Controllability of transport equations in diffusive-dispersive limit

O. Glass (joint work with S. Guerrero)

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris 6

DICOP 08, Cortona, Sept. 23, 2008.

Introduction

▶ We consider a 1-D transport equation

$$y_t - My_x = 0$$
 in $[0, T] \times [0, 1]$,

with $M \in \mathbb{R} \setminus \{0\}$.

- Standard controllability problem : given T > 0, y₀ and y₁ in some function space, can we find a solution from y₀ at t = 0 to y₁ at t = T by choosing ad hoc boundary conditions?
- ▶ This equation is (trivially) controllable for T > 1/|M| and not controllable for T < 1/|M|.
- Question. what can be said about the controllability of this system in a limit of vanishing dispersion or vanishing diffusion-dispersion?

$$y_t - My_x - \varepsilon y_{xx} + \nu y_{xxx} = 0$$
 as $\varepsilon, \nu \to 0$?

A motivation

 Control of conservation laws in the context of (weak) entropy solutions

$$u_t + f(u)_x = 0, \ u : [0, T] \times [0, 1] \rightarrow \mathbb{R}, \ f : \mathbb{R} \rightarrow \mathbb{R},$$

- ▶ cf. Ancona-Marson, Horsin : scalar convex conservation laws
- See also Ancona-Coclite, Ancona-Marson, Bressan-Coclite, G. in the case of systems of conservation laws.
- Classical entropy solutions can be defined as weak solutions obtained by vanishing viscosity :

$$u^{\varepsilon} \to u$$
 as $\varepsilon \to 0^+$ where $u_t^{\varepsilon} + f(u^{\varepsilon})_x - \varepsilon u_{xx}^{\varepsilon} = 0$.

▶ Question. Is it possible to obtain a uniform control for the viscous equation as $\varepsilon \rightarrow 0^+$?

Diffusive-dispersive limits

In the same way, in certain physical situations (e.g. nonlinear elastodynamics with both viscosity and capillarity effects) it is interesting to consider diffusive-dispersive limits :

$$u_t + f(u)_x - \varepsilon u_{xx} + \nu u_{xxx} = 0$$
 as $\varepsilon, \nu \to 0^+$,

which may converge to a weak solution different to the vanishing viscosity solution or to the same one, according to the situtation.

- Cf. the theory of "nonclassical shock waves", in particular the book of LeFloch.
- \blacktriangleright See also Lax-Levermore for the KdV \rightarrow Burgers (purely dispersive) limit.
- ▶ Question. Is it possible to obtain a uniform control for the viscous-dispersive equation as $\varepsilon, \nu \rightarrow 0^+$?
- This question is open in general. Here we consider only the linear case.

The control system

Consider the control system :

$$\begin{cases} y_t - My_x + \nu y_{xxx} - \varepsilon y_{xx} = 0 \text{ in } Q := (0, T) \times (0, 1), \\ y_{|x=0} = v_1(t), \ y_{|x=1} = v_2(t), \ y_{x|x=1} = v_3(t) \text{ in } (0, T), \\ y_{|t=0} = y_0 \text{ in } (0, 1), \end{cases}$$
(1)

- ► This system is well-posed in for sufficiently regular y₀, v₁, v₂ and v₃, cf. in particular Cattabriga, Bona-Sun-Zhang, Colliander-Kenig, Holmer, ... (see also Bona-Winter, Faminskii for the half-line)
- ▶ Other boundary conditions could be used such as $u_{|x=0}$, $u_{x|x=1}$ and $u_{xx|x=1}$ (Colin-Ghidaglia), see also Bubnov, ...

Questions

- Standard null-controllability problem. Given T > 0, is it possible to drive any y₀ to 0 at time T by using suitable controls v₁, v₂ and v₃? Is it still possible by using only v₁ and (v₂, v₃) ≡ (0,0)?
- Uniform controllability problem. Given T > 1/|M|, is it possible to do so at a bounded cost as ε, ν → 0⁺?
- Is it possible at least for $T \gtrsim 1/|M|$?
- Can we "estimate from below" the cost of the control when T < 1/|M| ?

Previous studies : uniform controllability in the vanishing viscosity limit

Coron-Guerrero : 1-D transport equation in the vanishing viscosity limit :

$$y_t + M y_x - \varepsilon y_{xx} = 0.$$

ightarrow Cost of order $\mathcal{O}(e^{-1/\varepsilon})$ if $T\gtrsim 1/|M|$, of order $\mathcal{O}(e^{1/\varepsilon})$ if T<1/|M|.

Guerrero-Lebeau : N-D transport equation in the vanishing viscosity limit :

$$y_t + M(t, x) \cdot \nabla y - \varepsilon \Delta y = 0.$$

 \rightarrow Cost of order $\mathcal{O}(e^{-1/\varepsilon})$ if T is large enough and the characteristics all meet the control zone, of order $\mathcal{O}(e^{1/\varepsilon})$ for T small.

▶ G.-Guerrero : 1-D Burgers equation in the vanishing viscosity limit :

$$y_t + yy_x - \varepsilon y_{xx} = 0.$$

 \rightarrow One can reach a constant state $U \neq 0$ in time $\mathcal{O}(1/|U|)$ at a constant cost, for any initial condition in L^{∞} .

Previous studies : control of KdV equation

Remark. One can transform the diffusive-dispersive equation in a purely dispersive equation : y satisfies

$$y_t - M y_x + \nu y_{xxx} - \varepsilon y_{xx} = 0$$

if and only if

$$z = \exp(-\alpha x)y$$
 with $\alpha = \frac{\varepsilon}{3\nu}$.

satisfies

$$z_t + \nu z_{xxx} - \left(\frac{\varepsilon^2}{3\nu} + M\right) z_x - \frac{\varepsilon}{3\nu} \left(M + \frac{2\varepsilon^2}{9\nu}\right) z = 0.$$

▶ In a "diffusive regime" $(\nu \rightarrow 0 \text{ and } \varepsilon^2 \gg \nu)$ this gives bad estimates...

Previous studies : controllability of KdV equation

For fixed ν, this has been studied in particular in connection to the local controllability of the (nonlinear) KdV equation :

$$\begin{cases} y_t + y_{xxx} + y_x + yy_x = 0 & \text{in } (0, T) \times (0, 1), \\ y_{|x=0} = v_1, \ y_{|x=1} = v_2, \ y_{x|x=1} = v_3 & \text{in } (0, T), \\ y_{|t=0} = y_0 & \text{in } (0, 1), \end{cases}$$

cf

. . .

- With 3 controls or distributed control, cf. Russell-Zhang, Zhang, Banks, (local or global exact controllability) . . .
- When v₁ = v₂ = 0, cf. Rosier, Coron-Crépeau, Cerpa, Cerpa-Crépeau,... (local exact controllability)
- When v₂ = v₃ = 0 ("wavemaker"), cf. Rosier (null exact controllability),
- When $v_3 = 0$, cf. G.-Guerrero (local exact controllability),
- With a control u(t) in the right hand side, cf. Chapouly (global exact controllability)

Results

Theorem (G.-Guerrero) : uniform controllability

There exists a positive constant K_0 such that for any **positive** constant M, there exist c, C > 0 such that for

- ▶ any $(\nu, \varepsilon) \in (0, 1] imes [0, 1]$,
- any $T \geq K_0/M$,
- ▶ any $y_0 \in L^2(0,1)$,

there exist a control $v_1 \in L^2(0, T)$ such that the solution of the system with $v_2 = v_3 = 0$ satisfies $y_{|t=T} = 0$ in (0, 1) and moreover the control is uniform in (ν, ε) in the sense that

$$\|v_1\|_{L^2} \leq \frac{C}{\sqrt{\nu}} \exp\left\{-\frac{c}{\max\{\nu^{1/2},\varepsilon\}}\right\} \|y_0\|_{L^2}.$$

Results

Theorem (G.-Guerrero) : non uniform controllability

Consider $M \neq 0$ and T > 0 such that

$$T < \frac{1}{|M|}.$$

Then there are some constants c > 0 and $\ell \in \mathbb{N}$ (independent of $\varepsilon \in [0,1]$ and $\nu \in (0,1]$) and initial states $y_0 \in L^2(0,1)$ such that any control $v \in L^2(0,T)$ driving y_0 to 0 is estimated from below by

$$\|v\|_{L^2} \ge c\nu^\ell \exp\left\{\frac{c}{\max\{\nu^{1/2},\varepsilon\}}\right\} \|y_0\|_{L^2}.$$

Ideas of proof

1. Uniform controllability, purely dispersive case ($\varepsilon = 0$), using 3 controls

We consider a linear equation...

By the classical duality argument, we are led to establish an observability inequality for the adjoint system.

$$\begin{cases} L\varphi := -\varphi_t - \nu \varphi_{xxx} + M\varphi_x = 0 & \text{ in } (0, T_0) \times (0, 1), \\ \varphi(t, 0) = \varphi(t, 1) = \varphi_x(t, 0) = 0 & \text{ in } (0, T_0), \\ \varphi(T_0, x) = \varphi_0(x) & \text{ in } (0, 1). \end{cases}$$

If one gets the following observability inequality

$$\int_0^1 |\varphi(0,x)|^2 \, dx \leq \mathcal{K}(\mathcal{T}_0,M,\nu) \int_0^{\mathcal{T}_0} |\varphi_{xx|x=0}|^2 \, dt.$$

then one can find controls v_1 , $v_2 = v_3 = 0$ that drive the system to 0, with

$$\|v_1\|_{L^2(0,T_0)}^2 \leq \frac{K(T_0,M,\nu)}{\nu} \|y_0\|_{L^2(0,1)}^2.$$

Obtaining such an inequality relies on a Carleman estimate, cf. the ones of Fursikov-Imanuvilov (parabolic systems), Rosier (linear KdV). Set

$$lpha(t,x) := rac{eta(x)}{t^{1/2}(T_0-t)^{1/2}}.$$

with β a positive, increasing and concave polynomial of second degree.

Proposition

There exists C > 0 independent of T_0 , ν and M such that for any φ solution of the dual system

$$\begin{split} \iint_{(0,T_{\mathbf{0}})\times(0,1)} \alpha e^{-2s\alpha} (|\varphi_{xx}|^2 + s^2 \alpha^2 |\varphi_x|^2 + s^4 \alpha^4 |\varphi|^2) \, dx \, dt \\ & \leq C \int_0^{T_{\mathbf{0}}} \alpha_{|x=0} e^{-2s\alpha_{|x=0}} |\varphi_{xx}|_{|x=0}|^2 \, dt, \end{split}$$

for all $s \ge s_0 = C(T_0 + T_0^{1/2} + T_0|M|^{1/2}/\nu^{1/2}).$

> A close statement was proven by Rosier, with a weight of the form

$$\exp\left(\frac{s\psi(x)}{t(T_0-t)}\right),\,$$

which gives a different s_0 .

- Ideas of proof of this inequality :
 - Set $\psi := e^{-s\alpha}\varphi$, where φ is a solution of the dual system $L\varphi = 0$.
 - Decompose $L(e^{s\alpha}\psi) = 0$ into

$$L_1\psi+L_2\psi=L_3\psi,$$

(with L_1 skew-symmetric, L_2 essentially symmetric, L_3 "unimportant terms")

• Write (with $Q_0 := (0, T_0) \times (0, 1)$)

$$\|L_1\psi\|_{L^2(Q_0)}^2 + \|L_2\psi\|_{L^2(Q_0)}^2 + 2\iint_{Q_0} L_1\psi L_2\psi \,dx \,dt = \|L_3\psi\|_{L^2(Q_0)}^2.$$

 Develop the integral, do many integration by parts, absorb error terms by taking s large enough. Going back to the initial variable, we deduce a bound on the observability of the form :

$$\exp\left\{C\frac{|M|^{1/2}}{\nu^{1/2}}\left(1+\frac{1}{|M|T_0^{1/2}}\right)\right\}.$$

This is huge; one has to compensate this size of the observability constant.

Is it possible to apply this part of the control on a very small initial condition ? Preliminary step (before applying the above control).

- Extend smoothly y_0 by 0 on \mathbb{R} .
- Let the system evolve according to

$$y_t - M y_x + \nu y_{xxx} = 0$$

 \Rightarrow explicit solution using the Airy function !

 Using basic properties of the Airy function and the fact that M > 0, we get

$$\|y(T_1,\cdot)\|_{L^{\infty}(0,1)} \lesssim \frac{\|y_0\|_{\infty}}{(\nu T_1)^{1/3}} \exp\left(-\frac{2}{3} \frac{(-MT_1-1)^{3/2}}{(3\nu T_1)^{1/2}}\right),$$

which compensates the size of the above observability inequality, provided that

$$T\geq rac{K_0}{M}.$$

Ideas of proof, 2

- 2. Uniform controllability, general case ($\varepsilon \ge 0$), using 1 control
 - First, one has to adapt the Carleman estimate. For the purely dispersive case, one uses : a weight of the form

$$\alpha(t,x) := \frac{\beta(x)}{t^{1/2}(T_0 - t)^{1/2}},$$

while in the parabolic case, it takes the form

$$\alpha(t,x) := \frac{\beta(x)}{t(T_0 - t)}$$

Set

$$\alpha(t,x)=\frac{\beta(x)}{t^{\mu}(T_0-t)^{\mu}},$$

for $\mu \in [1/2, 1]$ and β as previously.

Proposition

There exists a positive constant C independent of T_0 , $\nu > 0$, $\varepsilon \ge 0$ and $M \in \mathbb{R}$ such that, for any $\varphi_T \in L^2(0, 1)$, we have

$$\begin{split} s \iint_{Q_{\mathbf{0}}} \alpha e^{-2s\alpha} \Big(\nu^2 |\varphi_{xx}|^2 + (\nu^2 s^2 \alpha^2 + \varepsilon^2) |\varphi_x|^2 + (\nu^2 s^4 \alpha^4 + \varepsilon^2 s^2 \alpha^2) |\varphi|^2 \Big) \, dx \, dt \\ & \leq C \nu \int_{\mathbf{0}}^{T_{\mathbf{0}}} (\nu s \alpha_{|x=\mathbf{0}} + \varepsilon) e^{-2s\alpha_{|x=\mathbf{0}}} |\varphi_{xx}|_{|x=\mathbf{0}}|^2 \, dt, \end{split}$$

for any $s \ge CT_0^{\mu}(T_0^{\mu} + (1 + T_0^{\mu}M^{\mu})/(\nu^{1-\mu}\varepsilon^{2\mu-1}))$, where φ is the corresponding solution of the adjoint system.

This gives a constant in the observability inequality of order

$$\mathcal{K} \sim \exp\left\{rac{\mathcal{C}}{
u^{1/2}}
ight\},$$

in the "dispersive regime" where $\nu\gtrsim \varepsilon^2$,

•

$$\mathcal{K} \sim \left(\frac{\nu^2}{\varepsilon^2} + \frac{\nu}{\varepsilon}\right) \exp\left\{\frac{C}{\varepsilon}\right\}.$$

in the "diffusive regime" where $\nu \lesssim \varepsilon^2$.

Next, one has to obtain a "dissipation estimate" (here, at the level of the adjoint equation) to compensate these huge constants. Exponential dissipation estimate

- A related work was done by Danchin for vortex patches
- ► Multiply the adjoint system by exp(r(M(T₁ − t) − x))φ, integrate in x (r is a non-negative parameter).
- Here it is essential that the function (t, x) → M(T₁ − t) − x solves the transport equation.
- After several integration by parts, one obtains

$$-\frac{d}{dt}\Big(\exp\{-(\nu r^3+\varepsilon r^2)(T_1-t)\}\right)$$
$$\int_0^1\exp\{r(M(T_1-t)-x)\}|\varphi(t,x)|^2\,dx\Big)\leq 0.$$

• Integrating between t_1 and t_2 , we get

$$\int_0^1 |\varphi(t_1,x)|^2 dx \leq \kappa \int_0^1 |\varphi(t_2,x)|^2 dx,$$

with

$$\kappa = \exp\{\nu(t_2 - t_1)r^3 + \varepsilon(t_2 - t_1)r^2 + (1 - M(t_2 - t_1))r\}.$$

▶ We optimize in *r*, and obtain

$$\int_0^1 |\varphi(t_1,x)|^2 dx \leq \kappa \int_0^1 |\varphi(t_2,x)|^2 dx,$$

with κ estimated by

► if
$$\varepsilon^2 \gtrsim \nu$$
 :
 $\kappa \leq \exp\left\{-c\frac{(M(t_2 - t_1) - 1)^2}{\varepsilon(t_2 - t_1)}\right\},$

• if
$$\varepsilon^2 \lesssim \nu$$
 :
 $\kappa \leq \exp\left\{-c \frac{(M(t_2 - t_1) - 1)^{3/2}}{\nu^{1/2}(t_2 - t_1)^{1/2}}\right\}.$

▶ Again, provided that $t_2 - t_1 \ge K_0/|M|$, this can "absorb" the Carleman constant.

Ideas of proof, 3

- 3. Non uniform controllability when T < 1/M
 - It is enough to estimate the observability constant from below : find a solution of the adjoint system

$$\begin{cases} -\varphi_t - \nu \varphi_{xxx} - \varepsilon \varphi_{xx} + M \varphi_x = 0, \\ \varphi_{|x=0} = \varphi_{|x=1} = \varphi_{x|x=0} = 0, \\ \varphi_{|t=T} = \varphi_T. \end{cases}$$

such that

$$\int_0^1 |\varphi(0,x)|^2 dx \ge c > 0,$$

and

$$\|\varphi_{\mathsf{xx}|\mathsf{x}=0}\|_{L^2(0,T)} \leq C \exp\Big(-c\frac{1}{\max(\nu^{1/2},\varepsilon)}\Big)\|\varphi_T\|_{L^2(0,1)}.$$

Consider φ_T supported close to the left side {0}, which would be transported as follows (if M > 0):

 \blacktriangleright In the transport case ($\varepsilon=\nu=$ 0), one clearly has

$$\int_0^1 |\varphi(0,x)|^2 dx \ge c > 0,$$

and

$$\varphi_{xx|x=0}=0.$$

- Using the dissipation estimate and a regularizing effect of the equation (in a bounded domain !), one shows that for ε and ν small enough, this is still true up to a small error term.
- If M < 0, the same can be done by choosing φ_T with a support close to the right side {1}.

Other results, 1

In the purely diffusive case, Coron and Guerrero obtained a uniform controllability result regardless of the sign of *M*. We can obtain the following, in the diffusive regime.

Theorem (G.-Guerrero)

Let $0 < \gamma \leq 1$. Then there exists K_0 (depending on γ), such that for any M < 0, any $T \geq K_0/|M|$, there are positive constants c and C (depending on T and γ) such that for any $(\nu, \varepsilon) \in (0, 1] \times [0, 1]$ satisfying

$$\varepsilon^2 \ge \gamma \nu |M|,$$
 (3)

one can find a control driving y_0 to 0 and which can be estimated as follows :

$$\|v\|_{L^2} \leq \frac{C}{\sqrt{\nu|M|}} \exp\left\{-\frac{c|M|}{\varepsilon}\right\} \|y_0\|_{L^2}.$$
 (4)

Other results, 2

The dispersive term is even strong enough to manage a small diffusive term with the wrong sign :

Theorem (G.-Guerrero)

Suppose $\nu \in (0, 1]$ and ε is **negative** but satisfies $-\varepsilon < \kappa \nu$ (for some fixed $\kappa < 3/2$) :

- the Cauchy problem is well-posed,
- If moreover one has M > 0 and −ε ≤ ³/₄√νM, then the uniform controllability holds as previously.

Open problems

- ▶ What happens for negative *M* in the dispersive regime? (Recall the asymmetry of the Airy function)
- ▶ Can we recover the (nonlinear) $KdV \rightarrow Burgers$ convergence in a control setting?
- Diffusive-dispersive limits for nonlinear nonconvex conservation laws?
- Can one consider the case of systems?