Long term behavior of binary fluid mixture flows in 2D

Ciprian G. Gal (University of Missouri - Columbia)

Cortona, Italy
September 22th, 2008

II
U

- A model for the study of incompressible multi-phase flows: consider a mixture composed of two incompressible fluids (or phases) of mass densities $\rho_{A}(x)$ and $\rho_{B}(x)$.
- Define an order parameter function

$$
\phi(x)=\frac{\rho_{A}(x)-\rho_{B}(x)}{\rho_{A}(x)+\rho_{B}(x)} \in[-1,+1]
$$

such that

$$
\begin{aligned}
& \phi(x)=-1 \text { if and only if the fluid } A \text { is present at point } x \\
& \phi(x)=+1 \text { if and only if the fluid } B \text { is present at point } x .
\end{aligned}
$$

- Suppose that each fluid possesses its own velocity field $\boldsymbol{v}_{j}(j=A, B)$. Define the mean velocity field by $\boldsymbol{u}=\left(\boldsymbol{u}_{A}+\boldsymbol{u}_{B}\right) / 2$.
- The pair (\boldsymbol{u}, ϕ) satisfies the set of equations:

$$
\begin{gather*}
\partial_{t} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}-\nu \Delta \boldsymbol{u}+\nabla p=\mathcal{K} \mu \nabla \phi+\boldsymbol{g}, \text { in } \Omega \times(0,+\infty), \tag{1.1}\\
\nabla \cdot \boldsymbol{u}=0, \text { in } \Omega \times(0,+\infty), \tag{1.2}
\end{gather*}
$$

and

$$
\begin{gather*}
\partial_{t} \phi+\boldsymbol{u} \cdot \nabla \phi+A_{K} \mu=0, \text { in } \Omega \times(0,+\infty), \tag{1.3}\\
\mu=-\varepsilon \Delta \phi+\alpha f(\phi), \text { in } \Omega \times(0,+\infty), \tag{1.4}
\end{gather*}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}, N=2,3$, with smooth boundary $\Gamma=\partial \Omega$ and \boldsymbol{g} is an external volumic force (gravity force, for example).

- Two cases:

$$
\begin{aligned}
\text { If } K & =A C, \text { then let } A_{A C}=I \\
& \Rightarrow(1.3) \text { is a convective Allen-Cahn equation. } \\
\text { If } K & =C H, \text { then let } A_{A C}=-\Delta \\
& \Rightarrow(1.3) \text { is a convective Cahn-Hilliard equation. }
\end{aligned}
$$

- μ is the chemical potential of the theoretical uniform mixture of composition ϕ and is obtained as a variational derivative of the following free energy functional

$$
\begin{equation*}
\mathcal{F}(\phi)=\int_{\Omega}\left(\frac{\varepsilon}{2}|\nabla \phi|^{2}+\alpha F(\phi)\right) d x \tag{1.5}
\end{equation*}
$$

where $F^{\prime}(s)=f(s)$ and $\varepsilon, \alpha>0$ are two physical parameters describing the interaction between the two phases.

- Two typical examples of a potential function F : either

$$
F(s)=c_{1} s^{4}-c_{2} s^{2}
$$

or

$$
F(s)=c_{1}((1+s) \log (1+s)+(1-s) \log (1-s))+c_{2}\left(1-s^{2}\right), c_{1}, c_{2}>0
$$

- Focus on the case $K=A C$. Take Dirichlet boundary conditions

$$
\boldsymbol{u}=\mathbf{0}, \phi=0, \text { on } \Gamma \times(0,+\infty),
$$

and initial conditions

$$
\boldsymbol{u}_{\mid t=0}=\boldsymbol{u}_{0}, \phi_{\mid t=0}=\phi_{0} \text { in } \Omega
$$

- Set

$$
\begin{gathered}
\mathbb{H}=\left\{\boldsymbol{u} \in \mathbb{L}^{2}(\Omega, d x / \mathcal{K}): \nabla \cdot \boldsymbol{u}=0 \text { in } \Omega, \boldsymbol{u}=0 \text { on } \Gamma\right\}, \\
\mathbb{V}=\left\{\boldsymbol{u} \in \mathbb{H}_{0}^{1}(\Omega): \nabla \cdot \boldsymbol{u}=0 \text { in } \Omega\right\} .
\end{gathered}
$$

- We let

$$
\begin{gathered}
A_{0} \boldsymbol{u}=-\Delta \boldsymbol{u}, \quad \forall \boldsymbol{u} \in D\left(A_{0}\right)=\mathbb{H}^{2}(\Omega) \cap \mathbb{V}, \\
A_{1} \phi=-\Delta \phi, \quad \forall \phi \in D\left(A_{1}\right)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) .
\end{gathered}
$$

- We formulate the class of problems we want to solve.

Problem P. Let $\operatorname{dim} \Omega=2$. For $\boldsymbol{g} \in \mathbb{V}^{*}$ and any given pair of initial data

$$
\begin{equation*}
\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathbb{Y}:=\mathbb{H} \times H_{0}^{1}(\Omega), \tag{1.7}
\end{equation*}
$$

find $(\boldsymbol{u}(t), \phi(t)) \in C([0,+\infty) ; \mathbb{Y})$ with

$$
\partial_{t} \boldsymbol{u}(t) \in L^{4 / 3}\left([0,+\infty) ; \mathbb{V}^{*}\right), \partial_{t} \phi(t) \in L^{2}\left([0,+\infty) ; L^{2}(\Omega)\right)
$$

such that

$$
\left\{\begin{array}{c}
\frac{d \boldsymbol{u}}{d t}+\nu A_{0} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}-\mathcal{K} \varepsilon A_{1} \phi \nabla \phi=\boldsymbol{g} \text { in } \mathbb{V}^{*}, \text { a.e. in }(0,+\infty), \tag{1.8}\\
\mu=\varepsilon A_{1} \phi+\alpha f(\phi), \text { a.e. in } \Omega \times(0,+\infty) \\
\frac{d \phi}{d t}+\mu+\boldsymbol{u} \cdot \nabla \phi=0, \text { a.e. in } \Omega \times(0,+\infty),
\end{array}\right.
$$

and fulfills the initial conditions. Here and below \mathbb{Y} is a Hilbert space endowed with the obvious norm given by

$$
\|(\boldsymbol{u}, \phi)\|_{\mathbb{Y}}:=\left(|\boldsymbol{u}|^{2}+\varepsilon|\nabla \phi|_{L^{2}}^{2}\right)^{1 / 2} .
$$

- Concerning the nonlinearity of our system, we suppose that $f \in C^{1}(\mathbb{R})$ satisfies

$$
\left\{\begin{array}{c}
\lim _{|s| \rightarrow \infty} \inf f^{\prime}(s)>0, \tag{1.9}\\
\left|f^{\prime}(s)\right| \leq c_{f}\left(1+|s|^{m}\right), \forall s \in \mathbb{R}, m \geq 1 .
\end{array}\right.
$$

Proposition 1. Let $f \in C^{1}(\mathbb{R})$ satisfy (1.9). If $(\boldsymbol{u}(t), \phi(t))$ is a smooth solution of problem \mathbf{P}, then the following estimate holds:

$$
\begin{aligned}
& \|(\boldsymbol{u}(t), \phi(t))\|_{\mathbb{Y}}^{2}+\int_{t}^{t+1}\left(\nu\|\boldsymbol{u}(s)\|^{2}+|\mu(s)|_{L^{2}}^{2}+|F(\phi(s))|_{L^{1}}\right) d s \\
& +\int_{t}^{t+1}\left(\left\|\partial_{t} \boldsymbol{u}(s)\right\|_{\mathbb{V}^{*}}^{4 / 3}+\left|A_{1} \phi(s)\right|_{L^{2}}^{2}+\left|\partial_{t} \phi(s)\right|_{L^{2}}^{2}\right) d s \\
\leq & Q\left(\|(\boldsymbol{u}(0), \phi(0))\|_{\mathbb{Y}}^{2}\right) e^{-\rho t}+C\left(\nu, \varepsilon, \alpha, \mathcal{K},\|\boldsymbol{g}\|_{\mathbb{V}^{*}}\right), \forall t \geq 0,
\end{aligned}
$$

where the monotone non-decreasing function Q and the positive constants ρ and C are independent of t and the initial conditions.

Uniqueness of weak solutions to \mathbf{P} follows from the following continuous dependence result.
Lemma 2. Let $\left(\boldsymbol{u}_{i}(t), \phi_{i}(t)\right)$ be the solution corresponding to the initial data $\left(\boldsymbol{u}_{i}(0), \phi_{i}(0)\right) \in \mathbb{Y}, i=1,2$. Then, for any $t \geq 0$, the following estimate holds

$$
\begin{gather*}
\left|\boldsymbol{u}_{1}(t)-\boldsymbol{u}_{1}(t)\right|^{2}+\left|\nabla\left(\phi_{1}(t)-\phi_{2}(t)\right)\right|_{L^{2}}^{2} \\
+\int_{0}^{t}\left[\nu\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{1}(s)\right\|^{2}+\varepsilon\left|A_{1}\left(\phi_{1}(s)-\phi_{2}(s)\right)\right|_{L^{2}}^{2}\right] d s \\
\leq C e^{L t}\left(\left|\boldsymbol{u}_{1}(0)-\boldsymbol{u}_{1}(0)\right|^{2}+\left|\nabla\left(\phi_{1}(0)-\phi_{2}(0)\right)\right|_{L^{2}}^{2}\right), \tag{1.10}
\end{gather*}
$$

where C and L are positive constants depending only on the norms of the initial data in \mathbb{Y}, on Ω and on the parameters of the problem, but are both independent of time.

- the existence of a compact absorbing set.

Lemma 3. Let the assumptions of Proposition 1 be satisfied. Then, there is a positive constant \mathcal{C} (independent of time and initial data, but which depends only on the physical parameters of the problem) such that, for any $R>0$, there exists $t_{1}=t_{1}(R)>0$ such that

$$
\begin{equation*}
\|(\boldsymbol{u}(t), \phi(t))\|_{\mathbb{V} \times D\left(A_{1}\right)} \leq \mathcal{C}, \quad \forall t \geq t_{1} \tag{1.11}
\end{equation*}
$$

for any $\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathcal{B} \subset \mathbb{Y}$.

- We can also prove the following.

Proposition 4. If $\boldsymbol{g} \in \mathbb{H}$ and $f \in C^{2}(\mathbb{R})$ satisfies (1.9), then there exists a $D\left(A_{0}\right) \times D\left(A_{1}^{3 / 2}\right)$ - bounded absorbing set, for the semigroup $\mathcal{S}(t)$. More precisely, there exist a time $t_{2} \geq t_{1}$ and a positive constant \mathcal{C}^{\prime} such that

$$
\begin{equation*}
\left|A_{0} \boldsymbol{u}(t)\right|^{2}+\left|A_{1}^{3 / 2} \phi(t)\right|_{L^{2}}^{2} \leq \mathcal{C}^{\prime}, \quad \forall t \geq t_{2} \tag{1.12}
\end{equation*}
$$

1 The attractors

- The global attractor.

Theorem 5. Let the assumptions of Proposition 1 be satisfied. Then there exists a connected compact global attractor $\mathcal{A} \subset \mathbb{Y}$ for the semigroup $\mathcal{S}(t)$. Moreover, if $\boldsymbol{g} \in \mathbb{V}^{*}$ and $f \in C^{1}(\mathbb{R})$, the global attractor \mathcal{A} is bounded in $\mathbb{V} \times D\left(A_{1}\right)$, whereas \mathcal{A} is bounded in $D\left(A_{0}\right) \times D\left(A_{1}^{3 / 2}\right)$ when $\boldsymbol{g} \in \mathbb{H}$ and $f \in C^{2}(\mathbb{R})$.
Remark 1. Suppose that $\boldsymbol{g} \in \mathbb{H}_{d}^{s-1}(\Omega), \mathbb{H}_{d}^{0}(\Omega):=\mathbb{H}$ and $f \in C^{s+1}(\mathbb{R}), s \geq 0$, satisfies (1.9). Then, we can prove as in Proposition 4 that any functional invariant set for the semigroup $\mathcal{S}(t)$ is in fact bounded in $D\left(A_{0}^{(s+1) / 2}\right) \times D\left(A_{1}^{(s+2) / 2}\right)$, provided that the boundary Γ of Ω is smooth enough.

- The existence of finite dimensional exponential attractors.

Theorem 6. Let $\boldsymbol{g} \in \mathbb{H}$ and $f \in C^{2}(\mathbb{R})$ satisfy the assumptions of Theorem 5 . Then, $\mathcal{S}(t)$ possesses an exponential attractor $\mathcal{M} \subset \mathbb{Y}$, namely,
(i) \mathcal{M} is compact and semi-invariant with respect $\mathcal{S}(t)$, i.e.,

$$
\begin{equation*}
\mathcal{S}(t)(\mathcal{M}) \subset \mathcal{M}, \quad \forall t \geq 0 \tag{1.13}
\end{equation*}
$$

(ii) The fractal dimension $\operatorname{dim}_{F}(\mathcal{M}, \mathbb{Y})$ of \mathcal{M} is finite.
(iii) \mathcal{M} attracts exponentially fast any bounded subset B of \mathbb{Y}, that is, there exist a positive nondecreasing function Q and a constant $\rho>0$ such that

$$
\begin{equation*}
\operatorname{dist}_{\mathbb{Y}}(\mathcal{S}(t) B, \mathcal{M}) \leq Q\left(\|B\|_{\mathbb{Y}}\right) e^{-\rho t}, \quad \forall t \geq 0 \tag{1.14}
\end{equation*}
$$

Here dist $\mathbb{Y}_{\mathbb{Y}}$ denotes the non-symmetric Hausdorff distance between sets in \mathbb{Y} and $\|B\|_{\mathbb{Y}}$ stands for the size of B in \mathbb{Y}.
Remark 2. Theorem 6 entails that \mathcal{A} has finite fractal dimension.

- Physical bounds on the fractal dimension of the global attractor. We have the following.

Theorem 7. We consider the dynamical system $(\mathcal{S}(t), \mathbb{Y})$ associated with problem (1.8), when $A_{A C}=I$. Let \bar{n} be the first integer such that

$$
\bar{n}-1<c \sqrt{\frac{a_{1}+\left(a_{2}\right)^{2}\left(1+\log a_{2}\right)}{a_{3}}} \leq \bar{n}
$$

where $a_{i}, i=1,2,3$, are computed explicitly in terms of the physical parameters $\varepsilon, \nu, \mathcal{K},|\Omega|$ and c is a non-dimensional positive constant that depends only on Ω and m. Then, the corresponding global attractor \mathcal{A} defined by Theorem 5 has a Hausdorff dimension less than or equal to \bar{n} and a fractal dimension less than or equal to $2 \bar{n}$.

2 Convergence to equilibria

Proposition 8. Let the hypotheses of Theorem 5 hold. Assume that $\mathbf{g}=\mathbf{0}$. The semigroup $\mathcal{S}(t)$ has a (strict) Lyapunov functional defined by the free energy, namely,

$$
\mathcal{L}\left(\mathbf{u}_{0}, \phi_{0}\right)=\frac{1}{2}\left[\varepsilon\left|\nabla \phi_{0}\right|_{L^{2}}^{2}+\left|\boldsymbol{u}_{0}\right|^{2}\right]+\alpha \int_{\Omega} F\left(\phi_{0}\right) d x
$$

where F is the primitive of f. In particular, we have, for all $t>0$,

$$
\begin{equation*}
\frac{d}{d t} \mathcal{L}(\boldsymbol{u}(t), \phi(t))=-\nu\|\boldsymbol{u}(t)\|^{2}-|\mu(t)|_{L^{2}}^{2} . \tag{1.15}
\end{equation*}
$$

- The set of equilibria: the stationary problem corresponding to problem \mathbf{P} is

$$
\left\{\begin{array}{c}
\boldsymbol{v}=0 \text { in } \Omega, \\
-\varepsilon \Delta \psi+\alpha f(\psi)=0 \text { in } \Omega, \\
\psi=0 \text { on } \Gamma .
\end{array}\right.
$$

- The asymptotic behavior of single trajectories.

Theorem 9. Let the assumptions of Proposition 1 hold. Suppose, in addition, that the nonlinearity F is real analytic. For any given initial datum $\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathbb{Y}$, the solution $(\boldsymbol{u}(t), \phi(t))$ to \mathbf{P} converges to a single equilibrium $(\mathbf{0}, \psi)$ in the topology of \mathbb{Y}, that is,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(|\boldsymbol{u}(t)|+|\phi(t)-\psi|_{H^{1}}\right)=0 \tag{1.16}
\end{equation*}
$$

Moreover, there exist $C \geq 0$ and $\xi \in(0,1 / 2)$ depending on $(\mathbf{0}, \psi)$ such that

$$
\begin{equation*}
|\boldsymbol{u}(t)|+|\phi(t)-\psi|_{H^{1}} \leq C(1+t)^{-\xi /(1-2 \xi)} \tag{1.17}
\end{equation*}
$$

for all $t \geq 0$.

3 Singular potentials

- Physicists have often proposed to consider functions like

$$
f(s)=c_{1} \log \frac{1+s}{1-s}-c_{2} s, c_{1}, c_{2}>0
$$

where we suppose that the order parameter ϕ is normalized in such a way that the two pure phases of the fluid are -1 and +1 , respectively.

- General assumptions on the singular potential $f \in C^{1}(-1,1)$:

$$
\begin{equation*}
\lim _{s \rightarrow \pm 1} f(s)= \pm \infty \text { and } \lim _{s \rightarrow \pm 1} f^{\prime}(s)=+\infty \tag{1.18}
\end{equation*}
$$

- Define the quantity

$$
D[\phi]=\left[1-|\phi|_{L^{\infty}(\bar{\Omega})}\right]^{-1}
$$

and the following Banach space

$$
\mathbb{X}:=\left\{\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathbb{H} \times\left(H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right): 0<D\left[\phi_{0}\right]<+\infty\right\}
$$

endowed with the metric topology of $\mathbb{Y}=\mathbb{H} \times H_{0}^{1}(\Omega)$.

We have
Theorem 10. Suppose that f satisfies (1.18). Let $\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathbb{X}$ and $\boldsymbol{g} \in \mathbb{V}^{*}$. If $(\boldsymbol{u}(t), \phi(t))$ is a regular solution of problem \mathbf{P}, then the dissipative estimate holds. In addition, the order parameter $\phi(t)$ is strictly separated from the singular values ± 1 of the function f, that is, there exists a positive constant $\delta \in] 0,1\left[\right.$ which depends only on $D\left[\phi_{0}\right]$ such that

$$
\begin{equation*}
|\phi(t)|_{L^{\infty}(\bar{\Omega})} \leq \delta<1, \text { for all } t \geq 0 \tag{1.19}
\end{equation*}
$$

Finally, associated with problem \mathbf{P}, we can define a semigroup $\overline{\mathcal{S}}(t)$, by the standard expression

$$
\overline{\mathcal{S}}(t)\left(\boldsymbol{u}_{0}, \phi_{0}\right)=(\boldsymbol{u}(t), \phi(t)), \overline{\mathcal{S}}(t): \mathbb{X} \rightarrow \mathbb{X}
$$

where $(\boldsymbol{u}(t), \phi(t))$ is the unique solution to \mathbf{P}.
Theorem 11. Let the assumptions of Theorem 10 be satisfied. Then there exists a connected compact global attractor $\overline{\mathcal{A}} \subset \mathbb{X}$ for the semigroup $\overline{\mathcal{S}}(t)$. Moreover, the global attractor $\overline{\mathcal{A}}$ is bounded in $\mathbb{V} \times D\left(A_{1}\right)$.

- Convergence to single equilibria.

Theorem 12. Let $\boldsymbol{g}=\mathbf{0}$ and let f satisfy the assumptions of (1.18). Suppose, in addition, that the nonlinearity f is real analytic in $(-1,1)$. For any given initial datum $\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathbb{X}$, the solution $(\boldsymbol{u}(t), \phi(t))$ to \mathbf{P} converges to a single equilibrium $(\mathbf{0}, \psi)$ in the topology of \mathbb{Y}, that is,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(|\boldsymbol{u}(t)|+|\phi(t)-\psi|_{H^{1}}\right)=0 \tag{1.20}
\end{equation*}
$$

4 Open questions

- The $3 D$ treatment of our models.
- Conjecture: For every

$$
\left(\boldsymbol{u}_{0}, \phi_{0}\right) \in \mathbb{Y}=\mathbb{H} \times H_{0}^{1}(\Omega), \boldsymbol{g}=\boldsymbol{g}(x) \in \mathbb{V}^{*},
$$

the problem \mathbf{P} possesses at least one global weak energy solution

$$
(\boldsymbol{u}(t), \phi(t)) \in L^{\infty}\left(\mathbb{R}_{+} ; \mathbb{Y}\right) \cap L_{b}^{2}\left(\mathbb{R}_{+} ; \mathbb{V} \times\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)\right)=: \mathcal{Z}_{b},
$$

which satisfies an energy inequality of the form:

$$
\begin{aligned}
\partial_{t} E & (t)+\kappa E(t)+c\left(\nu\|\boldsymbol{u}(t)\|_{\mathbb{V}}^{2}+|\phi(t)|_{H^{2}}^{2}+|\mu(t)|_{L^{2}}^{2}\right) \\
& +c(|f(\phi(t))|, 1+|\phi(t)|)_{L^{2}} \leq c\left(1+\|\boldsymbol{g}\|_{\mathbb{V}^{*}}^{2}\right),
\end{aligned}
$$

for some positive constant c which depends only on the physical parameters of the problem, but is independent of initial data and time.

- Here, $0<\kappa<\xi$ are two small constants and

$$
E(t):=\|(\boldsymbol{u}(t), \phi(t))\|_{\mathbb{Y}}^{2}+2 \alpha(F(\phi(t)), 1)_{L^{2}}+\xi|\phi(t)|_{L^{2}}^{2}+c
$$

- This energy inequality implies that the following estimate holds:

$$
\begin{gather*}
\|(\boldsymbol{u}(t), \phi(t))\|_{\mathbb{Y}}^{2}+\int_{\tau}^{t} e^{-\kappa(t-s)}\left(\nu\|\boldsymbol{u}(s)\|_{\mathbb{V}}^{2}+|\phi(s)|_{H^{2}}^{2}\right) d s \tag{1.21}\\
\leq\|(\boldsymbol{u}(\tau), \phi(\tau))\|_{\mathbb{Y}}^{2} e^{-\kappa(t-\tau)}+c_{*}\left(1+\|\boldsymbol{g}\|_{\mathbb{V}^{*}}^{2}\right)
\end{gather*}
$$

for almost every $t \geq \tau \in \mathbb{R}_{+}$, where $c_{*}>0$ depends only on $\Omega, \varepsilon, \alpha, \nu$ and \mathcal{K}.

- Define the trajectory phase-space, as
$\operatorname{Tr}\left(\mathcal{Z}_{b}\right):=\left\{(\boldsymbol{u}(t), \phi(t)) \in \mathcal{Z}_{b}:(\boldsymbol{u}(t), \phi(t))\right.$ solves \mathbf{P} and satisfies (1.21) $\}$.
- Define a shift-semigroup $S_{t}: \operatorname{Tr}\left(\mathcal{Z}_{b}\right) \rightarrow \operatorname{Tr}\left(\mathcal{Z}_{b}\right)$, which acts continuously on $\operatorname{Tr}\left(\mathcal{Z}_{b}\right)$, by

$$
S_{t}(\boldsymbol{u}(s), \phi(s))=(\boldsymbol{u}(t+s), \phi(t+s)), t \geq 0, s \in \mathbb{R}
$$

- The trajectory dynamical system $\left(S_{t}, \operatorname{Tr}\left(\mathcal{Z}_{b}\right)\right)$ is well-defined. The dissipative estimate (1.21) implies

$$
\begin{equation*}
\left\|S_{t}(\boldsymbol{u}, \phi)\right\|_{\mathcal{Z}_{b}}^{2} \leq c\|(\boldsymbol{u}, \phi)\|_{L^{\infty}\left(\mathbb{R}_{+} ; \mathbb{Y}\right)}^{2} e^{-k t}+c_{*}\left(1+\|\boldsymbol{g}\|_{\mathbb{V}^{*}}^{2}\right), \tag{1.22}
\end{equation*}
$$

for every $t \geq 0$ and $(\boldsymbol{u}(t), \phi(t)) \in \mathcal{Z}_{b}$.

- Defining the ball $B_{R}\left(\mathcal{Z}_{b}\right)$ as

$$
\begin{equation*}
B_{R}\left(\mathcal{Z}_{b}\right):=\left\{(\boldsymbol{u}(t), \phi(t)) \in \mathcal{Z}_{b}:\|(\boldsymbol{u}, \phi)\|_{\mathcal{Z}_{b}} \leq R\right\} . \tag{1.23}
\end{equation*}
$$

- We have that $B_{R}\left(\mathcal{Z}_{b}\right)$ is a $\mathcal{Z}_{b^{-}}$absorbing ball for the trajectory semigroup S_{t} on \mathcal{Z}_{b}.
- $B_{R}\left(\mathcal{Z}_{b}\right)$ is compact in

$$
\mathcal{Z}_{l o c}:=L_{w^{*}, l o c}^{\infty}\left(\mathbb{R}_{+} ; \mathbb{Y}\right) \cap L_{w, l o c}^{2}\left(\mathbb{R}_{+} ; \mathbb{V} \cap\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)\right),
$$

where w and w^{*} denote the weak and weak* topologies, respectively.

- The trajectory dynamical system $\left(S_{t}, \operatorname{Tr}\left(\mathcal{Z}_{b}\right)\right)$ possesses a trajectory attractor $\mathcal{A}_{\text {tr }}$ and

$$
\mathcal{A}_{t r \mid t=0}=\mathcal{A}^{m-v} .
$$

