Long term behavior of binary fluid mixture flows in 2D

Ciprian G. Gal (University of Missouri – Columbia)

Cortona, Italy September 22th, 2008





х

- A model for the study of incompressible multi-phase flows: consider a mixture composed of two incompressible fluids (or phases) of mass densities  $\rho_A(x)$  and  $\rho_B(x)$ .
- Define an order parameter function

$$\phi(x) = \frac{\rho_A(x) - \rho_B(x)}{\rho_A(x) + \rho_B(x)} \in [-1, +1],$$

such that

 $\phi(x) = -1$  if and only if the fluid A is present at point x,  $\phi(x) = +1$  if and only if the fluid B is present at point x.

• Suppose that each fluid possesses its own velocity field  $v_j$  (j = A, B). Define the mean velocity field by  $u = (u_A + u_B)/2$ . • The pair  $(\boldsymbol{u}, \phi)$  satisfies the set of equations:

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla p = \mathcal{K} \mu \nabla \phi + \boldsymbol{g}, \text{ in } \Omega \times (0, +\infty),$$
 (1.1)

$$\nabla \cdot \boldsymbol{u} = 0, \text{ in } \Omega \times (0, +\infty),$$
 (1.2)

and

$$\partial_t \phi + \boldsymbol{u} \cdot \nabla \phi + A_K \mu = 0, \text{ in } \Omega \times (0, +\infty),$$
 (1.3)

$$\mu = -\varepsilon \Delta \phi + \alpha f(\phi), \text{ in } \Omega \times (0, +\infty), \qquad (1.4)$$

where  $\Omega$  is a bounded domain in  $\mathbb{R}^N$ , N = 2, 3, with smooth boundary  $\Gamma = \partial \Omega$  and  $\boldsymbol{g}$  is an external volumic force (gravity force, for example).

- Two cases:
  - If K = AC, then let  $A_{AC} = I$   $\Rightarrow$  (1.3) is a convective Allen-Cahn equation. If K = CH, then let  $A_{AC} = -\Delta$  $\Rightarrow$  (1.3) is a convective Cahn-Hilliard equation.

•  $\mu$  is the chemical potential of the theoretical uniform mixture of composition  $\phi$  and is obtained as a variational derivative of the following free energy functional

$$\mathcal{F}(\phi) = \int_{\Omega} \left(\frac{\varepsilon}{2} \left|\nabla\phi\right|^2 + \alpha F(\phi)\right) dx, \qquad (1.5)$$

where F'(s) = f(s) and  $\varepsilon$ ,  $\alpha > 0$  are two physical parameters describing the interaction between the two phases.

• Two typical examples of a potential function F: either

$$F(s) = c_1 s^4 - c_2 s^2,$$

or

$$F(s) = c_1 \left( (1+s) \log (1+s) + (1-s) \log (1-s) \right) + c_2 \left( 1 - s^2 \right), \ c_1, c_2 > 0.$$

• Focus on the case K = AC. Take Dirichlet boundary conditions

$$\boldsymbol{u} = \boldsymbol{0}, \ \phi = 0, \ \mathrm{on} \ \Gamma \times (0, +\infty),$$

and initial conditions

$$u_{|t=0} = u_0, \ \phi_{|t=0} = \phi_0 \ \text{in } \Omega.$$

• Set

$$\mathbb{H} = \left\{ \boldsymbol{u} \in \mathbb{L}^2 \left( \Omega, dx / \mathcal{K} \right) : \nabla \cdot \boldsymbol{u} = 0 \text{ in } \Omega, \ \boldsymbol{u} = 0 \text{ on } \Gamma \right\},$$
$$\mathbb{V} = \left\{ \boldsymbol{u} \in \mathbb{H}_0^1 \left( \Omega \right) : \nabla \cdot \boldsymbol{u} = 0 \text{ in } \Omega \right\}.$$

• We let

$$A_{0}\boldsymbol{u} = -\Delta\boldsymbol{u}, \quad \forall \boldsymbol{u} \in D(A_{0}) = \mathbb{H}^{2}(\Omega) \cap \mathbb{V},$$
$$A_{1}\phi = -\Delta\phi, \quad \forall \phi \in D(A_{1}) = H^{2}(\Omega) \cap H^{1}_{0}(\Omega).$$

• We formulate the class of problems we want to solve.

**Problem** *P*. Let dim  $\Omega = 2$ . For  $\mathbf{g} \in \mathbb{V}^*$  and any given pair of initial data

$$(\boldsymbol{u}_0, \phi_0) \in \mathbb{Y} := \mathbb{H} \times H_0^1(\Omega), \qquad (1.7)$$

find  $(\boldsymbol{u}(t), \phi(t)) \in C([0, +\infty); \mathbb{Y})$  with

$$\partial_t \boldsymbol{u}(t) \in L^{4/3}([\theta, +\infty); \mathbb{V}^*), \ \partial_t \phi(t) \in L^2([\theta, +\infty); L^2(\Omega))$$

such that

$$\begin{pmatrix}
\frac{d\boldsymbol{u}}{dt} + \nu A_0 \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \mathcal{K}\varepsilon A_1 \phi \nabla \phi = \boldsymbol{g} \text{ in } \mathbb{V}^*, \text{ a.e. in } (0, +\infty), \\
\mu = \varepsilon A_1 \phi + \alpha f(\phi), \text{ a.e. in } \Omega \times (0, +\infty) \\
\frac{d\phi}{dt} + \mu + \boldsymbol{u} \cdot \nabla \phi = 0, \text{ a.e. in } \Omega \times (0, +\infty),
\end{cases}$$
(1.8)

and fulfills the initial conditions. Here and below  $\mathbb{Y}$  is a Hilbert space endowed with the obvious norm given by

$$\|(\boldsymbol{u},\phi)\|_{\mathbb{Y}} := \left(|\boldsymbol{u}|^2 + \varepsilon |\nabla \phi|_{L^2}^2\right)^{1/2}$$

Concerning the nonlinearity of our system, we suppose that f ∈ C<sup>1</sup> (ℝ) satisfies

$$\begin{cases} \lim_{|s|\to\infty} \inf f'(s) > 0, \\ |f'(s)| \le c_f \left(1 + |s|^m\right), \ \forall s \in \mathbb{R}, \ m \ge 1. \end{cases}$$
(1.9)

**Proposition 1.** Let  $f \in C^1(\mathbb{R})$  satisfy (1.9). If  $(\boldsymbol{u}(t), \phi(t))$  is a smooth solution of problem  $\mathbf{P}$ , then the following estimate holds:

$$\begin{aligned} \| (\boldsymbol{u}(t), \phi(t)) \|_{\mathbb{Y}}^{2} + \int_{t}^{t+1} \left( \nu \| \boldsymbol{u}(s) \|^{2} + |\mu(s)|_{L^{2}}^{2} + |F(\phi(s))|_{L^{1}} \right) ds \\ + \int_{t}^{t+1} \left( \| \partial_{t} \boldsymbol{u}(s) \|_{\mathbb{Y}^{*}}^{4/3} + |A_{1}\phi(s)|_{L^{2}}^{2} + |\partial_{t}\phi(s)|_{L^{2}}^{2} \right) ds \end{aligned}$$

$$\leq Q\left(\left\|\left(\boldsymbol{u}\left(0\right),\phi\left(0\right)\right)\right\|_{\mathbb{Y}}^{2}\right)e^{-\rho t}+C\left(\nu,\varepsilon,\alpha,\mathcal{K},\left\|\boldsymbol{g}\right\|_{\mathbb{V}^{*}}\right), \ \forall t\geq0,$$

where the monotone non-decreasing function Q and the positive constants  $\rho$ and C are independent of t and the initial conditions. Uniqueness of weak solutions to  $\mathbf{P}$  follows from the following continuous dependence result.

**Lemma 2.** Let  $(\boldsymbol{u}_i(t), \phi_i(t))$  be the solution corresponding to the initial data  $(\boldsymbol{u}_i(0), \phi_i(0)) \in \mathbb{Y}, i = 1, 2$ . Then, for any  $t \ge 0$ , the following estimate holds

$$|\boldsymbol{u}_{1}(t) - \boldsymbol{u}_{1}(t)|^{2} + |\nabla (\phi_{1}(t) - \phi_{2}(t))|^{2}_{L^{2}}$$

$$+ \int_{0}^{t} \left[ \nu \| \boldsymbol{u}_{1}(s) - \boldsymbol{u}_{1}(s) \|^{2} + \varepsilon |A_{1}(\phi_{1}(s) - \phi_{2}(s))|_{L^{2}}^{2} \right] ds$$
  
$$\leq C e^{Lt} \left( |\boldsymbol{u}_{1}(0) - \boldsymbol{u}_{1}(0)|^{2} + |\nabla (\phi_{1}(0) - \phi_{2}(0))|_{L^{2}}^{2} \right), \qquad (1.10)$$

where C and L are positive constants depending only on the norms of the initial data in  $\mathbb{Y}$ , on  $\Omega$  and on the parameters of the problem, but are both independent of time.

• the existence of a compact absorbing set.

**Lemma 3.** Let the assumptions of Proposition 1 be satisfied. Then, there is a positive constant C (independent of time and initial data, but which depends only on the physical parameters of the problem) such that, for any R > 0, there exists  $t_1 = t_1(R) > 0$  such that

$$\|(\boldsymbol{u}(t),\phi(t))\|_{\mathbb{V}\times D(A_1)} \leq \mathcal{C}, \qquad \forall t \geq t_1,$$
(1.11)

for any  $(\boldsymbol{u}_0, \phi_0) \in \mathcal{B} \subset \mathbb{Y}$ .

• We can also prove the following.

**Proposition 4.** If  $g \in \mathbb{H}$  and  $f \in C^2(\mathbb{R})$  satisfies (1.9), then there exists a  $D(A_0) \times D(A_1^{3/2})$ -bounded absorbing set, for the semigroup  $\mathcal{S}(t)$ . More precisely, there exist a time  $t_2 \geq t_1$  and a positive constant  $\mathcal{C}'$  such that

$$|A_{0}\boldsymbol{u}(t)|^{2} + \left|A_{1}^{3/2}\phi(t)\right|_{L^{2}}^{2} \leq \mathcal{C}', \quad \forall t \geq t_{2}.$$
(1.12)

#### 1 The attractors

• The global attractor.

**Theorem 5.** Let the assumptions of Proposition 1 be satisfied. Then there exists a connected compact global attractor  $\mathcal{A} \subset \mathbb{Y}$  for the semigroup  $\mathcal{S}(t)$ . Moreover, if  $\mathbf{g} \in \mathbb{V}^*$  and  $f \in C^1(\mathbb{R})$ , the global attractor  $\mathcal{A}$  is bounded in  $\mathbb{V} \times D(A_1)$ , whereas  $\mathcal{A}$  is bounded in  $D(A_0) \times D(A_1^{3/2})$  when  $\mathbf{g} \in \mathbb{H}$  and  $f \in C^2(\mathbb{R})$ .

**Remark 1.** Suppose that  $g \in \mathbb{H}_d^{s-1}(\Omega)$ ,  $\mathbb{H}_d^0(\Omega) := \mathbb{H}$  and  $f \in C^{s+1}(\mathbb{R})$ ,  $s \ge 0$ , satisfies (1.9). Then, we can prove as in Proposition 4 that any functional invariant set for the semigroup S(t) is in fact bounded in  $D(A_0^{(s+1)/2}) \times D(A_1^{(s+2)/2})$ , provided that the boundary  $\Gamma$  of  $\Omega$  is smooth enough. • The existence of finite dimensional exponential attractors.

**Theorem 6.** Let  $g \in \mathbb{H}$  and  $f \in C^2(\mathbb{R})$  satisfy the assumptions of Theorem 5. Then, S(t) possesses an exponential attractor  $\mathcal{M} \subset \mathbb{Y}$ , namely,

(i)  $\mathcal{M}$  is compact and semi-invariant with respect  $\mathcal{S}(t)$ , i.e.,

$$\mathcal{S}(t)(\mathcal{M}) \subset \mathcal{M}, \qquad \forall t \ge 0.$$
 (1.13)

(ii) The fractal dimension  $\dim_F(\mathcal{M}, \mathbb{Y})$  of  $\mathcal{M}$  is finite.

(iii)  $\mathcal{M}$  attracts exponentially fast any bounded subset B of  $\mathbb{Y}$ , that is, there exist a positive nondecreasing function Q and a constant  $\rho > 0$  such that

$$dist_{\mathbb{Y}}\left(\mathcal{S}\left(t\right)B,\mathcal{M}\right) \le Q(\|B\|_{\mathbb{Y}})e^{-\rho t}, \qquad \forall t \ge 0.$$

$$(1.14)$$

Here  $dist_{\mathbb{Y}}$  denotes the non-symmetric Hausdorff distance between sets in  $\mathbb{Y}$  and  $||B||_{\mathbb{Y}}$  stands for the size of B in  $\mathbb{Y}$ .

**Remark 2.** Theorem 6 entails that  $\mathcal{A}$  has finite fractal dimension.

• Physical bounds on the fractal dimension of the global attractor. We have the following.

**Theorem 7.** We consider the dynamical system  $(\mathcal{S}(t), \mathbb{Y})$  associated with problem (1.8), when  $A_{AC} = I$ . Let  $\overline{n}$  be the first integer such that

$$\overline{n} - 1 < c \sqrt{\frac{a_1 + (a_2)^2 (1 + \log a_2)}{a_3}} \le \overline{n},$$

where  $a_i$ , i = 1, 2, 3, are computed explicitly in terms of the physical parameters  $\varepsilon$ ,  $\nu$ ,  $\mathcal{K}$ ,  $|\Omega|$  and c is a non-dimensional positive constant that depends only on  $\Omega$  and m. Then, the corresponding global attractor  $\mathcal{A}$  defined by Theorem 5 has a Hausdorff dimension less than or equal to  $\overline{n}$  and a fractal dimension less than or equal to  $2\overline{n}$ .

### 2 Convergence to equilibria

**Proposition 8.** Let the hypotheses of Theorem 5 hold. Assume that  $\mathbf{g} = \mathbf{0}$ . The semigroup S(t) has a (strict) Lyapunov functional defined by the free energy, namely,

$$\mathcal{L}(\mathbf{u}_0,\phi_0) = \frac{1}{2} \left[ \varepsilon \left| \nabla \phi_0 \right|_{L^2}^2 + \left| \mathbf{u}_0 \right|^2 \right] + \alpha \int_{\Omega} F(\phi_0) \, dx,$$

where F is the primitive of f. In particular, we have, for all t > 0,

$$\frac{d}{dt}\mathcal{L}(\boldsymbol{u}(t),\phi(t)) = -\nu \|\boldsymbol{u}(t)\|^2 - |\mu(t)|_{L^2}^2.$$
(1.15)

• The set of equilibria: the stationary problem corresponding to problem  ${\bf P}$  is

$$oldsymbol{v} = 0 ext{ in } \Omega,$$
  
 $-arepsilon \Delta \psi + lpha f(\psi) = 0 ext{ in } \Omega,$   
 $\psi = 0 ext{ on } \Gamma.$ 

• The asymptotic behavior of single trajectories.

**Theorem 9.** Let the assumptions of Proposition 1 hold. Suppose, in addition, that the nonlinearity F is real analytic. For any given initial datum  $(\boldsymbol{u}_0, \phi_0) \in \mathbb{Y}$ , the solution  $(\boldsymbol{u}(t), \phi(t))$  to  $\mathbf{P}$  converges to a single equilibrium  $(\boldsymbol{0}, \psi)$  in the topology of  $\mathbb{Y}$ , that is,

$$\lim_{t \to +\infty} \left( |\boldsymbol{u}(t)| + |\phi(t) - \psi|_{H^1} \right) = 0.$$
(1.16)

Moreover, there exist  $C \ge 0$  and  $\xi \in (0, 1/2)$  depending on  $(\mathbf{0}, \psi)$  such that

$$|\boldsymbol{u}(t)| + |\phi(t) - \psi|_{H^1} \le C(1+t)^{-\xi/(1-2\xi)}, \qquad (1.17)$$

for all  $t \geq 0$ .

# **3** Singular potentials

• Physicists have often proposed to consider functions like

$$f(s) = c_1 \log \frac{1+s}{1-s} - c_2 s, \ c_1, c_2 > 0.$$

where we suppose that the order parameter  $\phi$  is normalized in such a way that the two pure phases of the fluid are -1 and +1, respectively.

• General assumptions on the singular potential  $f \in C^1(-1, 1)$ :

$$\lim_{s \to \pm 1} f(s) = \pm \infty \text{ and } \lim_{s \to \pm 1} f'(s) = +\infty.$$
(1.18)

• Define the quantity

$$D\left[\phi\right] = \left[1 - \left|\phi\right|_{L^{\infty}\left(\overline{\Omega}\right)}\right]^{-1}$$

and the following Banach space

$$\mathbb{X} := \left\{ (\boldsymbol{u}_0, \phi_0) \in \mathbb{H} \times \left( H_0^1(\Omega) \cap L^{\infty}(\Omega) \right) : 0 < D[\phi_0] < +\infty \right\},\$$

endowed with the metric topology of  $\mathbb{Y} = \mathbb{H} \times H_0^1(\Omega)$ .

#### We have

**Theorem 10.** Suppose that f satisfies (1.18). Let  $(\mathbf{u}_0, \phi_0) \in \mathbb{X}$  and  $\mathbf{g} \in \mathbb{V}^*$ . If  $(\mathbf{u}(t), \phi(t))$  is a regular solution of problem  $\mathbf{P}$ , then the dissipative estimate holds. In addition, the order parameter  $\phi(t)$  is strictly separated from the singular values  $\pm 1$  of the function f, that is, there exists a positive constant  $\delta \in [0, 1[$  which depends only on  $D[\phi_0]$  such that

$$\left|\phi\left(t\right)\right|_{L^{\infty}\left(\overline{\Omega}\right)} \le \delta < 1, \text{ for all } t \ge 0.$$

$$(1.19)$$

Finally, associated with problem  $\mathbf{P}$ , we can define a semigroup  $\overline{\mathcal{S}}(t)$ , by the standard expression

$$\overline{\mathcal{S}}(t)(\boldsymbol{u}_{0},\phi_{0}) = (\boldsymbol{u}(t),\phi(t)), \ \overline{\mathcal{S}}(t): \mathbb{X} \to \mathbb{X},$$

where  $(\boldsymbol{u}(t), \phi(t))$  is the unique solution to **P**.

**Theorem 11.** Let the assumptions of Theorem 10 be satisfied. Then there exists a connected compact global attractor  $\overline{\mathcal{A}} \subset \mathbb{X}$  for the semigroup  $\overline{\mathcal{S}}(t)$ . Moreover, the global attractor  $\overline{\mathcal{A}}$  is bounded in  $\mathbb{V} \times D(A_1)$ .

• Convergence to single equilibria.

**Theorem 12.** Let g = 0 and let f satisfy the assumptions of (1.18). Suppose, in addition, that the nonlinearity f is real analytic in (-1, 1). For any given initial datum  $(\mathbf{u}_0, \phi_0) \in \mathbb{X}$ , the solution  $(\mathbf{u}(t), \phi(t))$  to  $\mathbf{P}$  converges to a single equilibrium  $(\mathbf{0}, \psi)$  in the topology of  $\mathbb{Y}$ , that is,

$$\lim_{t \to +\infty} \left( |\boldsymbol{u}(t)| + |\phi(t) - \psi|_{H^1} \right) = 0.$$
(1.20)

# 4 Open questions

- The 3D treatment of our models.
- **Conjecture:** For every

$$(\boldsymbol{u}_0,\phi_0) \in \mathbb{Y} = \mathbb{H} \times H_0^1(\Omega), \ \boldsymbol{g} = \boldsymbol{g}(x) \in \mathbb{V}^*,$$

the problem  ${\bf P}$  possesses at least one global weak energy solution

$$(\boldsymbol{u}(t), \phi(t)) \in L^{\infty}(\mathbb{R}_{+}; \mathbb{Y}) \cap L^{2}_{b}(\mathbb{R}_{+}; \mathbb{V} \times (H^{2}(\Omega) \cap H^{1}_{0}(\Omega))) =: \mathcal{Z}_{b},$$

which satisfies an energy inequality of the form:

$$\partial_{t} E(t) + \kappa E(t) + c \left( \nu \| \boldsymbol{u}(t) \|_{\mathbb{V}}^{2} + |\phi(t)|_{H^{2}}^{2} + |\mu(t)|_{L^{2}}^{2} \right) + c \left( \left| f(\phi(t)) \right|, 1 + |\phi(t)| \right)_{L^{2}} \le c \left( 1 + \| \boldsymbol{g} \|_{\mathbb{V}^{*}}^{2} \right),$$

for some positive constant c which depends only on the physical parameters of the problem, but is independent of initial data and time. • Here,  $0 < \kappa < \xi$  are two small constants and

$$E(t) := \left\| (\boldsymbol{u}(t), \phi(t)) \right\|_{\mathbb{Y}}^{2} + 2\alpha \left( F(\phi(t)), 1 \right)_{L^{2}} + \xi \left| \phi(t) \right|_{L^{2}}^{2} + c.$$

• This energy inequality implies that the following estimate holds:

$$\|(\boldsymbol{u}(t),\phi(t))\|_{\mathbb{Y}}^{2} + \int_{\tau}^{t} e^{-\kappa(t-s)} \left(\nu \|\boldsymbol{u}(s)\|_{\mathbb{V}}^{2} + |\phi(s)|_{H^{2}}^{2}\right) ds \qquad (1.21)$$

$$\leq \left\| \left( \boldsymbol{u}\left(\tau\right),\phi\left(\tau\right)\right) \right\|_{\mathbb{Y}}^{2} e^{-\kappa(t-\tau)} + c_{*} \left( 1 + \left\| \boldsymbol{g} \right\|_{\mathbb{V}^{*}}^{2} \right),$$

for almost every  $t \ge \tau \in \mathbb{R}_+$ , where  $c_* > 0$  depends only on  $\Omega$ ,  $\varepsilon$ ,  $\alpha$ ,  $\nu$  and  $\mathcal{K}$ .

• Define the trajectory phase-space, as

 $Tr(\mathcal{Z}_b) := \{ (\boldsymbol{u}(t), \phi(t)) \in \mathcal{Z}_b : (\boldsymbol{u}(t), \phi(t)) \text{ solves } \mathbf{P} \text{ and satisfies } (1.21) \}.$ 

• Define a shift-semigroup  $S_t : Tr(\mathcal{Z}_b) \to Tr(\mathcal{Z}_b)$ , which acts continuously on  $Tr(\mathcal{Z}_b)$ , by

$$S_t \left( \boldsymbol{u} \left( s \right), \phi \left( s \right) \right) = \left( \boldsymbol{u} \left( t + s \right), \phi \left( t + s \right) \right), \ t \ge 0, \ s \in \mathbb{R}.$$

• The trajectory dynamical system  $(S_t, Tr(\mathcal{Z}_b))$  is well-defined. The dissipative estimate (1.21) implies

$$|S_t(\boldsymbol{u},\phi)||_{\mathcal{Z}_b}^2 \le c \, \|(\boldsymbol{u},\phi)\|_{L^{\infty}(\mathbb{R}_+;\mathbb{Y})}^2 \, e^{-kt} + c_* \left(1 + \|\boldsymbol{g}\|_{\mathbb{Y}^*}^2\right), \quad (1.22)$$

for every  $t \geq 0$  and  $(\boldsymbol{u}(t), \phi(t)) \in \mathcal{Z}_b$ .

• Defining the ball  $B_R(\mathcal{Z}_b)$  as

$$B_{R}(\mathcal{Z}_{b}) := \left\{ \left(\boldsymbol{u}\left(t\right), \phi\left(t\right)\right) \in \mathcal{Z}_{b} : \left\|\left(\boldsymbol{u}, \phi\right)\right\|_{\mathcal{Z}_{b}} \leq R \right\}.$$
(1.23)

- We have that  $B_R(\mathcal{Z}_b)$  is a  $\mathcal{Z}_b$  absorbing ball for the trajectory semigroup  $S_t$  on  $\mathcal{Z}_b$ .
- $B_R(\mathcal{Z}_b)$  is compact in

$$\mathcal{Z}_{loc} := L^{\infty}_{w^{*}, loc} \left( \mathbb{R}_{+}; \mathbb{Y} \right) \cap L^{2}_{w, loc} \left( \mathbb{R}_{+}; \mathbb{V} \cap \left( H^{2} \left( \Omega \right) \cap H^{1}_{0} \left( \Omega \right) \right) \right),$$

where w and  $w^*$  denote the weak and weak<sup>\*</sup> topologies, respectively.

• The trajectory dynamical system  $(S_t, Tr(\mathcal{Z}_b))$  possesses a trajectory attractor  $\mathcal{A}_{tr}$  and

$$\mathcal{A}_{tr|t=0} = \mathcal{A}^{m-v}$$