\mathcal{L}\left(\mathcal{D}\left(A^{\epsilon}\right), C([0, T], U)\right)$ and the optimal pair satisfies, for $s \leq t \leq T$,

$$
\hat{g}(t, s ; x)=-B^{*} P(t) \widehat{y}(t, s ; x) \quad \forall x \in Y
$$

- The operator $\Phi(t, s)$ defined by (7) satisfies, for $s<t \leq T$,

$$
\frac{\partial \Phi}{\partial s}(t, s) x=-\Phi(t, s)\left(A-B B^{*} P(t)\right) x \in L^{\frac{1}{\gamma}}\left(s, T ;\left[\mathcal{D}\left(A^{* \epsilon}\right)\right]^{\prime}\right)
$$

for all $x \in \mathcal{D}(A)$, and

$$
\frac{\partial \Phi}{\partial t}(t, s) x=\left(A-B B^{*} P(t)\right) \Phi(t, s) x \in C\left([s, T],\left[\mathcal{D}\left(A^{*}\right)\right]^{\prime}\right)
$$

for all $x \in \mathcal{D}\left(A^{\epsilon}\right)$.

- The operator $P(t)$ satisfies the following Differential Riccati Equation on $[0, T)$:

$$
\begin{aligned}
& \left(\frac{d}{d t} P(t) x, y\right)_{Y}+(P(t) x, A y)_{Y}+(P(t) A x, y)_{Y} \\
& \quad+\left(R^{*} R x, y\right)_{Y}-\left(B^{*} P(t) x, B^{*} P(t) y\right)_{Y}=0 \quad \forall x, y \in \mathcal{D}(A)
\end{aligned}
$$

The trace regularity results

Theorem (B. \& Lasiecka). Consider the PDE system (1) with $g \equiv 0$. Let $y(t)=\left(u(t), w(t), w_{t}(t)\right)$ be the solution corresponding to an initial datum $y_{0}=\left(u_{0}, w_{0}, w_{1}\right)$. The fluid component u admits a splitting $u(t)=u_{1}(t)+u_{2}(t)$, and the following statements pertain to the regularity of the traces of u_{1}, u_{2} and u_{t} on Γ_{s}, respectively.
(i) The component u_{1} satisfies a pointwise (in time) "singular estimate", namely there exists a positive constant C_{T} such that

$$
\left.\left|u_{1}(t)\right|_{\Gamma_{s}}\right|_{L_{2}\left(\Gamma_{s}\right)} \leq \frac{C_{T}}{t^{1 / 4+\delta}}\left|y_{0}\right|_{Y} \quad \forall y_{0} \in Y, \quad \forall t \in(0, T]
$$

(for arbitrarily small $\delta>0$).
(ii) The component u_{2} satisfies the following regularity:
(iia) if $y_{0} \in Y$, then $\left.u_{2}\right|_{\Gamma_{s}} \in L_{p}\left(0, T ; L_{2}\left(\Gamma_{s}\right)\right)$ for all (finite) $p \geq 1$; (iib) if $y_{0} \in \mathcal{D}\left(A^{\epsilon}\right), \epsilon \in\left(0, \frac{1}{4}\right)$, then $\left.u_{2}\right|_{\Gamma_{s}} \in C\left([0, T], L_{2}\left(\Gamma_{s}\right)\right)$.
(iii) Let now $y_{0} \in \mathcal{D}\left(A^{1-\epsilon}\right)$, with $\epsilon \in\left(0, \frac{1}{4}\right)$. Then, the fluid component u of the corresponding solution satisfies, with $q \in(1,2)$,

$$
\begin{equation*}
\left.u_{t}\right|_{\Gamma_{s}} \in L_{q}\left(0, T ; L_{2}\left(\Gamma_{s}\right)\right) . \tag{8}
\end{equation*}
$$

Remarks about the result

1. The trace regularity results do not follow from the interior regularity.
2. The proof exploits

- the parabolic regularity of the fluid component,
- sharp trace results pertaining to the 'solid' component obtained (by using microlocal analysis arguments) in [Barbu et al., 2007] and [Lasiecka \& Tuffaha, 2008], and utilizes interpolation techniques.

The 'source of inspiration'

A boundary control problem for a system of thermoelastic plate equations:
$\Omega \subset \mathbb{R}^{2}, \Gamma=\partial \Omega$ smooth

$$
\begin{cases}w_{t t}-\rho \Delta w_{t t}+\Delta^{2} w+\Delta \theta=0 & \text { in }(0, T] \times \Omega \\ \theta_{t}-\Delta \theta-\Delta w_{t}=0 & \text { in }(0, T] \times \Omega \\ w=\frac{\partial w}{\partial \nu}=0 \quad \text { (clamped B.C.) } & \text { on }(0, T] \times \Gamma \\ \theta=g \quad \text { (Dirichlet boundary control) } & \text { on }(0, T] \times \Gamma \\ w(0, \cdot)=w^{0}, w_{t}(0, \cdot)=w^{1} ; \quad \theta(0, \cdot)=\theta^{0} & \text { in } \Omega .\end{cases}
$$

[B. \& Lasiecka, 2004], [Acquistapace, B. \& Lasiecka, 2005]

