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Contents:

e Derivation of the full-model equations of the thermoelastic beam.
(the isothermal motion reduces to the von Karman model)

e Derivation of a reduced model (accounting for elongation) concern-
ing deflection and transversal thermal diffusion, only.
(the isothermal motion reduces to the Woinowsky-Krieger model)
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moelastic beam, work in progress.

e Global longtime dynamics of the reduced model with hinged (pinned)
ends: post-buckling dynamics under (Fourier) thermal dissipation;
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beam system, submitted.




Plan

Previous results:

e Analysis of the steady states (Euler and thermal buckling);

[CZGP] M.Coti Zelati - C.G. - V.Pata, Steady states of the hinged extensible beam
with external load, submitted.

e Global longtime dynamics of the viscoelastic isothermal case;
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Introduction

We present the derivation and the analysis of the longtime behavior of the
following nonlinear system

(

1
ittt + Bzt + Daal) — (ﬁ + / [Deu(é, ->|2d€) Dozt | = f (1)
0

| 0t0 — 0220 — Ot = g,

where

u=u(z,t):[0,1] x Rt — R: vertical deflection of the beam;

0 = 0(x,t) : [0,1] x RT — R: vertical temperature gradient.

B.C. u(0,t) =u(1,t) =|uz(0,t) = uz(1,t) =0/, 6(0,t) =6(1,t) =0,

I.C. uw(xz,0) = uo(x), Hu(x,0) =ui(x), 6(x,0)=60c(x),




Introduction

The solutions to problem (1) describes the mechanical and thermal evolu-
tion (in the transversal direction) of an extensible thermoelastic beam of
unitary natural length with hinged ends.

e The static counterpart of (1) reduces to the uncoupled BV problem

(

§ ol = =9, (2)
w(0) = u(1l) = Ozru(0) = 9ppu(1) =0
 0(0) =6(1)=0

The buckled stationary states for u are scrutinized in [CZGP] for a
general value of 8 € R and for a source f 4 g with a general shape.
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Introduction

e Boundary conditions. Different boundary conditions for v are physi-
cally significant, such as

- both ends of the beam are hinged (pinned),
- both ends are clamped,
- one end is hinged and the other one clamped.

All these boundary conditions are allowed as well, without substantial
changes in the model.

On the contrary, the so-called cantilever boundary condition (one end
clamped and the other one free) does not involve the extensibility of
the beam.

e Open question. If and how this model could be extended to account
for shear deformations and thermo-mechanical coupling in plates.

11



Full Model

h h

At a generic point (x,y) € [0, 4] x [—5,5} of the vertical section of the beam

M(z,y,t) = W(x,y,t),U(x,y,t)), displacement vector field

O(x,y,t), absolute temperature field

_lewr ez| _ 1 |1 T :
e = [621 522] =3 (VI (V) '] + 2(Vil) Vil| strain tensor.

Let
©p > 0 the reference-temperature value,

p >0 the reference mass density.

12



Full Model

e The stress-strain relation (see Carlson)

o— 011 o12| _ &
021 022 1+v

&

where [e® = a (© — O))1

E
Y tr(e)1]— e®| stress tensor
1—2v 1 —2v

is the thermal strain tensor,

E >0 is the Young's modulus

v € (0,2) s the Poisson ratio

a > 0, is the coefficient of thermal expansion
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e The entropy density (per unit mass) (see Chadwick)

where ¢, > 0 is the beam heat capacity at constant strain.

g —

Fo Co

tr(e) + —(© — o),

p(1—2v) o

e The entropy balance equation (see Lagnese-Lions)

where r(xz,y,t) is the heat supplied (per unit mass) and

pOoS=-V-q+opr

q = —koVO, ko >0 (Fourier law).
It follows from the Gibbs relation and the internal energy balance (no

approximation!)

Full Model
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Full Model

e The approximation scheme (consistent with large deformations)

Geometrical nonlinearities, due to kinematics, are taken into account.
Kinematic assumptions

— the thinness of the beam: |h K ¢,

— the Kirchhoff hypothesis: any cross section remains perpendicular
to the deformed longitudinal axis of the beam,

— | W(x,y,t) = w(x,t) —you(z,t) |, |U(z,y,t) = u(x,t)| where

w(x,t) = W(x,0,t) and u(x,t) = U(x,0,1).
(rigorously justified in large deflection theory by Ciarlet)
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e T he approximation scheme

Full Model

Linearization of the temperature field and source with respect to the

transversal direction ( |y| < h < £ ).

T hermal assumptions

— | O(x,y,t) — ©o = ¥(z,t) + ybO(x,t) |, where

Wz, t) = O(z,0,t) — O, and (x,t) = 0,©(z,0,1).

—|r(z,y,t) = go(x,t) +yg(z,t) |, where
go(x,t) = r(x,0,t), and g(z,t) = Iyr(z,0,t).
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Full Model

e The approximation scheme (consequences)

E E
o11 = S €11 — & [0 (x,t) + yO(x,t)],
1—v 1—v
020 = 012 = 021 = 0,
Fo
S= ————e11 +w[d(x,t) +y0(x,t)]
p(l—v)

where

<

1
e11(x,y,t) = O,w(x,t) — y Opeul(x,t) + 5 |8g;u(:c,t)|2

. Ea?(1 +v) Co
T a2 Te, Y
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Full Model

From the entropy balance equation we obtain

e T he heat equations

( ko ! 1 5 I,
</O ' Oow +(1—1/)w t[ w—l—2| u|] @owgo
\ Oow (1—-v)w Oow

B.C. 9(0,t) =9(,t)=0, 0(0,t) =0(¢,t) =0,
I.C. I(x,0) = Yo(x), 6O(x,0) = 0Og(x).
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Full Model

e The motion equations (variational derivation)

2

7\

\

B.C.

I.C.

Isothermal case |0 =9 =01

E 1
p Onw — 1 Oz {8xw—l—§|8xu|2—oz(l —I—z/)ﬁ} = 0,

2
p h? FEh? Eah?
POt = o Onatttt oy Onmat 5
E 1
-1 1/2896 { [&U’w + 5 |8ggu|2 —a(l1+ 1/)19] Bxu} = Tf

w(0,t) = u(l,t) = 0ppu(0,t) = Ipu(f,t) =0 , and
w(0,t) =0, w({,t) =|C > 0|

u(z,0) = uo(z), Gu(z,0) = ui(z),
w(x,0) = wo(x), Shw(x,0) = wi(x).
it reduces to the von Karman system.
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Axial displacements

w(£,t) =0

w(l,t) =C <0
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Steady States

Stationary solutions

D = —kﬁgo = 9(z) = 9(z)
0
Bnl = — L g — o(z) = 0(x)
ko
9 12 1 [f 5 _12(1-v?)p a(l+v)p
12
Oy + — |8xu| —a(l+v)d=p+ 6/ 10u(z)|? dz
0

\
where

B = g_a(l—l—y)/ﬁ( ) dx

—-I-a(l—'_y)p// [/ go(ﬁ)dn—ggo(f) dé dz.
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Steady States

As established in [CZGP], no buckling occurs when

When

When

C =0\

C#0|

B> —m2h?/12¢
No buckling occurs when the mean value of ¢ is “small”

m2h2
12a(1 4+ v)e2

1

12
—/ I(x) dx <
¢ Jo

Unlike the purely mechanical case, buckling can occur

even under axial tension (C > 0) because of the thermal axial expansion
produced by the external heating. Indeed, the no-buckling condition reads

¢
C>a(l+ 1/)/ O(x) dx — h?m?/12¢.
0
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e Further approximations

We remove the dependence on 4 and w.
Kinematic and thermal assumptions

— the axial velocity component is negligible: |0;w =0

(physically justified by the hinged ends)

Reduced Model

— the temperature diffusion in the axial direction is negligible:

Oz (x,t) =0
(physically justified by Zener in 1938)

— the external heat supply vanishes on the z-axis:

go =
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Reduced Model

The reduced system

( Fa
o o st
ko Fo

~

p ot 0T (1—-v)w tu @owg
9 x{ Oyw + — |8xu| —a(l—l—u)ﬁ} :
p h? Eh? Eah?
0 — —8xx xa:xw 8x:1;9
POt = 5 Onattt o 5 3y Onmnat o 15 S
E _pf
\—1_1/28 {[ww—l— |8xu| —Ck(1+V)Q9] }—7
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Reduced Model

’ﬁ+$[aw+ 9ul?| = 6(2)
(1 —v)wp
ko Ea p
p O — —— @ow Oz — m Oty = @owg
Orw + — |(9xu| —a(l4+v)9 =)
ph2 Eh? Eah? _E _pf
\pﬁttu_ﬁaxxttu‘l' 12(1—V2> sm;;l:x +—12(1_V)8x:u0 —1_1/2 w(t) 83::(:'“— h
o] = —+—/ Byu(z, ) da O‘(1+”)/ 9(x, t)da
E
@] = Vot o [wo+ 5 0.0l
(1 —v)wp

25



Reduced Model

The reduced model [GNP.1].
( ko Fo

p ot Oow (1 -v)w te @owg
p h? Eh? Eah?
| POt g Gemtt o ey reent S
L ‘ 2 pf
— Mo+ A1 [ 18cu(E, P de] Bpeu = 2L
\ 6(1—u2)[0+ 1/0'5’“’(E )| 5] YT

B ¢ o ¢ ,
M = C—a(l4+v) [/o ﬁo(w)dx—l—pr(l_V)/o |0zuo(x)| d:v],

1 o?(1+v)E
A1o= §+2pw(1—y) >0
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The Abstract Setting

We scrutinize the global longtime behavior of the IBVP (reduced model)

p
Bttu —

N\

for 8 € R and neglecting | 0,11 |.

aw:cttu

1
0

010 — 0320 — Oppru = g,
0(0,t) =60(1,t) =0,
u(0,t) = u(1,t) = vz (0,t) = uea(1,t) =0,
0(z,0) = bo(x),

| u(z,0) = uo(z), Owu(x,0)=ui(x).

(3)
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The Abstract Setting

We consider the abstract Cauchy problem

Ouu + Au— AY20 + (B + |[ul|3)AY2u = f(t), t>0,
010 + AY20 + A 29 = g(t), t> 0, (4)
uw(0) = wuo, Ou(0)=wu1, 6(0) =0,
on the product Hilbert space
H=H’xHxH

where (H,{-,-),||-1) is a real Hilbert space and A : D(A) € H — H a strictly
positive selfadjoint operator: H™ = D(A™*), ||lull, = ||A™/%ul]|.

Remark. Problem (3) is just a particular case of (4): H = L?(0,1) and
A = Orpaz,  D(Opawa) = {w € H*(0,1) : w(0) = w(1) = w"(0) = w"(1) = 0}.

28



The Abstract Setting

Proposition 1. Assume that
f € Lisc(RY, H), g € Ligc(RT, H) + L (R, H ).

Then, for all initial data z = (up,u1,60) € H, problem (4) admits a unique
solution

(u(t), dru(t),6(t)) € C(RT, H)
which continuously depends on the initial data.

e We define the solution operator S(t) € C(H,H), Vt > 0, as
z = (uo,u1,60) — S(t)z = (u(t), Owu(t),0(t)).

In the autonomous case, when both f and g are time-independent, S
iS a strongly continuous semigroup.
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The Abstract Setting

For any given z = (ug,u1,600) € H, we define the energy by

£(t) = 2ISW2B+ 7 (8 + u()]3)>.

Multiplying the first equation of (4) by d,u and the second one by 6,

we obtain the energy identity

d
G T 101 = (Bru, ) + (6, 9).

The energy is bounded. For every T' > 0O, there exist a positive increas-

ing function 9r such that

E(t) < 2r(€(0))

vt € [0,T].
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The Absorbing Set

Existence of an absorbing set B in H.

Theorem 2. Let f € L>®°(R*, H), and let 6;f and g be translation bounded
functions in L2 _(R*, H~1), that is,

loc

t+1
sup [ {10 (DI + 9P }or < oo (5)

Then, for every R > 0, there exist Rg > 0 and to = to(R) > 0 such that
E(t) < Ro, vVt > to,
whenever £(0) < R. Both Ry and tg can be explicitly computed.

B can be chosen to be the ball of 'H centered at zero of radius 1 4+ Rp.
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The Absorbing Set

The proof makes use of the functional
A(t) = E(t) + 2 {(Bru(t), u(t)) + 2(Beu(t),0(t)) -1} — (u(t), fF(t)) + C
and heavily relies on the following

Lemma. (Gatti - Pata - Zelik) Let A : RT — RT satisfy, for some K >0, Q >0, g >0
and every € € (0,¢eq], the differential inequality

%/\(t) + eA(t) < K2 [A()]P? 4 &2 Pp(t)

where ¢ € Lt (Rt RT) is such that sup;so j;t“ p(r)dr < Q.

loc

Then, there exist R1 > 0 and k > 0 such that, for every R > 0, it follows that

A(t) < Ry, vt > RY5(1+ kQ) 71,
whenever A(0) < R. Both R; and k can be explicitly computed in terms of K,Q and «o.
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The autonomous case

The non-autonomous case| The decomposition from [GPV] fails to work.
Other techniques (such as the a-contraction method) should be employed
to establish asymptotic compactness.

The autonomous case| An equivalent problem. Denoting

0, =A%, w(t) =0(t) - b,
it is apparent that (u(t),du(t),w(t)) solves the abstract IVP
{8ttu + Au — A0 + (ﬁ + ||u||%)A1/2u = h,
Oww + A2 4+ AY29 = 0,
where h = f 4+ g € H, with the initial conditions
¢ = (u(0),0:u(0),w(0)) = z — 2, zg = (0,0,06y).
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Lyapounov functional

It generates a strongly continuous semigroup So(t) on H, such that

S()(C+ 29) = 2y + So(t)C, V¢ EH.
Thus, if 2B is the absorbing set of S, Sp(t) possesses the absorbing set

Bo=—2,+BZ{CEH (=2—12, z€B)

The functional

Lo(t) = Eo(t) — (h,u(t))
is a Lyapunov functional for So(t): it satisfies the differential equality
d

—L 2 = 0.
v o+ [|wl|3
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Global Dynamics

The existence of the global attractor, jointly with its optimal regularity,
have been addressed in [GNP.2]

Theorem 3. Let f,ge H and g€ R. Then, the semigroup Sp(t) acting
on H possesses the (connected) global attractor 2p bounded in

V=H*x H> x H> € H.
Accodingly, the semigroup S(¢t) acting on H possesses the (connected)
global attractor 2, where
A = Zq —|— Q[o.
The regularity of 2lp and 2 is optimal.

Remark. 2l is as regular as f and g permit. For instance, if f,g € H", then
each component of 2 belongs to H™ for every n € N,
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Global Dynamics

Steps of the proof of Theorem 3.

— A suitable (exponential) asymptotic compactness property of the semi-
group is obtained exploiting a particular decomposition of Sgp(t) (see [GPV]).

— Due to such a decomposition, we can prove the existence of regular
exponential attractors for Sp(t) having finite fractal dimension in H

(e.g., see Efendiev, Miranville, Zelik, Exponential attractors for a nonlinear
reaction-diffusion system in R3, C.R. Acad. Sci. Paris, 2000).

— Since the global attractor is the minimal closed attracting set, we con-
clude that the fractal dimension of 2lg in H is finite as well.

— Since g is bounded in VYV = H* x H? x H?, its regularity is optimal.
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Global Dynamics

e T he structure of the global attractor. Let
S={zeH:50t)z=2zVt>0}

be the (nonempty) set of stationary points of S(t): z = (u,0,6,), where
7 € H* is a solution to the elliptic problem

Ai+ (B+ AP AYV?a = f+g.
Let So = —z; + S be the set of stationary points of Sp(t), namely
{=2%2-2,=(4,0,0).

Theorem 4. Characterization of Qg ().
The global attractor 2y (21) coincides with the unstable set of Sy (S).
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Global Dynamics

e Exponential stability.

Let A1 be the first eigenvalue of A.

T heorem 4.

If

f4+g=0|and |8>—A1|, then A = {z,} = {(0,0,6,)}

(the unbuckled state) and

01 (S(t)B,2A) = sup 1Sz = zglln < QUUIBIln)e™™,

for some » > 0 and some positive increasing function Q. Both s and QO
can be explicitly computed.

If

f+g9=0

and

B=—vX

traction is not exponential.

, then 2l = {z,}, again, but the rate of at-
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B-A(mplitude) plane: the case| — /A3 < 8 < —v/ A
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u- o

plane: the case
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