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Introduction

I We consider a 1-D transport equation

yt −Myx = 0 in [0,T ]× [0, 1],

with M ∈ R \ {0}.

I Standard controllability problem : given T > 0, y0 and y1 in some
function space, can we find a solution from y0 at t = 0 to y1 at
t = T by choosing ad hoc boundary conditions ?

I This equation is (trivially) controllable for T > 1/|M| and not
controllable for T < 1/|M|.

I Question. what can be said about the controllability of this system
in a limit of vanishing dispersion or vanishing diffusion-dispersion ?

yt −Myx − εyxx + νyxxx = 0 as ε, ν → 0?



A motivation

I Control of conservation laws in the context of (weak) entropy
solutions

ut + f (u)x = 0, u : [0,T ]× [0, 1]→ R, f : R→ R,

I cf. Ancona-Marson, Horsin : scalar convex conservation laws

I See also Ancona-Coclite, Ancona-Marson, Bressan-Coclite, G. in the
case of systems of conservation laws.

I Classical entropy solutions can be defined as weak solutions obtained
by vanishing viscosity :

uε → u as ε→ 0+ where uεt + f (uε)x − εuεxx = 0.

I Question. Is it possible to obtain a uniform control for the viscous
equation as ε→ 0+ ?



Diffusive-dispersive limits
I In the same way, in certain physical situations (e.g. nonlinear

elastodynamics with both viscosity and capillarity effects) it is
interesting to consider diffusive-dispersive limits :

ut + f (u)x − εuxx + νuxxx = 0 as ε, ν → 0+,

which may converge to a weak solution different to the vanishing
viscosity solution or to the same one, according to the situtation.

I Cf. the theory of “nonclassical shock waves”, in particular the book of
LeFloch.

I See also Lax-Levermore for the KdV → Burgers (purely dispersive)
limit.

I Question. Is it possible to obtain a uniform control for the
viscous-dispersive equation as ε, ν → 0+ ?

I This question is open in general. Here we consider only the linear
case.



The control system

I Consider the control system :
yt −Myx + νyxxx − εyxx = 0 in Q := (0,T )× (0, 1),

y|x=0 = v1(t), y|x=1 = v2(t), yx|x=1 = v3(t) in (0,T ),

y|t=0 = y0 in (0, 1),

(1)

I This system is well-posed in for sufficiently regular y0, v1, v2 and v3,
cf. in particular Cattabriga, Bona-Sun-Zhang, Colliander-Kenig,
Holmer, . . . (see also Bona-Winter, Faminskii for the half-line)

I Other boundary conditions could be used such as u|x=0, ux|x=1 and
uxx|x=1 (Colin-Ghidaglia), see also Bubnov, . . .



Questions

I Standard null-controllability problem. Given T > 0, is it possible to
drive any y0 to 0 at time T by using suitable controls v1, v2 and v3 ?
Is it still possible by using only v1 and (v2, v3) ≡ (0, 0) ?

I Uniform controllability problem. Given T > 1/|M|, is it possible to
do so at a bounded cost as ε, ν → 0+ ?

I Is it possible at least for T & 1/|M| ?

I Can we “estimate from below” the cost of the control when
T < 1/|M| ?



Previous studies : uniform controllability in the vanishing
viscosity limit

I Coron-Guerrero : 1-D transport equation in the vanishing viscosity
limit :

yt + Myx − εyxx = 0.

→ Cost of order O(e−1/ε) if T & 1/|M|, of order O(e1/ε) if
T < 1/|M|.

I Guerrero-Lebeau : N-D transport equation in the vanishing viscosity
limit :

yt + M(t, x).∇y − ε∆y = 0.

→ Cost of order O(e−1/ε) if T is large enough and the
characteristics all meet the control zone, of order O(e1/ε) for T
small.

I G.-Guerrero : 1-D Burgers equation in the vanishing viscosity limit :

yt + yyx − εyxx = 0.

→ One can reach a constant state U 6= 0 in time O(1/|U|) at a
constant cost, for any initial condition in L∞.



Previous studies : control of KdV equation

I Remark. One can transform the diffusive-dispersive equation in a
purely dispersive equation : y satisfies

yt −Myx + νyxxx − εyxx = 0

if and only if
z = exp(−αx)y with α =

ε

3ν
.

satisfies

zt + νzxxx −
(
ε2

3ν
+ M

)
zx −

ε

3ν

(
M +

2ε2

9ν

)
z = 0.

I In a “diffusive regime” (ν → 0 and ε2 � ν) this gives bad
estimates. . .



Previous studies : controllability of KdV equation
I For fixed ν, this has been studied in particular in connection to the

local controllability of the (nonlinear) KdV equation :
yt + yxxx + yx + yyx = 0 in (0,T )× (0, 1),

y|x=0 = v1, y|x=1 = v2, yx |x=1 = v3 in (0,T ),

y|t=0 = y0 in (0, 1),

cf
I With 3 controls or distributed control, cf. Russell-Zhang, Zhang,

Banks, (local or global exact controllability) . . .

I When v1 = v2 = 0, cf. Rosier, Coron-Crépeau, Cerpa,
Cerpa-Crépeau,... (local exact controllability)

I When v2 = v3 = 0 (“wavemaker”), cf. Rosier (null exact
controllability),

I When v3 = 0, cf. G.-Guerrero (local exact controllability),

I With a control u(t) in the right hand side, cf. Chapouly (global exact
controllability)

I . . .



Results

Theorem (G.-Guerrero) : uniform controllability

There exists a positive constant K0 such that for any positive constant
M, there exist c ,C > 0 such that for

I any (ν, ε) ∈ (0, 1]× [0, 1],
I any T ≥ K0/M,
I any y0 ∈ L2(0, 1),

there exist a control v1 ∈ L2(0,T ) such that the solution of the system
with v2 = v3 = 0 satisfies y|t=T = 0 in (0, 1) and moreover the control is
uniform in (ν, ε) in the sense that

‖v1‖L2 ≤ C√
ν
exp

{
− c
max{ν1/2, ε}

}
‖y0‖L2 .



Results

Theorem (G.-Guerrero) : non uniform controllability

Consider M 6= 0 and T > 0 such that

T <
1
|M|

. (2)

Then there are some constants c > 0 and ` ∈ N (independent of
ε ∈ [0, 1] and ν ∈ (0, 1]) and initial states y0 ∈ L2(0, 1) such that any
control v ∈ L2(0,T ) driving y0 to 0 is estimated from below by

‖v‖L2 ≥ cν` exp
{

c
max{ν1/2, ε}

}
‖y0‖L2 .



Ideas of proof

1. Uniform controllability, purely dispersive case (ε = 0), using 3 controls

We consider a linear equation. . .

By the classical duality argument, we are led to establish an observability
inequality for the adjoint system.


Lϕ := −ϕt − νϕxxx + Mϕx = 0 in (0,T0)× (0, 1),

ϕ(t, 0) = ϕ(t, 1) = ϕx(t, 0) = 0 in (0,T0),

ϕ(T0, x) = ϕ0(x) in (0, 1).



If one gets the following observability inequality∫ 1

0
|ϕ(0, x)|2 dx ≤ K (T0,M, ν)

∫ T0

0
|ϕxx |x=0|2 dt.

then one can find controls v1, v2 = v3 = 0 that drive the system to 0,
with

‖v1‖2L2(0,T0) ≤
K (T0,M, ν)

ν
‖y0‖2L2(0,1).



Obtaining such an inequality relies on a Carleman estimate, cf. the ones
of Fursikov-Imanuvilov (parabolic systems), Rosier (linear KdV). Set

α(t, x) :=
β(x)

t1/2(T0 − t)1/2 .

with β a positive, increasing and concave polynomial of second degree.

Proposition

There exists C > 0 independent of T0, ν and M such that for any ϕ
solution of the dual system∫∫

(0,T0)×(0,1)

αe−2sα(|ϕxx |2 + s2α2|ϕx |2 + s4α4|ϕ|2) dx dt

≤ C
∫ T0

0
α|x=0e−2sα|x=0 |ϕxx |x=0|2 dt,

for all s ≥ s0 = C (T0 + T 1/2
0 + T0|M|1/2/ν1/2).



I A close statement was proven by Rosier, with a weight of the form

exp
(

sψ(x)

t(T0 − t)

)
,

which gives a different s0.
I Ideas of proof of this inequality :

I Set ψ := e−sαϕ, where ϕ is a solution of the dual system Lϕ = 0.
I Decompose L(esαψ) = 0 into

L1ψ + L2ψ = L3ψ,

(with L1 skew-symmetric, L2 essentially symmetric, L3 “unimportant
terms”)

I Write (with Q0 := (0,T0)× (0, 1))

‖L1ψ‖2L2(Q0) + ‖L2ψ‖2L2(Q0) + 2
ZZ

Q0

L1ψ L2ψ dx dt = ‖L3ψ‖2L2(Q0).

I Develop the integral, do many integration by parts, absorb error
terms by taking s large enough.



I Going back to the initial variable, we deduce a bound on the
observability of the form :

exp

{
C
|M|1/2

ν1/2

(
1 +

1

|M|T 1/2
0

)}
.

This is huge ; one has to compensate this size of the observability
constant.

I Is it possible to apply this part of the control on a very small initial
condition ?



Preliminary step (before applying the above control).

I Extend smoothly y0 by 0 on R.
I Let the system evolve according to

yt −Myx + νyxxx = 0

⇒ explicit solution using the Airy function !



I Using basic properties of the Airy function and the fact that M > 0,
we get

‖y(T1, ·)‖L∞(0,1) .
‖y0‖∞

(νT1)1/3 exp
(
−2
3

(−MT1 − 1)3/2

(3νT1)1/2

)
,

which compensates the size of the above observability inequality,
provided that

T ≥ K0

M
.



Ideas of proof, 2

2. Uniform controllability, general case (ε ≥ 0), using 1 control

I First, one has to adapt the Carleman estimate. For the purely
dispersive case, one uses : a weight of the form

α(t, x) :=
β(x)

t1/2(T0 − t)1/2 ,

while in the parabolic case, it takes the form

α(t, x) :=
β(x)

t(T0 − t)
.



Set
α(t, x) =

β(x)

tµ(T0 − t)µ
,

for µ ∈ [1/2, 1] and β as previously.

Proposition

There exists a positive constant C independent of T0, ν > 0, ε ≥ 0 and
M ∈ R such that, for any ϕT ∈ L2(0, 1), we have

s
∫∫

Q0

αe−2sα
(
ν2|ϕxx |2+(ν2s2α2+ε2)|ϕx |2+(ν2s4α4+ε2s2α2)|ϕ|2

)
dx dt

≤ Cν
∫ T0

0
(νsα|x=0 + ε)e−2sα|x=0 |ϕxx |x=0|2 dt,

for any s ≥ CTµ
0 (Tµ

0 + (1 + Tµ
0 Mµ)/(ν1−µε2µ−1)), where ϕ is the

corresponding solution of the adjoint system.



I This gives a constant in the observability inequality of order

I

K ∼ exp


C
ν1/2

ff
,

in the “dispersive regime” where ν & ε2,

I

K ∼
“ν2

ε2
+
ν

ε

”
exp


C
ε

ff
.

in the “diffusive regime” where ν . ε2.

I Next, one has to obtain a “dissipation estimate” (here, at the level of
the adjoint equation) to compensate these huge constants.



Exponential dissipation estimate
I A related work was done by Danchin for vortex patches
I Multiply the adjoint system by exp(r(M(T1 − t)− x))ϕ, integrate in

x (r is a non-negative parameter).
I Here it is essential that the function (t, x) 7→ M(T1 − t)− x solves

the transport equation.
I After several integration by parts, one obtains

− d
dt

(
exp{−(νr3 + εr2)(T1 − t)}∫ 1

0
exp{r(M(T1 − t)− x)}|ϕ(t, x)|2 dx

)
≤ 0.

I Integrating between t1 and t2, we get∫ 1

0
|ϕ(t1, x)|2dx ≤ κ

∫ 1

0
|ϕ(t2, x)|2dx ,

with

κ = exp{ν(t2 − t1)r3 + ε(t2 − t1)r2 + (1−M(t2 − t1))r}.



I We optimize in r , and obtain∫ 1

0
|ϕ(t1, x)|2dx ≤ κ

∫ 1

0
|ϕ(t2, x)|2dx ,

with κ estimated by

I if ε2 & ν :

κ ≤ exp

−c

(M(t2 − t1)− 1)2

ε(t2 − t1)

ff
,

I if ε2 . ν :

κ ≤ exp

−c

(M(t2 − t1)− 1)3/2

ν1/2(t2 − t1)1/2

ff
.

I Again, provided that t2 − t1 ≥ K0/|M|, this can “absorb” the
Carleman constant.

Carleman

t = 0 t = T1 t = T

Dissipation estimate



Ideas of proof, 3

3. Non uniform controllability when T < 1/M

I It is enough to estimate the observability constant from below : find
a solution of the adjoint system

−ϕt − νϕxxx − εϕxx + Mϕx = 0,

ϕ|x=0 = ϕ|x=1 = ϕx|x=0 = 0,

ϕ|t=T = ϕT .

such that ∫ 1

0
|ϕ(0, x)|2 dx ≥ c > 0,

and

‖ϕxx|x=0‖L2(0,T ) ≤ C exp
(
− c

1
max(ν1/2, ε)

)
‖ϕT‖L2(0,1).



I Consider ϕT supported close to the left side {0}, which would be
transported as follows (if M > 0) :

t = 0
x = 1x = 0

t = T

I In the transport case (ε = ν = 0), one clearly has∫ 1

0
|ϕ(0, x)|2 dx ≥ c > 0,

and
ϕxx|x=0 = 0.



I Using the dissipation estimate and a regularizing effect of the
equation (in a bounded domain !), one shows that for ε and ν small
enough, this is still true up to a small error term.

I If M < 0, the same can be done by choosing ϕT with a support
close to the right side {1}.



Other results, 1

I In the purely diffusive case, Coron and Guerrero obtained a uniform
controllability result regardless of the sign of M. We can obtain the
following, in the diffusive regime.

Theorem (G.-Guerrero)

Let 0 < γ ≤ 1. Then there exists K0 (depending on γ), such that for
any M < 0, any T ≥ K0/|M|, there are positive constants c and C
(depending on T and γ) such that for any (ν, ε) ∈ (0, 1]× [0, 1]
satisfying

ε2 ≥ γν|M|, (3)

one can find a control driving y0 to 0 and which can be estimated as
follows :

‖v‖L2 ≤ C√
ν|M|

exp
{
−c |M|

ε

}
‖y0‖L2 . (4)



Other results, 2

I The dispersive term is even strong enough to manage a small
diffusive term with the wrong sign :

Theorem (G.-Guerrero)

Suppose ν ∈ (0, 1] and ε is negative but satisfies −ε < κν (for
some fixed κ < 3/2) :

I the Cauchy problem is well-posed,

I if moreover one has M > 0 and −ε ≤ 3
4

√
νM, then the uniform

controllability holds as previously.



Open problems

I What happens for negative M in the dispersive regime ? (Recall the
asymmetry of the Airy function)

I Can we recover the (nonlinear) KdV → Burgers convergence in a
control setting ?

I Diffusive-dispersive limits for nonlinear nonconvex conservation
laws ?

I Can one consider the case of systems ?


