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The classical initial boundary value problem related with

the differential system of viscoelasticity is given in the

domain Q = Ω× (0,∞) by

∂2

∂t2
u(x, t) = ∇ ·G0∇u(x, t) (1)

+∇ ·
∫ ∞

0
Ġ(x, s)∇ut(x, s)ds+ f(x, t),

where u is the displacement, ∇ut(x, s) = ∇u(x, t − s) is

the history of the strain ∇u and Ġ(x, ·) ∈ H1(0,∞).

To this equation we must associate the initial conditions

u(x,0) = u0(x), u̇(x,0) = u̇0(x), ∀x ∈ Ω, (2)

ut=0(x, s) = u0(x, s) ∀ (x, s) ∈ Ω× (0,∞) (3)



together with the boundary conditions, which, for exam-

ple, can be expressed by

u(x, t)|∂Ω = 0 (4)

It is easy to show that the equation (1) can be written

in the form

∂2

∂t2
u(x, t) = ∇ ·

[
G0(x)∇u(x, t) +

∫ t
0

Ġ(x, s)∇ut(x, s)ds
]

+∇ ·
∫ ∞
t

Ġ(x, s)∇ut(x, s)ds+ f(x, t)

= ∇ ·
[
G0(x)∇u(x, t) +

∫ t
0

Ġ(x, s)∇ut(x, s)ds
]

+∇ · F(x, t) + f(x, t) (5)



where we have put

F(x, t) =
∫ ∞
t

Ġ(x, s)∇ut(x, s)ds

=
∫ ∞

0
Ġ(x, t+ s)∇u0(x, s)ds. (6)

For the problem (5), the initial condition is

u(x,0) = u0(x), u̇(x,0) = u̇0(x), ∀x ∈ Ω, (7)

It is evident, by virtue of (6), that two different initial

histories u0
1(x, s) and u0

2(x, s) yield the same solution if

∀τ ∈ [0,∞)∫ ∞
0

Ġ(τ + s)∇u0
1(s)ds =

∫ ∞
0

Ġ(τ + s)∇u0
2(s)ds, (8)

because they provide the same quantity F(x, t).



Therefore, we arrive at the notion of equivalence be-
tween initial histories, which can be characterized by the
condition (8).

Consequently, it clearly appears that these different his-
tories must be considered as a unique state for the vis-
coelastic material.

The concept of equivalence among states was introduced
by Noll in his axiomatic formulation of continuum me-
chanics W.Noll, Arch. Rational Mech. Anal. (1972), on
the ground of considerations related to the definition of
material, considered as a dynamic system.

In Noll’s theory, in particular, denoting by P : [0, dP ) →
Sym a process of duration dP , defined by P (τ) = ∇u̇P (τ)



∀τ ∈ [0, dP ), two states σ1 and σ2 are equivalent if for
any process P the response of the material, represented
by the stress tensor T, is such that

T(σ1 ∗ P ) = T(σ2 ∗ P ), (9)

where (σ ∗ P ) denotes the continuation of the state σ
with the process P .

This requires, in the linear case, that two histories are
equivalent if the conditions (8) hold, i.e.∫ ∞

0
Ġ(τ + s)∇u0

1(s)ds =
∫ ∞

0
Ġ(τ + s)∇u0

2(s)ds,

for every τ ∈ [0,∞).

Therefore, following Noll’s view point, one attains the
same conclusions obtained by studying the differential
problem directly.



From these observations it appears natural to introduce

a new notion of state, called minimal state, defined by

σ(t) = Itr = (∇u(t), It), where It denotes the equivalence

class of the strain histories ∇ut(s) defined by

It(τ) =
∫ ∞

0
Ġ(τ + s)∇ut(s)ds, τ ∈ [0,∞) (10)

while

Itr(τ) =
∫ ∞

0
Ġ(τ + s)∇utr(s)ds (11)

= G(τ)∇u(t) +
∫ ∞

0
Ġ(τ + s)∇ut(s)ds.

where ∇utr(s) = ∇u(t)−∇ut(s) is the relative strain his-

tory. Of course

T(t) = Itr(0)

Then, Itr(τ) is the stress response to a constant process



The reason why we use the name minimal state is con-

nected with the minimal information required to identify

the state.

Consider the kernel Ġ(s) = Ae−αs, a history ∇ut(s) and

the function

It(τ) =
∫ ∞

0
Ae−α(τ+s)∇ut(s)ds

= Ae−ατ
∫ ∞

0
e−αs∇ut(s)ds

= e−ατ(T(∇ut)−G0∇u(t))

Therefore, the state σ(t) is given by

σ(t) = (∇u(t),T(t))



For a kernel Ġ(s) =
n∑
i=1

Aie
−αis the state is

σ(t) = (∇u(t),T(t),T(1)(t), ...,T(n−1)(t))

The introduction of this notion of equivalence can have

meaningful improvements in the study of stability prob-

lems. In fact, the new notion of state influences the norm

of the state space and then the conditions for the stabil-

ity are remarkably affected by the the topology chosen

in that space.

Therefore, we shall refer to this formulation and we shall

try to express both the normed spaces and the free en-

ergies as functions of the minimal state.



Semi-group theory

The differential system (1) can be rewritten in the form

d

dt
u(·, t) = v(·, t)

d

dt
v(·, t) = ∇ ·

[
G∞∇u(·, t) +

∫ ∞
0

Ġ(·, s)∇utr(·, s)ds
]

d

dt
∇utr(·, s) = −

d

ds
∇utr(·, s)−∇v(·, t) (12)

This system is supplemented by Dirichlet boundary con-
ditions

u|∂Ω = 0 (13)

The problem (12-13) can be studied using semi-group
theory, where the state is given by the triple

χ = (u,v,∇utr) ∈ G = H1
0(Ω)× L2(Ω)×DG.



The space DG is the domain of definition of Graffi-

Volterra free energy ψG, D.Graffi, Rend. Sem. Mat.

Univ. Padova (1968)

ψG(∇ut) =
1

2
G∞∇u(t) · ∇u(t) (14)

+
1

2

∫ ∞
0

Ġ(s)∇utr(s) · ∇utr(s)ds.

given by

DG =
{
ut(s) ∈ H1

0(Ω), s ∈ R+∫ ∞
0

Ġ(s)∇utr(s) · ∇utr(s)ds <∞
}

The functional (14) is a free energy under the following

restrictions on the kernel Ġ



• for all (x, s) ∈ Ω× R+

Ġ(x, s) < 0 , G̈(x, s) ≥ 0 , (15)

• there exists α ∈ R++ such that

G̈(x, s) + αĠ(x, s) ≥ 0, for all (x, s) ∈ Ω× R+ (16)

Theorem. (M.F. & B. Lazzari, Arch. Rational Mech.

Anal. (1992). Under the hypotheses (15), (16), for

any initial condition χ0 ∈ G , there exists a solution χ =

(u,v, Itr) such that

‖ v(t) ‖L2 +ψG(∇ut) ≤Me−µt[‖ v(0) ‖L2 +ψG(∇u0)]

(17)

where M and µ are suitable constants.



It is easy to prove that the norm related to the Graffi-

Volterra free energy (14) introduces a non-natural sepa-

ration between histories. In fact, two equivalent histories

have a not zero distance, in contrast with the impossibil-

ity of distinguishing the future effects of the two initial

histories.

When we use the function Itr(·, τ), the system (12) can

be reduced to the following problem

d

dt
u(·, t) = v(·, t)

d

dt
v(·, t) = ∇ · [G∞(·)∇u(·, t)]−∇ · Itr(·,0) (18)

d

dt
Itr(·, τ) =

∂

∂τ
Itr(·, τ)− Ğ(τ)∇v(·, t)



with the boundary condition (13), while the initial con-

ditions are given by

u(x,0) = u0(x) , v(x,0) = v0(x) , (19)

It=0
r (x, τ) = I0

r (x, τ) , τ ∈ R+. (20)

For this problem, the state is given by the triple χ =

(u,v, Itr), which is an element of the Hilbert space F :=

H1
0(Ω)× L2(Ω)×DI.

The problem now is to find the domain DI on which is

defined the function Itr. Let me remember that in the

previous system the domain of definition of the relative

history is given by the domain of the Graffi free energy.



Also in this problem the domain DI will be related with
the free energy connected with the function Itr. There-
fore, it is crucial to find a new free energy.

In order to obtain such a free energy, let me remember
its definition. The free energy is a function that must
satisfy the inequality

ψ̇(σ) ≤ T(σ)·Ė (21)

In the papers M.F.,Wave and Stability (2004), L.Deseri,
M.F., M.Golden, Arch. Rational Mech. Anal. (2006)
we have proved that

ψI(σ) =
1

2

∫
Ω

G∞(x)∇u(x, t) · ∇u(x, t)dx

−
1

2

∫ ∞
0

∫
Ω

Ġ−1(x, τ)Itrτ(x, τ) · Itrτ(x, τ)dxdτ
(22)



is a free energy. In the following the domain of the free
energy ψI(I

t
r) will be denoted by DI . Then, the Hilbert

space F := H1
0(Ω)× L2( Ω)×DI is well defined.

Theorem. Under the hypotheses (15), (16), for any
initial condition χ0 ∈ F , there exists a solution χ =
(u,v, Itr) such that

‖v(t)‖L2 + ΨI(I
t) ≤Me−µt(‖v(0)‖L2 + ΨI(I

0)) (23)

where M and µ are suitable constants.

Proof. Consider the functional total energy ζ defined by

ζ(v(t), It) =
1

2
v2(x, t) + ΨI(I

t) (24)



which satisfies the equality

ζ̇(x, t)− v(x, t) · v̇(x, t)−T(x, t) · ∇v(x, t)

=
1

2
Ġ−1(x,0)Itrτ(x,0) · Itrτ(x,0)

−
1

2

∫ ∞
0

Ġ−1(x, τ)G̈(x, τ)Ġ−1(x, τ)Itrτ(x, τ) · Itrτ(x, τ)dτ.

By means of hypotheses (15), (16) and relation (19) we

obtain∫
Ω
ζ̇(x, t)dx ≤

α1

2

∫
Ω

∫ ∞
0

Ġ−1(x, τ)Itrτ(x, τ) · Itrτ(x, τ)dτdx

≤ 0. (25)

Thus, if we introduce the total energy

E(t) =
∫

Ω
ζ(x, t)dx (26)



then

0 ≤ E(t) ≤ E(0). (27)

Moreover integrating (25) on (0,∞) , we have

−
α1

2

∫ ∞
0

∫ ∞
0

∫
Ω

Ġ−1(x, τ)Itrτ(x, τ) ·Itrτ(x, τ)dxdτdt ≤ E(0).

(28)

By Theorem 9.1 of L.Deseri, M.F., M.Golden, Arch. Ra-

tional Mech. Anal. (2006), we have that the solution u

is an element of H
3
2(R+;L2(Ω)) ∩ L2(R+;H1

0(Ω)) and∫ ∞
0
E(t)dt =

∫ ∞
0

∫
Ω

{
1

2
v2(x, t) + ΨI(x, I

t)
}
dxdt

=
1

2

∫ ∞
0

∫
Ω

{
(v2(x, t) + G∞(x)∇u(x, t) · ∇u(x, t))

−
∫ ∞

0
Ġ−1(x, τ)Itrτ(x, τ) · Itrτ(x, τ)dτ

}
dxdt <∞. (29)



Now, we write the system (18) in the form

χ̇(t) = Aχ(t) (30)

where A denotes the operator represented by the right-

hand side of (18), which is defined on the domain

F(A) =
{
χ = (u,v, Itr) ∈ H1

0(Ω)× L2(Ω)× L2(Ω)

−
∫ ∞

0

∫
Ω

Ġ−1(x, τ)Itr(x, τ) · Itr(x, τ)dxdτ <∞
}
.

Lemma. Under the hypotheses (15) and (16), the op-

erator A : DI(A) → F is a maximal dissipative operator

on F , i.e.

a. 〈Aχ, χ〉 ≤ 0 , for any χ ∈ DI(A);



b. the range of A − I is F, where I is the identity

operator.

Proof. We have, from (22), (24), (26) and (30),

E(t) =
1

2
〈χ(t), χ(t)〉 ,

d

dt
E(t) = 〈Aχ(t), χ(t)〉 . (31)

Integrating (31) over Ω, we obtain

〈Aχ(t), χ(t)〉 =
1

2

∫
Ω

Ġ−1(x,0)Itrτ(x,0) · Itrτ(x,0)dx

−
1

2

∫ ∞
0

∫
Ω

Ġ−1(x, τ)G̈(x, τ)Ġ−1(x, τ)Itrτ(x, τ) · Itrτ(x, τ)dτ

≤ 0.

Moreover, under the hypotheses (16), we have from (25)



that

〈Aχ(t), χ(t)〉 ≤
α1

2

∫ ∞
0

∫
Ω

Ġ−1(x, τ)Itτ(x, τ) · Itτ(x, τ)dxdτ

≤ 0 (32)

for any solution χ.

The proof of point b. is analogous to the case considered

by C.M. Dafermos, Arch. Rational Mech. Anal. (1970).

Hence, by means of the Lumer-Phillips Theorem (see:

A. Pazy, Lect. Notes in Math., 10. Univ. Maryland.

1974.) the operator A generates a strongly continuous

semigroup of linear contraction operators S(t) on F, so

that the solutions of the system (18), (19) have the form

χ(t) = S(t)χ0.



Moreover, from (29) we obtain that the total energy

E(t) =
1

2
〈S(t)χ0, S(t)χ0〉

satisfies the restriction∫ ∞
0
〈S(t)χ0, S(t)χ0〉 dt <∞ (33)

for any χ0 ∈ F . Then D(A) is dense in F.

Now we recall the following Lemma proved by R. Datko,

J. Math. Anal. Appl (1970).

Lemma. Given a strongly continuous semigroup of lin-

ear operators S(t) on a Hilbert space F, then for anyχ0 ∈
F, there exist two constants C, γ such that

〈S(t)χ0, S(t)χ0〉 ≤ Ce−γt 〈χ0, χ0〉 (34)



if and only if the integral∫ ∞
0
〈S(t)χ0, S(t)χ0〉 dt

is convergent for any χ0 ∈ F.

Indeed, for any initial condition χ0 such that

1

2
〈χ0, χ0〉 = E(0) <∞

we have from (33) that∫ ∞
0
〈S(t)χ0, S(t)χ0〉 dt <∞,

and the inequality (34) follows.



What of two theorems is more convenient or

suitable?

REMARK. The domain of definition of the initial states

DI is larger compared to the domain DG.

In order to obtain such a proposition, it is crucial to prove

that

ΨI(σ) ≤ ΨG(σ), σ ∈ DG (35)

Proof.

2ΨI(I
t) = G∞∇u(t)·∇u(t)−

∫ ∞
0

[
Ġ−1(s)

·
∫ ∞

0
G̈(s+ τ1)∇utr(τ1) dτ1 ·

∫ ∞
0

G̈(s+ τ2)∇utr(τ2) dτ2

]
ds



≤ G∞∇u(t)·∇u(t) +
∫ ∞

0

∣∣∣Ġ−1(s)
∣∣∣ ∣∣∣∣∫ ∞

0
G̈(s+ τ)Etr(τ) dτ

∣∣∣∣2 ds
≤ G∞∇u(t)·∇u(t)

+
∫ ∞

0

∣∣∣Ġ−1(s)
∣∣∣ ∣∣∣∣∫ ∞

0
G̈(s+ τ) dτ

∣∣∣∣ ∫ ∞
0

G̈(s+ τ)∇utr(τ)·∇utr(τ) dτ ds

= G∞∇u(t)·∇u(t)−
∫ ∞

0
Ġ(τ)∇utr(τ)·∇utr(τ) dτ = 2ΨG(∇ut).

Of course from this inequality it follows

DG ⊂ DI
From this proposition, you can see as the Theorem 2
may be applied to a larger set of the initial states.

In order to understand that DI is bigger than DG let me
consider as a kernel Ġ(s) = G̃0e−αs.



The stress T at the fixed time t0, is given

T(∇ut0) = G0∇u(t0)+
∫ ∞

0
Ġ(s)∇u(t0 − s) ds

= G0∇u(t0)− αG̃0

∫ ∞
0

e−αs∇u(t0 − s) ds

This integral converges if

∇ut0(s) = ∇u(t0 − s) = ∇u0(t0 − s)e−α(t0−s)

= ∇u0(t0 − s)e−αt0eαs; ∇u0(τ) ∈ L1(t0,∞)

So that

T(∇ut0) = G0∇u(t0)− αG̃0e−αt0
∫ ∞

0
∇u0(t0 − s) ds



Moreover, if we consider the Graffi free energy, we have

ΨG = G0∇u(t0)·∇u(t0)

+
∫ ∞

0
αG̃0e−αs∇u(t0 − s)·∇u(t0 − s) dτ

This integral converges if

∇u(t0 − s) = ∇u0(t0 − s)e−
α
2(t0−s)

= ∇u0(t0 − s)e−
α
2t0e

α
2s; ∇u0(τ) ∈ L2(t0,∞)

So that

ΨG = G0∇u(t0)·∇u(t0)

+αG̃0e−αt0
∫ ∞

0
∇u0(t0 − s)·∇u0(t0 − s) ds

then DG ⊂ DT .



Instead, the ΨI free energy

ΨI(I
t0) =

1

2
G0∇u(t0)·∇u(t0)+T(It0) · ∇u(t0)−

∫ ∞
0

Ġ−1(s)

·
∫ ∞

0
G̈(s+ τ1)∇u(t0−τ1) dτ1 ·

∫ ∞
0

G̈(s+ τ2)∇u(t0−τ2) dτ2 ds

=
1

2
G0∇u(t0)·∇u(t0)+T(It0) · ∇u(t0)

+α2G0e−αt0
(∫ ∞

0
∇u0(t0 − s) ds

)2

converges if

∇u(t0 − s) = ∇u0(t0 − s)e−α(t0−s)

= ∇u0(t0 − s)e−αt0eαs; ∇u0(τ) ∈ L1(t0,∞)

Then in such a case we have

DG ⊂ DI = DT .



Conclusions

There are three reasons for which it is more convenient

to use the ΨI free energy.

The former is that the state Itr = (∇u(t), It) is the mini-

mal state.

The second reason is that the topology connected with

ΨG considers two equivalent histories as separate states.

The last reason is that the domain DI of the ΨI free

energy is larger than the domain of ΨG. This result

provides a stability theorem in a wider domain of pertur-

bations.


