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Introduction

» We consider a 1-D transport equation
Yt — M}/x = 0 in [Ov T] X [071]7
with M € R\ {0}.
» Standard controllability problem : given T > 0, yo and y; in some

function space, can we find a solution from yg at t =0 to y; at
t = T by choosing ad hoc boundary conditions?

» This equation is (trivially) controllable for T > 1/|M| and not
controllable for T < 1/|M|.

» Question. what can be said about the controllability of this system
in a limit of vanishing dispersion or vanishing diffusion-dispersion ?

Yt — MyX _€.yXX+V_yXXX =0 as E,I/—>0?



A motivation

» Control of conservation laws in the context of (weak) entropy
solutions

up+f(u)x=0, u:[0,T] x[0,1]] = R, f: R — R,

» cf. Ancona-Marson, Horsin : scalar convex conservation laws
» See also Ancona-Coclite, Ancona-Marson, Bressan-Coclite, G. in the
case of systems of conservation laws.
» Classical entropy solutions can be defined as weak solutions obtained

by vanishing viscosity :

u® — uase— 0" where uf + f(u°)x —eus, = 0.

» Question. Is it possible to obtain a uniform control for the viscous
equation as ¢ — 07 ?



Diffusive-dispersive limits

» In the same way, in certain physical situations (e.g. nonlinear
elastodynamics with both viscosity and capillarity effects) it is
interesting to consider diffusive-dispersive limits :

Ur + F(U)x — e + Ve =0 as e, — 0T,
which may converge to a weak solution different to the vanishing

viscosity solution or to the same one, according to the situtation.

» Cf. the theory of “nonclassical shock waves”, in particular the book of
LeFloch.

> See also Lax-Levermore for the KdV — Burgers (purely dispersive)
limit.

» Question. Is it possible to obtain a uniform control for the
viscous-dispersive equation as €, — 01?7

» This question is open in general. Here we consider only the linear
case.



The control system

» Consider the control system :

Yt — MYX + VYsxx — EYxx = 0in Q:= (0, T) X (0, 1)7
Y|x=0 = Vl(t)a Y|x=1 = V2(t)7 Yx|x=1 = V3(t) in (07 T)7 (1)
Y|t=0 = Y0 in (07 1)7

» This system is well-posed in for sufficiently regular yg, vi, v» and vs,
cf. in particular Cattabriga, Bona-Sun-Zhang, Colliander-Kenig,
Holmer, ... (see also Bona-Winter, Faminskii for the half-line)

» Other boundary conditions could be used such as uj,—g, uyjx=1 and
Uyx|x=1 (Colin-Ghidaglia), see also Bubnov, ...



Questions

» Standard null-controllability problem. Given T > 0, is it possible to
drive any yp to 0 at time T by using suitable controls vy, v» and v37
Is it still possible by using only v; and (v2,v3) = (0,0)7

» Uniform controllability problem. Given T > 1/|M|, is it possible to
do so at a bounded cost as ¢, — 07 ?

> Is it possible at least for T > 1/|M|7?

» Can we “estimate from below” the cost of the control when
T <1/|M|?



Previous studies : uniform controllability in the vanishing
viscosity limit
» Coron-Guerrero : 1-D transport equation in the vanishing viscosity
limit :
Y+ Myx — EYxx = 0.

— Cost of order O(e~/¢) if T > 1/|M|, of order O(e'/¢) if
T < 1/|M|.

» Guerrero-Lebeau : N-D transport equation in the vanishing viscosity
limit :
ye + M(t,x).Vy —eAy = 0.

— Cost of order O(e~ /) if T is large enough and the
characteristics all meet the control zone, of order O(el/¢) for T
small.

» G.-Guerrero : 1-D Burgers equation in the vanishing viscosity limit :

Ye+ Yx — €Y = 0.

— One can reach a constant state U # 0 in time O(1/|U|) at a
constant cost, for any initial condition in L.



Previous studies : control of KdV equation

» Remark. One can transform the diffusive-dispersive equation in a
purely dispersive equation : y satisfies

Y — Myx T+ VYsox — EYxx = 0

if and only if
z = exp(—ax)y with a = £
v

satisfies
g? € 2¢2
Zt+l/ZXXX<3V+M>ZX3V(M+9V>Z_

» In a “diffusive regime”’ (v — 0 and €2 >> v) this gives bad
estimates. ..



Previous studies : controllability of KdV equation

» For fixed v, this has been studied in particular in connection to the
local controllability of the (nonlinear) KdV equation :

Yt + Yaox T Yx +.y.VX:O in (07 T) X (071)a
.y|x:0 = Vi, y|x:1 = V2, yx|X:1 = V3 in (Oa T)a
Yt=0 = Yo in (0,1),

cf

» With 3 controls or distributed control, cf. Russell-Zhang, Zhang,
Banks, (local or global exact controllability) ...

» When vi = v» = 0, cf. Rosier, Coron-Crépeau, Cerpa,
Cerpa-Crépeau,... (local exact controllability)

» When v> = v3 = 0 (“wavemaker”), cf. Rosier (null exact
controllability),

» When vz =0, cf. G.-Guerrero (local exact controllability),

» With a control u(t) in the right hand side, cf. Chapouly (global exact
controllability)



Results

Theorem (G.-Guerrero) : uniform controllability

There exists a positive constant Ky such that for any positive constant
M, there exist ¢, C > 0 such that for

> any (v,¢) € (0,1] x [0, 1],
» any T > Ko/M,
> any yo € L%(0,1),

there exist a control v; € L2(0, T) such that the solution of the system

with v» = v3 = 0 satisfies yj;_7 = 0 in (0,1) and moreover the control is
uniform in (v, ) in the sense that

C
[villz < —=exp e l[yollz-
N max{v1/2 ¢}



Results

Theorem (G.-Guerrero) : non uniform controllability

Consider M # 0 and T > 0 such that

1
T < ™ (2)

Then there are some constants ¢ > 0 and ¢ € N (independent of
e €]0,1] and v € (0,1]) and initial states yo € L2(0, 1) such that any
control v € L2(0, T) driving yo to 0 is estimated from below by

IVllez > e exp{ ———— bllyollee.
max{v1/2 e}



|deas of proof

1. Uniform controllability, purely dispersive case (¢ = 0), using 3 controls
We consider a linear equation. . .

By the classical duality argument, we are led to establish an observability
inequality for the adjoint system.

L@ = =t — VPxxx T MSOX =0 in (O; TO) X (0, 1);
o(t,0) = p(t,1) = px(t,0) =0 in (0, Tp),
©(To, x) = @o(x) in (0,1).



If one gets the following observability inequality

1 To
/ 10(0,3) dx < K(To, M. ) / o2 .
0 0

then one can find controls v1, vo = v3 = 0 that drive the system to 0,
with

K(To, M, v)
v

||V1||i2(o,To) = ||)’0||%2(0,1)~



Obtaining such an inequality relies on a Carleman estimate, cf. the ones
of Fursikov-Imanuvilov (parabolic systems), Rosier (linear KdV). Set

B(x)

= T~

with (8 a positive, increasing and concave polynomial of second degree.

Proposition

There exists C > 0 independent of Ty, v and M such that for any ¢
solution of the dual system

Il 02l + 5202y 2 + s |pf?) d e
(0,To)%x(0,1)

To
—2sai, 2
S A
0

for all s > so = C(To + To/? + To|M|}/2/12/2).



» A close statement was proven by Rosier, with a weight of the form

(i)

which gives a different sg.
> l|deas of proof of this inequality :

> Set 1) := e *%p, where ¢ is a solution of the dual system Ly = 0.
> Decompose L(e**1) = 0 into

Liyp + Loy = L3,

(with Ly skew-symmetric, Lo essentially symmetric, Lz “unimportant
terms”’)
> Write (with Qo := (0, To) x (0,1))

L9220y + 1 L2t 122 0q) + 2 / /Q Lt Lo dx dt = || Lsh| 22 p)-
(v]

» Develop the integral, do many integration by parts, absorb error
terms by taking s large enough.



» Going back to the initial variable, we deduce a bound on the
observability of the form :

|M|2/2 1
exp ¢ C 1+ .
{ AT M

This is huge ; one has to compensate this size of the observability
constant.

> Is it possible to apply this part of the control on a very small initial
condition 7



Preliminary step (before applying the above control).

» Extend smoothly yp by 0 on R.
> Let the system evolve according to

Yt — Myx—’_yyxxx =0

= explicit solution using the Airy function !

T2 4 6 8 n




» Using basic properties of the Airy function and the fact that M > 0,
we get

yollo 2(=MT, —1)*2
T M)y org 1y < —2oloe il WA S A
||.y( 1 )”L (0,1) ~ (I/T]_)l/3 eXp 3 (3]/7-1)1/2 I

which compensates the size of the above observability inequality,
provided that

Ko
T>—.
- M



ldeas of proof, 2

2. Uniform controllability, general case (¢ > 0), using 1 control

» First, one has to adapt the Carleman estimate. For the purely
dispersive case, one uses : a weight of the form

B(x)

while in the parabolic case, it takes the form

B(x)

a(t,x) = Toz D)



Set
B(x)

)= T — o

for p € [1/2,1] and (3 as previously.
Proposition

There exists a positive constant C independent of Ty, v >0, € > 0 and
M € R such that, for any o7 € L3(0,1), we have

s// e % (V2|wxx|2+(u252a2+52)|<px\2+(1/254a4+5252a2)|<p|2) dx dt
(]
To
< Cu/ (vsa—o + 5)e‘2m\x:°|@XX|X:0|2 dt,
0

for any s > CTS(TY + (1 + T{MH)/(v1=+e271)), where ¢ is the
corresponding solution of the adjoint system.



» This gives a constant in the observability inequality of order

C
I’(’Vexp{m}7

. w . S 2
in the "dispersive regime” where v 2 &7,

K~ (G en{Sh

in the "diffusive regime” where v < €2,

>

> Next, one has to obtain a “dissipation estimate” (here, at the level of
the adjoint equation) to compensate these huge constants.



Exponential dissipation estimate
» A related work was done by Danchin for vortex patches
» Multiply the adjoint system by exp(r(M(T1 — t) — x))y, integrate in
x (r is a non-negative parameter).

» Here it is essential that the function (t, x) — M(T; — t) — x solves
the transport equation.

> After several integration by parts, one obtains

d 3 2
- E(exp{—(z/r +ert)(Ty—t)}
1
/ exp{r(M(Ty — t) — x)}p(t, x)|2 dx) <0.
0
> Integrating between t; and t,, we get
1 1
[ lettnPac <k [ (e 0iax
0 0

with

k=exp{v(to — t1)r* +e(to — t1)r* + (1 — M(t2 — t1))r}.



» We optimize in r, and obtain

1 1
/ oty x)Pdx < x / |o(t2, %) P,
0 0

with k estimated by

»ife? >
(M(t2 — t1) — 1)2}

r < ex —C
- p{ e(ta — t1)

> ife?<w:

(M(t2 — 1) — 1)*2
fS exp {_C Vi/2(t — 1)1/ ’
» Again, provided that t; — t; > Kpy/|M)|, this can “absorb” the
Carleman constant.
t=0 t=Ti t=T

—

Dissipation estimate Carleman




ldeas of proof, 3

3. Non uniform controllability when T < 1/M
» It is enough to estimate the observability constant from below : find

a solution of the adjoint system

—Pt — Vo — € + My =0,
PIx=0 = P|x=1 = Px|x=0 = 0,
Plt=T = PLT-

such that

1
/ |<,0(0,X)|2 dx > c >0,
0

and

[wiecollizo ) < Coxp (— e llgr]
SOXX|X=0 LZ(O,T) — p maX(Vl/Q,a) SDT L2(0,1)~



» Consider ¢ supported close to the left side {0}, which would be
transported as follows (if M > 0) :

A

N

x=0 x =1

» In the transport case (¢ = v = 0), one clearly has

1
/ (0, x)[? dx > ¢ > 0,
0

and
SOXX‘X=0 =0.



» Using the dissipation estimate and a regularizing effect of the
equation (in a bounded domain!), one shows that for £ and v small
enough, this is still true up to a small error term.

» If M < 0, the same can be done by choosing 1 with a support
close to the right side {1}.



Other results, 1

> In the purely diffusive case, Coron and Guerrero obtained a uniform
controllability result regardless of the sign of M. We can obtain the
following, in the diffusive regime.

Theorem (G.-Guerrero)

Let 0 < v < 1. Then there exists Ky (depending on «y), such that for
any M <0, any T > Ky/|M]|, there are positive constants ¢ and C
(depending on T and «) such that for any (v,¢) € (0,1] x [0, 1]
satisfying

&2 > yu|M], 3)

one can find a control driving yp to 0 and which can be estimated as

follows : c W
c
Vi < expq —— 2. 4
lv]z < T|M| P{ - }HYO”L (4)




Other results, 2

» The dispersive term is even strong enough to manage a small
diffusive term with the wrong sign :

Theorem (G.-Guerrero)

Suppose v € (0,1] and ¢ is negative but satisfies —e < v (for
some fixed x < 3/2) :

> the Cauchy problem is well-posed,

» if moreover one has M > 0 and —¢ < %\/VM, then the uniform
controllability holds as previously.



Open problems

v

What happens for negative M in the dispersive regime ? (Recall the
asymmetry of the Airy function)

» Can we recover the (nonlinear) KdV — Burgers convergence in a
control setting ?

» Diffusive-dispersive limits for nonlinear nonconvex conservation
laws ?

» Can one consider the case of systems?



