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Figure: Spinodal Decomposition




e A model for the study of incompressible multi-phase flows: consider a

mixture composed of two incompressible fluids (or phases) of mass densities

pa () and pp ().

Define an order parameter function

(o) - Pa®) 0y ()

pal@) T op (@ < H T

such that

o () —1 if and only if the fluid A is present at point x,
¢ () +1 if and only if the fluid B is present at point x.

Suppose that each fluid possesses its own velocity field v, (j = A, B).
Define the mean velocity field by w = (ua + up)/2.




The pair (u, ¢) satisfies the set of equations:
ohu+ u-Vu—vAu+ Vp=KuVeo+g, in Q x (0,+00),

V-u=0, in Q x (0,+00),

hop+u-Vo+ Axgp =0, in Q x (0,+00),
M:_€A¢+Oéf(¢)7 in € x (07+OO)7

where  is a bounded domain in RY, N = 2,3, with smooth boundary

[' = 09 and g is an external volumic force (gravity force, for example).

Two cases:

If K = AC, thenlet Apsc =1

= (1.3) is a convective Allen-Cahn equation.

If K CH, then let Ay = —A

(1.3) is a convective Cahn-Hilliard equation.




e [ is the chemical potential of the theoretical uniform mixture of
composition ¢ and is obtained as a variational derivative of the following

free energy functional

F@) = [ (510 +aF 0)) do (1.5)

Q

where ' (s) = f (s) and €, a > 0 are two physical parameters describing

the interaction between the two phases.

e Two typical examples of a potential function F': either
F (s) = c18* — cp52,

or

F(s)=ca ((1+s)log(1+s)+(1—s)log(l—35))+c2(l—5%), c1,c0 > 0.




e Focus on the case K = AC'. Take Dirichlet boundary conditions
u=0, ¢=0,onTI x (0,+00),
and initial conditions
Uj—g = U, ¢‘t:0 = ¢ in €.

e Set
H={uecl?(,dz/K):V-u=0inQ, u=00nT},
V={ueHj():V-u=0in Q}.

o We let
Ao’u, = —A’U,, Vu e D (AQ) = H2 (Q) M V,

Arp=—A¢, YoeD(A)=H*(Q)NH;(Q).



e We formulate the class of problems we want to solve.

Problem P. Let dim ) = 2. For g € V* and any given pair of initial data
(ug, ¢p) €Y :=H x Hy (), (1.7)
find (u(t),¢(t)) € C(]0,400);Y) with
Opu (t) € L7 ([0, 400); V*), 0o (t) € L* ([0, +00); L (2))
such that
( ‘fl—‘; +vAju +u-Vu — KeA10Vp = g in V¥, a.e. in (0, +00),

uw=cAi1¢+af(¢), a.e. in Q x (0,+0) (1.8)
L4+ u-Vé=0, ae. inQx (0,+00),

\

and fulfills the initial conditions. Here and below Y is a Hilbert space endowed

with the obvious norm given by

1/2
[, @)l = (lul® +2Vol.) .




e Concerning the nonlinearity of our system, we suppose that f € C! (R)

satisfies
lim|8|_>oo inf f/ (S) > 0,

(1.9)
() <ecr(1+]s]™), VseR, m > 1.

Proposition 1. Let f € CY(R) satisfy (1.9). If (u (t), ¢ (1)) is a smooth
solution of problem P, then the following estimate holds:

t+1

@@+ [ (vl + )+ IF (@ ()], ) ds

t

t+1

+/ (Hatu(s)\w +AL16(8)]70 + |04 (s )!Lz)

t

< Q(Iw(0),6O)I3) e +Cwea, K |glly.), ¥ =0,

where the monotone non-decreasing function () and the positive constants p

and C' are independent of t and the initial conditions.




Uniqueness of weak solutions to P follows from the following continuous
dependence result.

Lemma 2. Let (u; (t), ¢, (t)) be the solution corresponding to the initial data
(u; (0),0,(0)) €Y, i=1,2. Then, for any t > 0, the following estimate holds

[ur (1) = w1 (O +[V (61 (1) — & (1)1
# [ [l 6) = wr (9 + 2141 (6 (5) = 6 ()32 ds
< Ce (Jur (0) = wa (0) + |V (61 (0) = 62 (0)f3:),  (1.10)

where C' and L are positive constants depending only on the norms of the initial

data 1n Y, on £ and on the parameters of the problem, but are both independent

of time.



e the existence of a compact absorbing set.

Lemma 3. Let the assumptions of Proposition 1 be satisfied. Then, there is a
positive constant C (independent of time and initial data, but which depends

only on the physical parameters of the problem) such that, for any R > 0, there
exists t1 = t1(R) > 0 such that

H(u <t> , ¢ (t))HVxD(Al) <C, Vit >t (1'11)

for any (ug,py) € B C Y.

e We can also prove the following.

Proposition 4. If g € H and f € C* (R) satisfies (1.9), then there exists a
D (Ap) % D(A?/Q)— bounded absorbing set, for the semigroup S (t). More

precisely, there exist a time to > t1 and a positive constant C' such that

2 /
[Agu (8)|* + |A§/2¢(t) N (2




1 The attractors

e The global attractor.
Theorem 5. Let the assumptions of Proposition 1 be satisfied. Then there

exists a connected compact global attractor A C Y for the semigroup S ().
Moreover, if g € V* and f € C1 (R), the global attractor A is bounded in

V x D (A1), whereas A is bounded in D (Agy) X D(A?/Q) when g € H and
feC?R).
Remark 1. Suppose that g € HS " (Q), H)(Q) :=H and f € C**1 (R), s > 0,

satisfies (1.9). Then, we can prove as in Proposition 4 that any functional

invariant set for the semigroup S (t) is in fact bounded in
D(ASSH)/Q) X D(A§S+2)/2), provided that the boundary I' of Q) is smooth enough.




e The existence of finite dimensional exponential attractors.

Theorem 6. Let g € H and f € C?*(R) satisfy the assumptions of Theorem 5.
Then, S (t) possesses an exponential attractor M C Y, namely,

(1) M is compact and semi-invariant with respect S (t) , i.e.,

StYM)c M, Vt>0. (1.13)

(it) The fractal dimension dimp (M,Y) of M is finite.
(i12) M attracts exponentially fast any bounded subset B of Y, that is, there

exist a positive nondecreasing function () and a constant p > 0 such that

disty (S (t) B, M) < Q(||B|y)e™ ", vVt > 0. (1.14)

Here disty denotes the non-symmetric Hausdorff distance between sets in Y and
| B||ly stands for the size of B in Y.

Remark 2. Theorem 6 entails that A has finite fractal dimension.




e Physical bounds on the fractal dimension of the global attractor. We have
the following.

Theorem 7. We consider the dynamical system (S (t),Y) associated with
problem (1.8), when Aac = I. Let m be the first integer such that

n—1< c\/a’l + (a2)” (1 + log as)

as

where a;, 1 = 1,2,3, are computed explicitly in terms of the physical parameters
e, v, IC, || and c is a non-dimensional positive constant that depends only on €2
and m. Then, the corresponding global attractor A defined by Theorem 5 has a

Hausdorff dimension less than or equal to m and a fractal dimension less than

or equal to 2n.




2 Convergence to equilibria

Proposition 8. Let the hypotheses of Theorem & hold. Assume that g = 0.
The semigroup S(t) has a (strict) Lyapunov functional defined by the free

enerqy, namely,

Lluao,bo) = 5 [¢1V60 32 + uol’] +a [ F(¢0) da,
Q

where F' is the primitive of f. In particular, we have, for allt > 0,

d , ,
S L(u(t),6 (1) = —vlu @)~ u(0)f (1.15)
e The set of equilibria: the stationary problem corresponding to problem P is

i

v =0 in €,
—eAY + af(y) =0 in €,
Y =0onT.

2\




e The asymptotic behavior of single trajectories.

Theorem 9. Let the assumptions of Proposition 1 hold. Suppose, in addition,
that the nonlinearity F' is real analytic. For any giwen initial datum

(ug, ¢g) € Y, the solution (u(t),¢(t)) to P converges to a single equilibrium
(0,%) in the topology of Y, that is,

Jm (lu(@)] +[6(t) = Yfg) = 0. (1.16)

Moreover, there exist C > 0 and £ € (0,1/2) depending on (0,1) such that

[w(t)] +[6(t) — Wl < C(L+1)7/ 072, (1.17)

for allt > 0.




3 Singular potentials

e Physicists have often proposed to consider functions like

1+s
1 —s

where we suppose that the order parameter ¢ is normalized in such a way

f(s) =cilog

— 98, c1,c9 > 0.

that the two pure phases of the fluid are —1 and +1, respectively.

e General assumptions on the singular potential f € C' (—1,1):

/

81_12&11 f (s) = o0 and Sl_lgtll f (s) =+o0. (1.18)

e Define the quantity
—1
Do) = [1 - 16l (m)

and the following Banach space
X := {(ug, ) € Hx (Hy (Q)NL®(Q)):0< Dpy] <+oc},

endowed with the metric topology of Y = H x H} ().



We have

Theorem 10. Suppose that f satisfies (1.18). Let (ug, ¢y) € X and g € V*. If
(uw (t),o(t)) is a reqular solution of problem P, then the dissipative estimate
holds. In addition, the order parameter ¢ (t) is strictly separated from the
singular values £1 of the function f, that is, there exists a positive constant

6 € 10,1] which depends only on D |¢py] such that

\gb(t)|Loo<§) <d<1, forallt>0. (1.19)

Finally, associated with problem P, we can define a semigroup S (t), by the
standard expression

S (t) (uo, b) = (u(t), ¢ (1), S(t) : X = X,

where (u (t), ¢ (t)) is the unique solution to P.
Theorem 11. Let the assumptions of Theorem 10 be satisfied. Then there

exists a connected compact global attractor A C X for the semigroup S ().
Moreover, the global attractor A is bounded in 'V x D (Ay).




e Convergence to single equilibria.

Theorem 12. Let g = 0 and let f satisfy the assumptions of (1.18). Suppose,
in addition, that the nonlinearity f is real analytic in (—1,1). For any given

initial datum (wg, @) € X, the solution (u(t),¢ (t)) to P converges to a single
equilibrium (0, ) in the topology of Y, that is,

Jim(Ju(t)] + 16(5) = ¥l) = 0. (1.20)



4 Open questions

e The 3D treatment of our models.

e Conjecture: For every
(w0, ) € Y =H x Hy (?), g =g (x) € V",
the problem P possesses at least one global weak energy solution
(w(t),6 (1) € L Ry Y) 1 L (Rys V x (H2 () 0 HY () =: 2y,
which satisfies an energy inequality of the form:

0B () + RE (1) + ¢ (v [[u O + 16 Ol + 1 (O)]72)

+e(IF @M 1+16 (1)) < e (1+1gl3.).

for some positive constant ¢ which depends only on the physical parameters

of the problem, but is independent of initial data and time.



e Here, 0 < Kk < £ are two small constants and

[(w (), & ()3 + 20 (F (6(8)) 1) 12 + €| ()12 + ¢

e This energy inequality implies that the following estimate holds:

t

@@+ [ (vlu)l + o)) ds  (121)

T

<l (r) ¢ (DI e e (1+ gl )

for almost every t > 7 € R, , where ¢, > 0 depends only on {2, €, a, v and K.

e Define the trajectory phase-space, as

Tr(Zy) ={(u(t),p(t)) € Zp:(u(t),¢(t)) solves P and satisfies (1.21)}.




e Define a shift-semigroup S; : Tr (Z,) — Tr (Zp), which acts continuously
on Tr (Zy), by

S, (u(s),d(s) = (u(t+s),6t+s), t>0, scR.

e The trajectory dynamical system (S;, Tr (Z})) is well-defined. The

dissipative estimate (1.21) implies

ISe (w,6)I12, < el @ m e ™ +ee (L9l ). (122)

for every t > 0 and (u (t),¢ (1)) € Zy.
e Defining the ball Bg (Z}) as

Br (2y) = {(u(t),¢ (1) € Zp: [|(u,9)llz, < R}. (1.23)



e We have that Br (Z}) is a Zp- absorbing ball for the trajectory semigroup
St on Zb.

e Br(Z2) is compact in
ZZOC - Lw Jloc (R-HY) M Lw Jloc (R—F;V M (H2 (Q) M H(% (Q))) J
where w and w* denote the weak and weak™ topologies, respectively.

e The trajectory dynamical system (5;, Tr (Zp)) possesses a trajectory

attractor A, and

m—
At'r|t:O =A .



