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• A model for the study of incompressible multi-phase flows: consider a

mixture composed of two incompressible fluids (or phases) of mass densities

ρA (x) and ρB (x).

• Define an order parameter function

φ (x) =
ρA (x) − ρB (x)

ρA (x) + ρB (x)
∈ [−1,+1] ,

such that

φ (x) = −1 if and only if the fluid A is present at point x,

φ (x) = +1 if and only if the fluid B is present at point x.

• Suppose that each fluid possesses its own velocity field vj (j = A,B).

Define the mean velocity field by u = (uA + uB)/2.



• The pair (u, φ) satisfies the set of equations:

∂tu + u · ∇u − ν∆u + ∇p = Kµ∇φ+ g, in Ω × (0,+∞) , (1.1)

∇ · u = 0, in Ω × (0,+∞) , (1.2)

and

∂tφ+ u · ∇φ+AKµ = 0, in Ω × (0,+∞) , (1.3)

µ = −ε∆φ+ αf (φ) , in Ω × (0,+∞) , (1.4)

where Ω is a bounded domain in R
N , N = 2, 3, with smooth boundary

Γ = ∂Ω and g is an external volumic force (gravity force, for example).

• Two cases:

If K = AC, then let AAC = I

⇒ (1.3) is a convective Allen-Cahn equation.

If K = CH, then let AAC = −∆

⇒ (1.3) is a convective Cahn-Hilliard equation.



• µ is the chemical potential of the theoretical uniform mixture of

composition φ and is obtained as a variational derivative of the following

free energy functional

F (φ) =

∫

Ω

(ε

2
|∇φ|

2
+ αF (φ)

)

dx, (1.5)

where F
′

(s) = f (s) and ε, α > 0 are two physical parameters describing

the interaction between the two phases.

• Two typical examples of a potential function F : either

F (s) = c1s
4 − c2s

2,

or

F (s) = c1 ((1 + s) log (1 + s) + (1 − s) log (1 − s)) + c2
(

1 − s2
)

, c1, c2 > 0.



• Focus on the case K = AC. Take Dirichlet boundary conditions

u = 0, φ = 0, on Γ × (0,+∞) ,

and initial conditions

u|t=0 = u0, φ|t=0 = φ0 in Ω.

• Set

H =
{

u ∈ L
2 (Ω, dx/K) : ∇ · u = 0 in Ω, u = 0 on Γ

}

,

V =
{

u ∈ H
1
0 (Ω) : ∇ · u = 0 in Ω

}

.

• We let

A0u = −∆u, ∀u ∈ D (A0) = H
2 (Ω) ∩ V,

A1φ = −∆φ, ∀φ ∈ D (A1) = H2 (Ω) ∩H1
0 (Ω) .



• We formulate the class of problems we want to solve.

Problem P. Let dim Ω = 2. For g ∈ V
∗ and any given pair of initial data

(u0, φ0) ∈ Y := H ×H1
0 (Ω) , (1.7)

find (u (t) , φ (t)) ∈ C ([0,+∞); Y) with

∂tu (t)∈ L4/3 ([0 ,+∞); V∗), ∂tφ (t)∈ L2
(

[0 ,+∞);L2 (Ω)
)

such that














du

dt + νA0u + u · ∇u −KεA1φ∇φ = g in V
∗, a.e. in (0,+∞) ,

µ = εA1φ+ αf (φ) , a.e. in Ω × (0,+∞)

dφ
dt + µ+ u · ∇φ = 0, a.e. in Ω × (0,+∞) ,

(1.8)

and fulfills the initial conditions. Here and below Y is a Hilbert space endowed

with the obvious norm given by

‖(u, φ)‖
Y

:=
(

|u|
2

+ ε |∇φ|
2
L2

)1/2

.



• Concerning the nonlinearity of our system, we suppose that f ∈ C1 (R)

satisfies






lim|s|→∞ inf f
′

(s) > 0,

|f ′ (s)| ≤ cf (1 + |s|
m

) , ∀s ∈ R, m ≥ 1.
(1.9)

Proposition 1. Let f ∈ C1(R) satisfy (1.9). If (u (t) , φ (t)) is a smooth

solution of problem P, then the following estimate holds:

‖(u (t) , φ (t))‖
2
Y

+

t+1
∫

t

(

ν ‖u (s)‖
2

+ |µ (s)|
2
L2 + |F (φ (s))|L1

)

ds

+

t+1
∫

t

(

‖∂tu (s)‖
4/3
V∗ + |A1φ (s)|

2
L2 + |∂tφ (s)|

2
L2

)

ds

≤ Q
(

‖(u (0) , φ (0))‖
2
Y

)

e−ρt + C (ν, ε, α,K, ‖g‖
V∗) , ∀t ≥ 0,

where the monotone non-decreasing function Q and the positive constants ρ

and C are independent of t and the initial conditions.



Uniqueness of weak solutions to P follows from the following continuous

dependence result.

Lemma 2. Let (ui (t) , φi (t)) be the solution corresponding to the initial data

(ui (0) , φi (0)) ∈ Y, i = 1, 2. Then, for any t ≥ 0, the following estimate holds

|u1 (t) − u1 (t)|
2

+ |∇ (φ1 (t) − φ2 (t))|
2
L2

+

t
∫

0

[

ν ‖u1 (s) − u1 (s)‖
2

+ ε |A1 (φ1 (s) − φ2 (s))|
2
L2

]

ds

≤ CeLt
(

|u1 (0) − u1 (0)|
2

+ |∇ (φ1 (0) − φ2 (0))|
2
L2

)

, (1.10)

where C and L are positive constants depending only on the norms of the initial

data in Y, on Ω and on the parameters of the problem, but are both independent

of time.



• the existence of a compact absorbing set.

Lemma 3. Let the assumptions of Proposition 1 be satisfied. Then, there is a

positive constant C (independent of time and initial data, but which depends

only on the physical parameters of the problem) such that, for any R > 0, there

exists t1 = t1(R) > 0 such that

‖(u (t) , φ (t))‖
V×D(A1)

≤ C, ∀ t ≥ t1, (1.11)

for any (u0, φ0) ∈ B ⊂ Y.

• We can also prove the following.

Proposition 4. If g ∈ H and f ∈ C2 (R) satisfies (1.9), then there exists a

D (A0) ×D(A
3/2
1 )- bounded absorbing set, for the semigroup S (t). More

precisely, there exist a time t2 ≥ t1 and a positive constant C
′

such that

|A0u (t)|
2

+
∣

∣

∣
A

3/2
1 φ (t)

∣

∣

∣

2

L2
≤ C

′

, ∀t ≥ t2. (1.12)



1 The attractors

• The global attractor.

Theorem 5. Let the assumptions of Proposition 1 be satisfied. Then there

exists a connected compact global attractor A ⊂ Y for the semigroup S (t) .

Moreover, if g ∈ V
∗ and f ∈ C1 (R), the global attractor A is bounded in

V ×D (A1), whereas A is bounded in D (A0) ×D(A
3/2
1 ) when g ∈ H and

f ∈ C2 (R) .

Remark 1. Suppose that g ∈ H
s−1
d (Ω) , H

0
d (Ω) := H and f ∈ Cs+1 (R) , s ≥ 0,

satisfies (1.9). Then, we can prove as in Proposition 4 that any functional

invariant set for the semigroup S (t) is in fact bounded in

D(A
(s+1)/2
0 )×D(A

(s+2)/2
1 ), provided that the boundary Γ of Ω is smooth enough.



• The existence of finite dimensional exponential attractors.

Theorem 6. Let g ∈ H and f ∈ C2(R) satisfy the assumptions of Theorem 5.

Then, S (t) possesses an exponential attractor M ⊂ Y, namely,

(i) M is compact and semi-invariant with respect S (t) , i.e.,

S (t) (M) ⊂ M, ∀ t ≥ 0. (1.13)

(ii) The fractal dimension dimF (M,Y) of M is finite.

(iii) M attracts exponentially fast any bounded subset B of Y, that is, there

exist a positive nondecreasing function Q and a constant ρ > 0 such that

distY (S (t)B,M) ≤ Q(‖B‖Y)e−ρt, ∀ t ≥ 0. (1.14)

Here distY denotes the non-symmetric Hausdorff distance between sets in Y and

‖B‖Y stands for the size of B in Y.

Remark 2. Theorem 6 entails that A has finite fractal dimension.



• Physical bounds on the fractal dimension of the global attractor. We have

the following.

Theorem 7. We consider the dynamical system (S (t) ,Y) associated with

problem (1.8), when AAC = I. Let n be the first integer such that

n− 1 < c

√

a1 + (a2)
2
(1 + log a2)

a3
≤ n,

where ai, i = 1, 2, 3, are computed explicitly in terms of the physical parameters

ε, ν, K, |Ω| and c is a non-dimensional positive constant that depends only on Ω

and m. Then, the corresponding global attractor A defined by Theorem 5 has a

Hausdorff dimension less than or equal to n and a fractal dimension less than

or equal to 2n.



2 Convergence to equilibria

Proposition 8. Let the hypotheses of Theorem 5 hold. Assume that g = 0.

The semigroup S(t) has a (strict) Lyapunov functional defined by the free

energy, namely,

L(u0, φ0) =
1

2

[

ε |∇φ0|
2
L2 + |u0|

2
]

+ α

∫

Ω

F (φ0) dx,

where F is the primitive of f . In particular, we have, for all t > 0,

d

dt
L(u (t) , φ (t)) = −ν ‖u (t)‖

2
− |µ (t)|

2
L2 . (1.15)

• The set of equilibria: the stationary problem corresponding to problem P is















v = 0 in Ω,

−ε∆ψ + αf(ψ) = 0 in Ω,

ψ = 0 on Γ.



• The asymptotic behavior of single trajectories.

Theorem 9. Let the assumptions of Proposition 1 hold. Suppose, in addition,

that the nonlinearity F is real analytic. For any given initial datum

(u0, φ0) ∈ Y, the solution (u (t) , φ (t)) to P converges to a single equilibrium

(0, ψ) in the topology of Y, that is,

lim
t→+∞

(|u(t)| + |φ(t) − ψ|H1) = 0. (1.16)

Moreover, there exist C ≥ 0 and ξ ∈ (0, 1/2) depending on (0, ψ) such that

|u(t)| + |φ(t) − ψ|H1 ≤ C(1 + t)−ξ/(1−2ξ), (1.17)

for all t ≥ 0.



3 Singular potentials

• Physicists have often proposed to consider functions like

f (s) = c1 log
1 + s

1 − s
− c2s, c1, c2 > 0.

where we suppose that the order parameter φ is normalized in such a way

that the two pure phases of the fluid are −1 and +1, respectively.

• General assumptions on the singular potential f ∈ C1 (−1, 1):

lim
s→±1

f (s) = ±∞ and lim
s→±1

f
′

(s) = +∞. (1.18)

• Define the quantity

D [φ] =
[

1 − |φ|L∞(Ω)

]−1

and the following Banach space

X :=
{

(u0, φ0) ∈ H ×
(

H1
0 (Ω) ∩ L∞ (Ω)

)

: 0 < D [φ0] < +∞
}

,

endowed with the metric topology of Y = H ×H1
0 (Ω).



We have

Theorem 10. Suppose that f satisfies (1.18). Let (u0, φ0) ∈ X and g ∈ V
∗. If

(u (t) , φ (t)) is a regular solution of problem P, then the dissipative estimate

holds. In addition, the order parameter φ (t) is strictly separated from the

singular values ±1 of the function f , that is, there exists a positive constant

δ ∈ ]0, 1[ which depends only on D [φ0] such that

|φ (t)|L∞(Ω) ≤ δ < 1, for all t ≥ 0. (1.19)

Finally, associated with problem P, we can define a semigroup S (t) , by the

standard expression

S (t) (u0, φ0) = (u (t) , φ (t)), S (t) : X → X,

where (u (t) , φ (t)) is the unique solution to P.

Theorem 11. Let the assumptions of Theorem 10 be satisfied. Then there

exists a connected compact global attractor A ⊂ X for the semigroup S (t) .

Moreover, the global attractor A is bounded in V ×D (A1).



• Convergence to single equilibria.

Theorem 12. Let g = 0 and let f satisfy the assumptions of (1.18). Suppose,

in addition, that the nonlinearity f is real analytic in (−1, 1). For any given

initial datum (u0, φ0) ∈ X, the solution (u (t) , φ (t)) to P converges to a single

equilibrium (0, ψ) in the topology of Y, that is,

lim
t→+∞

(|u(t)| + |φ(t) − ψ|H1) = 0. (1.20)



4 Open questions

• The 3D treatment of our models.

• Conjecture: For every

(u0, φ0) ∈ Y = H ×H1
0 (Ω) , g = g (x) ∈ V

∗,

the problem P possesses at least one global weak energy solution

(u (t) , φ (t)) ∈ L∞ (R+; Y) ∩ L2
b

(

R+; V ×
(

H2 (Ω) ∩H1
0 (Ω)

))

=: Zb,

which satisfies an energy inequality of the form:

∂tE (t) + κE (t) + c
(

ν ‖u (t)‖
2
V

+ |φ (t)|
2
H2 + |µ (t)|

2
L2

)

+c (|f (φ (t))| , 1 + |φ (t)|)L2 ≤ c
(

1 + ‖g‖
2
V∗

)

,

for some positive constant c which depends only on the physical parameters

of the problem, but is independent of initial data and time.



• Here, 0 < κ < ξ are two small constants and

E (t) := ‖(u (t) , φ (t))‖
2
Y

+ 2α (F (φ (t)) , 1)L2 + ξ |φ (t)|
2
L2 + c.

• This energy inequality implies that the following estimate holds:

‖(u (t) , φ (t))‖
2
Y

+

t
∫

τ

e−κ(t−s)
(

ν ‖u (s)‖
2
V

+ |φ (s)|
2
H2

)

ds (1.21)

≤ ‖(u (τ) , φ (τ))‖
2
Y
e−κ(t−τ) + c∗

(

1 + ‖g‖
2
V∗

)

,

for almost every t ≥ τ ∈ R+, where c∗ > 0 depends only on Ω, ε, α, ν and K.

• Define the trajectory phase-space, as

Tr (Zb) := {(u (t) , φ (t)) ∈ Zb : (u (t) , φ (t)) solves P and satisfies (1.21)} .



• Define a shift-semigroup St : Tr (Zb) → Tr (Zb) , which acts continuously

on Tr (Zb), by

St (u (s) , φ (s)) = (u (t+ s) , φ (t+ s)) , t ≥ 0, s ∈ R.

• The trajectory dynamical system (St, T r (Zb)) is well-defined. The

dissipative estimate (1.21) implies

‖St (u, φ)‖
2
Zb

≤ c ‖(u, φ)‖
2
L∞(R+;Y) e

−kt + c∗

(

1 + ‖g‖
2
V∗

)

, (1.22)

for every t ≥ 0 and (u (t) , φ (t)) ∈ Zb.

• Defining the ball BR (Zb) as

BR (Zb) :=
{

(u (t) , φ (t)) ∈ Zb : ‖(u, φ)‖Zb
≤ R

}

. (1.23)



• We have that BR (Zb) is a Zb- absorbing ball for the trajectory semigroup

St on Zb.

• BR (Zb) is compact in

Zloc := L∞
w∗,loc (R+; Y) ∩ L2

w,loc

(

R+; V ∩
(

H2 (Ω) ∩H1
0 (Ω)

))

,

where w and w∗ denote the weak and weak∗ topologies, respectively.

• The trajectory dynamical system (St, T r (Zb)) possesses a trajectory

attractor Atr and

Atr|t=0 = Am−v.


