Phase transition systems with dynamic boundary conditions

Maurizio Grasselli

Dipartimento di Matematica "F. Brioschi"
Politecnico di Milano, ITALY
maurizio.grasselli@polimi.it

Direct, Inverse and Control Problems Cortona, September 22-26, 2008

- bdd domain $\Omega \subset \mathbb{R}^{3}$ with smooth bdry Γ
- two-phase stress-free material occupying $\Omega, \forall t \geq 0$
- θ (relative) temperature
- χ order parameter (or phase-field)

$$
(\varepsilon \theta+\lambda \chi)_{t}-k \Delta \theta=0
$$

$$
\chi_{t}-\alpha \Delta \chi+F^{\prime}(\chi)-\lambda \theta=0
$$

- k, α, ε positive coefficients, $\lambda \in \mathbb{R}$
- F nonconvex potential

A naive derivation

- bulk free energy functional

$$
E_{\Omega}(\chi, \theta)=\int_{\Omega}\left[\frac{\alpha}{2}|\nabla \chi|^{2}+F(\chi)-\lambda \chi \theta-\frac{\varepsilon}{2} \theta^{2}\right] d x
$$

- equation for the temperature

$$
\left(-\partial_{\theta} E_{\Omega}(\chi, \theta)\right)_{t}+\nabla \cdot \mathbf{q}=0, \quad \mathbf{q}=-k \nabla \theta
$$

- equation for the order parameter

$$
\chi_{t}=-\partial_{\chi} E_{\Omega}(\chi, \theta)
$$

Mathematical results

Main topics

- well-posedness and longtime behavior of solutions
- nature of stationary states
- existence and smoothness of global attractors
- existence of exponential attractors
- construction of inertial manifolds (one or two spatial dim.)
- convergence of trajectories to single equilibria

Some contributors: S.Aizicovici, P.W.Bates, G.Caginalp, Chen Xinfu, L.Cherfils, P.Colli, C.M.Elliott, M.Fabrizio, G.J.Fix, E.Feireisl, S. Gatti, G. Gilardi, C.Giorgi, D.Hilhorst, K.-H.Hoffmann, N.Kenmochi, P.Kreičí, Ph.Laurençot, A.Miranville, A.Novick-Cohen, V.Pata, H.Petzeltová, E.Rocca, G.Schimperna, J.Sprekels, S.Zelik, Zheng Songmu, ...

Dynamic boundary conditions

Most papers are devoted to DN, NN or RN bdry conditions:

$$
b \partial_{\mathbf{n}} \theta+c \theta=\partial_{\mathbf{n}} \chi=0
$$

more recently, dynamic bdry conditions have been considered for χ (see Maass et al. for separation processes, Qian et al. for immiscible two-phase flows)

$$
\partial_{\mathbf{n}} \theta=0, \quad \chi_{t}=\beta \Delta_{\Gamma} \chi-\alpha \partial_{\mathbf{n}} \chi-G^{\prime}(\chi)
$$

- $\beta>0$
- Δ_{Γ} Laplace-Beltrami operator
- G bdry (nonconvex) potential

Dynamic bdry conditions: known results

Chill, Fašangová \& Prüss (2006)

- F polynomially controlled growth of degree 6
- $G \equiv 0$
- \exists smooth solutions
- convergence to single equilibria via Łojasiewicz-Simon inequality (F real analytic)

Gatti \& Miranville (2006)

- F and G smooth potentials (no growth restrictions)
- construction of a s-continuous dissipative semigroup
- \exists global attractor $\mathcal{A}_{\varepsilon}$ upper semicontinuous at $\varepsilon=0$
- \exists exponential attractors $\mathcal{E}_{\varepsilon}$

Dynamic bdry conditions: known results

Cherfils \& Miranville (2007)

- F singular potential defined on $(-1,1)$
- G smooth potential (sign restrictions)
- construction of a s-continuous dissipative semigroup
- \exists global attractor of finite fractal dimension
- convergence to single equilibria via $Ł-S$ method (F real analytic, $G \equiv 0$)

Gatti, Cherfils \& Miranville (2007 and 2008)

- F singular potential defined on $(-1,1)$
- G smooth potential (sign restrictions are removed)
- separation property and existence of global solutions
- existence of global and exponential attractors

Dynamic bdry conditions: known results

Gal \& G. (2007)

- F and G smooth potential (more general than Gatti \& Miranville)
- more general bdry condition for θ

$$
a \theta_{t}+b \partial_{\mathbf{n}} \theta+c \theta=0
$$

with $a, b, c \geq 0($ not all $=0)$

- construction of a dissipative semigroup (larger phase spaces w.r.t. Gatti \& Miranville)
- \exists global attractor, \exists exponential attractors

Gal, G. \& Miranville (2007)

- \exists family of exponential attractors $\left\{\mathcal{E}_{\varepsilon}\right\}$ stable as $\varepsilon \searrow 0$ in the case $a=c=0, b=1$

Coupled dynamic bdry conditions

Gal, G. \& Miranville (2008)
dynamic bdry conditions for $\theta \Rightarrow$ coupling effects on 「
[cf. also Savaré \& Visintin (1997) and Schimperna (1999) for concentrated capacity pbs]

- surface free energy functional

$$
E_{\Gamma}(\chi, \theta)=\int_{\Omega}\left[\frac{\beta}{2}\left|\nabla_{\Gamma} \chi\right|^{2}+G(\chi)-\delta \chi \theta-\frac{a}{2} \theta^{2}\right] d S
$$

where $\delta>0$ and $a>0$

- dynamic bdry condition for χ

$$
\chi_{t}=-\partial_{\chi} E_{\Gamma}(\chi, \theta)-\alpha \partial_{\mathbf{n}} \chi=\beta \Delta_{\Gamma} \chi-\alpha \partial_{\mathbf{n}} \chi-G^{\prime}(\chi)+\delta \theta
$$

Coupled dynamic bdry conditions

- first Law of Thermodynamics

$$
\int_{\Omega}\left(e_{\Omega}\right)_{t} d x+\int_{\Gamma}\left(e_{\Gamma}\right)_{t} d S=-\int_{\Omega} \nabla \cdot \mathbf{q}+\int_{\Gamma} \Phi(x, t, \theta, \nabla \theta) d S
$$

where

$$
e_{\Omega}=-\partial_{\theta} E_{\Omega}(\chi, \theta)=\varepsilon \theta+\lambda \chi, \quad e_{\Gamma}=-\partial_{\theta} E_{\Gamma}(\chi, \theta)=a \theta+\delta \chi
$$

- dynamic bdry condition for θ

$$
(a \theta+\delta \chi)_{t}=\Phi(x, t, \theta, \nabla \theta)
$$

- our choice

$$
\Phi(x, t, \theta, \nabla \theta)=-k \partial_{\mathbf{n}} \theta-c \theta, \quad c \geq 0
$$

- equations in $\Omega \times(0, \infty)$

$$
\left\{\begin{array}{l}
(\varepsilon \theta+\lambda \chi)_{t}-k \Delta \theta=0 \\
\chi_{t}-\alpha \Delta \chi+F^{\prime}(\chi)-\lambda \theta=0
\end{array}\right.
$$

- equations on $\Gamma \times(0, \infty)$

$$
\left\{\begin{array}{l}
(a \theta+\delta \chi)_{t}+k \partial_{\mathbf{n}} \theta+c \theta=0 \\
\chi_{t}-\beta \Delta_{\Gamma} \chi+\alpha \partial_{\mathbf{n}} \chi+G^{\prime}(\chi)-\delta \theta=0
\end{array}\right.
$$

- initial conditions

$$
\theta(0)=\theta_{0}, \quad \chi(0)=\chi_{0}
$$

Assumptions on F and G

- well-posedness $(\Rightarrow \exists$ continuous semigroup): we suppose

$$
\left\{\begin{array}{l}
F, G \in C^{2}(\mathbb{R}) \\
\liminf _{|y| \rightarrow \infty} F^{\prime \prime}(y)>0, \quad \liminf _{|y| \rightarrow \infty} G^{\prime \prime}(y)>0
\end{array}\right.
$$

- dissipativity and \exists global attractor: if $c=0$ we also require

$$
F^{\prime}(y) y \geq k_{1} y^{2}-k_{2}, \quad G^{\prime}(y) y \geq k_{3} y^{2}-k_{4}, \quad \forall y \in \mathbb{R}, k_{i}>0
$$

- \exists exponential attractors: we add

$$
F^{\prime \prime}, G^{\prime \prime} \in C_{l o c}^{0,1}(\mathbb{R})
$$

- convergence to single equilibria: we must require F and G to be real analytic

Interpreting the bdry conditions for θ

- $\mathbb{X}=L^{2}(\bar{\Omega}, d x \oplus a d S)$
- $\|\boldsymbol{\Theta}\|_{\mathbb{X}}^{2}=\left\|\Theta_{1}\right\|_{2, \Omega}^{2}+a\left\|\Theta_{2}\right\|_{2, \Gamma}^{2}$

$$
A=-\Delta: \mathcal{D}(A) \subset \mathbb{X} \rightarrow \mathbb{X}
$$

- $\mathcal{D}(A)$ is contained in

$$
\left\{u \in H_{l o c}^{2}(\Omega): \Delta u \in \mathbb{X},\left.\quad a(\Delta u)\right|_{\Gamma}+k \partial_{\mathbf{n}} u+c u=0\right\}
$$

Remark

A is nonnegative, self-adjoint and generates an analytic semigroup on \mathbb{X} [see Favini et al. (2002)]

The phase space for θ

$$
Z_{c}=H^{1}(\Omega)
$$

endowed with the norms

$$
\begin{aligned}
& \|u\|_{z_{c}}^{2}=k\|\nabla u\|_{2, \Omega}^{2}+c\left\|\left.u\right|_{\Gamma}\right\|_{2, \Gamma}^{2} \quad[c>0] \\
& \text { - }\|u\|_{z_{0}}^{2}=k\|\nabla u\|_{2, \Omega}^{2}+|\langle\langle u\rangle\rangle|^{2} \quad[c=0]
\end{aligned}
$$

where

$$
\langle\langle u\rangle\rangle=\frac{1}{|\Omega|+a|\Gamma|}\left(\int_{\Omega} \varepsilon u d x+\int_{\Gamma} a u d S\right)
$$

- $\mathbb{V}_{s}=\overline{\left(C^{s}(\bar{\Omega})\right)}{ }^{\|\cdot\|} \|_{s}$
- $\|v\|_{0}=\|v\|_{2, \Omega}^{2}+\left\|\left.v\right|_{\Gamma}\right\|_{2, \Gamma}^{2}$
- $\|v\|_{1}=\alpha\|\nabla v\|_{2, \Omega}^{2}+\beta\left\|\left.\nabla_{\Gamma} v\right|_{\Gamma}\right\|_{2, \Gamma}^{2}+\left\|\left.v\right|_{\Gamma}\right\|_{2, \Gamma}^{2}$
- $\mathbb{V}_{s} \equiv H^{s}(\Omega) \oplus H^{s}(\Gamma)$

$$
\mathbb{V}_{2} \equiv H^{2}(\Omega) \oplus H^{2}(\Gamma)
$$

with norm $\|\boldsymbol{\Psi}\|_{\mathbb{V}_{2}}^{2}=\left\|\Psi_{1}\right\|_{H^{2}(\Omega)}^{2}+\left\|\Psi_{2}\right\|_{H^{2}(\Gamma)}^{2}$

Problem \mathbf{P}_{c} For any given $\left(\theta_{0}, \chi_{0}\right) \in Z_{c} \times \mathbb{V}_{2}$ find

$$
(\theta, \chi) \in C\left([0, \infty) ; Z_{c} \times \mathbb{V}_{2}\right)
$$

s.t.

$$
(\theta(0), \chi(0))=\left(\theta_{0}, \chi_{0}\right), \quad\left(\theta_{t}, \chi_{t}\right) \in L^{2}\left((0, \infty) ; \mathbb{X} \times \mathbb{V}_{1}\right)
$$

and

$$
\left\{\begin{array}{l}
(\varepsilon \theta+\lambda \chi)_{t}-k \Delta \theta=0 \\
\chi_{t}-\alpha \Delta \chi+F^{\prime}(\chi)-\lambda \theta=0 \\
(a \theta+\delta \chi)_{t}+k \partial_{\mathbf{n}} \theta+c \theta=0 \\
\chi_{t}-\beta \Delta_{\Gamma \chi+\alpha \partial_{\mathbf{n}} \chi+G^{\prime}(\chi)-\delta \theta=0}
\end{array}\right.
$$

Existence result

Theorem

\mathbf{P}_{C} has a solution s.t. $\theta \in L_{l o c}^{2}([0, \infty) ; \mathcal{D}(A))$ and, $\forall t \geq 0$,

$$
\mathbb{I}(\theta(t), \chi(t))=\mathbb{I}\left(\theta_{0}, \chi_{0}\right) \quad \text { if } c=0
$$

where

$$
\mathbb{I}(u, v)=\frac{1}{|\Omega|+a|\Gamma|}\left(\int_{\Omega}(\varepsilon u+\lambda v) d x+\int_{\Gamma} a u d S\right)
$$

Remark

Fixed-point argument to get a local smooth solution which satisfies suitable a priori bounds

The solution semigroup

Theorem

Let $\left(\theta_{i}(t), \chi_{i}(t)\right)$ be solutions corresponding to
$\left(\theta_{0 i}, \chi_{0 i}\right) \in Z_{c} \times \mathbb{V}_{2}, i=1$, 2. Then

$$
\begin{aligned}
& \left\|\left(\theta_{1}-\theta_{2}\right)(t)\right\|_{\mathbb{X}}+\left\|\left(\chi_{1}-\chi_{2}\right)(t)\right\|_{\mathbb{V}_{1}} \\
& \leq C_{1} e^{C_{2} t}\left(\left\|\theta_{01}-\theta_{2}\right\|_{\mathbb{X}}+\left\|\chi_{01}-\chi_{02}\right\|_{\mathbb{V}_{1}}\right)
\end{aligned}
$$

$\forall t \geq 0$, where $C_{i}=C_{i}\left(\left\|\left(\theta_{0 i}, \chi_{0 i}\right)\right\|_{z_{K} \times \mathbb{V}_{2}}\right)>0$

Remark

$S_{c}(t): Z_{c} \times \mathbb{V}_{2} \rightarrow Z_{c} \times \mathbb{V}_{2}$ defined by

$$
(\theta(t), \chi(t))=S_{c}(t)\left(\theta_{0}, \chi_{0}\right), \quad \forall t \geq 0
$$

is a closed semigroup

Compact absorbing sets

- if $c>0$

$$
\mathbb{Y}_{c}=Z_{c} \times \mathbb{V}_{2}
$$

- if $c=0$

$$
\mathbb{Y}_{c}=\left\{(u, v) \in Z_{0} \times \mathbb{V}_{2}:|\mathbb{I}(u, v)| \leq M\right\}
$$

for some $M \geq 0$

- \mathbb{Y}_{C} is a complete metric space

Theorem

$S_{c}(t)$ has an absorbing set bdd in $H^{2} \times \mathbb{V}_{3}$

Global and exponential attractors

- \exists compact absorbing set
- $S_{c}(t)$ is a closed semigroup then, thanks to Pata \& Zelik (2007), we deduce

Theorem

$S_{c}(t)$ has the global connected attractor \mathcal{A}_{c} which is bdd in $H^{2}(\Omega) \times \mathbb{V}_{3}$
we can also prove (via smoothing property)

Theorem

$S_{C}(t)$ has an exponential attractor \mathcal{E}_{C}
which yields as a by-product
Corollary
\mathcal{A}_{c} has finite fractal dimension

Lyapunov functional

Proposition

$\left(\mathbb{Y}_{c}, S_{c}(t)\right)$ is a gradient system with Lyapunov functional

$$
\begin{aligned}
\mathcal{L}_{c}(u, v) & =\|u\|_{2, \Omega}^{2}+a\left\|\left.u\right|_{\Gamma}\right\|_{2, \Gamma}^{2}+\alpha\|\nabla v\|_{2, \Omega}^{2} \\
& +\beta\left\|\left.\nabla_{\Gamma} v\right|_{\Gamma}\right\|_{2, \Gamma}^{2}+2 F(v)+2 G(v)
\end{aligned}
$$

so that, if Σ_{c} is the set of equilibria, then

- \mathcal{A}_{c} coincides with the unstable manifold of Σ_{c}
- $\omega\left(\theta_{0}, \chi_{0}\right) \subset \Sigma_{c}$ is nonempty, connected and compact in \mathbb{Y}_{c} for any $\left(\theta_{0}, \chi_{0}\right) \in \mathbb{Y}_{c}$

Convergence to single equilibria

Theorem

If F and G are real analytic, then, for any given $\left(\theta_{0}, \chi_{0}\right) \in \mathbb{Y}_{c}$, $\exists\left(\theta_{\infty}, \chi_{\infty}\right)$ solution to the stationary problem s.t.

$$
\begin{gathered}
\omega\left(\theta_{0}, \chi_{0}\right)=\left\{\left(\theta_{\infty}, \chi_{\infty}\right)\right\} \\
\text { and } \exists \xi \in(0,1 / 2) \text { and } C>0 \text { s.t., } \forall t \geq 0, \\
\left\|\chi(t)-\chi_{\infty}\right\|_{\mathbb{V}_{2}}+\left\|\theta(t)-\theta_{\infty}\right\|_{H^{1}(\Omega)} \leq C(1+t)^{-\frac{\xi}{1-2 \xi}}
\end{gathered}
$$

Remark

The argument is based on a suitable version of the Łojasiewicz-Simon inequality

Enlarging the phase space

- F with polynomially controlled growth of degree 4
- G with polynomially controlled growth of degree 2 if $\beta=0$ (i.e., no diffusion on Γ)
- $c>0$

$$
\mathbb{Y}_{c}=\mathbb{X} \times \mathbb{V}_{1}
$$

- $c=0$

$$
\mathbb{Y}_{c}=\left\{(u, v) \in \mathbb{X} \times \mathbb{V}_{1}:|\mathbb{I}(u, v)| \leq M\right\}
$$

- $S_{c}(t)$ can be extended to the phase space \mathbb{Y}_{c}

Remark

ALL THE PREVIOUS RESULTS STILL HOLD

Nonlinear coupling

- equations in $\Omega \times(0, \infty)$

$$
\left\{\begin{array}{l}
(\varepsilon \theta+\lambda(\chi))_{t}-k \Delta \theta=0 \\
\chi_{t}-\alpha \Delta \chi+F^{\prime}(\chi)-\lambda^{\prime}(\chi) \theta=0
\end{array}\right.
$$

- equations on $\Gamma \times(0, \infty)$

$$
\left\{\begin{array}{l}
(a \theta+\delta(\chi))_{t}+k \partial_{\mathbf{n}} \theta+c \theta=0 \\
\chi_{t}-\beta \Delta_{\Gamma} \chi+\alpha \partial_{\mathbf{n}} \chi+G^{\prime}(\chi)-\delta^{\prime}(\chi) \theta=0
\end{array}\right.
$$

- initial conditions

$$
\theta(0)=\theta_{0}, \quad \chi(0)=\chi_{0}
$$

Nonlinear coupling in the bulk only

Problem P Find θ and χ s.t.

$$
\left\{\begin{array}{l}
(\varepsilon \theta+\lambda(\chi))_{t}-k \Delta \theta=0 \\
\chi_{t}-\alpha \Delta \chi+F^{\prime}(\chi)-\lambda^{\prime}(\chi) \theta=0 \\
\theta=0 \\
\chi_{t}-\beta \Delta_{\Gamma} \chi+\alpha \partial_{\mathbf{n}} \chi+G^{\prime}(\chi)=0 \\
\theta(0)=\theta_{0}, \quad \chi(0)=\chi_{0}
\end{array}\right.
$$

Results [Cavaterra, Gal, G. \& Miranville, in preparation]

- well-posedness
- existence of the global attractor
- existence of an exponential attractor
- convergence to single equilibria (F, G real analytic)

Well-posedness

Basic assumptions

- $F, G, \lambda \in C^{2}(\mathbb{R})$
- $\left|F^{\prime \prime}(y)\right| \leq c_{0}\left(1+|y|^{2}\right)$
- $F^{\prime}(y) y \geq c_{1}|y|^{4}-c_{2}$
- $G^{\prime}(y) y \geq c_{3}|y|^{2}-c_{4}$
- $\lambda^{\prime \prime}$ bdd

Theorem

For any given $\left(\theta_{0}, \chi_{0}\right) \in L^{2} \times \mathbb{V}_{1}, \exists!(\theta, \chi) \in C\left([0, \infty) ; L^{2} \times \mathbb{V}_{1}\right)$ which solves \mathbf{P} and satisfies

- $\chi_{t} \in L^{2}\left((0, \infty) ; \mathbb{V}_{0}\right)$
- $\theta \in L^{2}\left((0, \infty) ; H_{0}^{1}\right)$
- $\chi \in L_{\text {loc }}^{2}\left((0, \infty) ; \mathbb{V}_{2}\right)$

Attractors

We can define a s-continuous dissipative semigroup

$$
S(t): L^{2} \times \mathbb{V}_{1} \rightarrow L^{2} \times \mathbb{V}_{1}
$$

by setting

$$
(\theta(t), \chi(t))=S(t)\left(\theta_{0}, \chi_{0}\right), \quad \forall t \geq 0
$$

Theorem

$S(t)$ has the global attractor \mathcal{A} bdd in $H_{0}^{1} \times \mathbb{V}_{2}$

Theorem

If $F^{\prime \prime}$ and $G^{\prime \prime}$ are loc. Lip., then $S(t)$ has an exponential attractor \mathcal{E} bdd in $H_{0}^{1} \times \mathbb{V}_{2}(\Rightarrow \mathcal{A}$ has finite fractal dimension)

Work in progress and future issues

G., Miranville \& Schimperna (in progress)

- bdry coupling with singular F (and, possibly, G) of the form

$$
F(s)=\gamma_{1}[(1+s) \ln (1+s)+(1-s) \ln (1-s)]-\gamma_{2} s^{2}
$$

[see G., Petzeltová \& Schimperna (2006) for DN case]
future issues

- nonlinear coupling in the bulk and on the bdry
- memory effects (hyperbolic behavior)
- Penrose-Fife systems with dynamic bdry conditions

Memory and dynamic bdry conditions: an example

$$
\left\{\begin{array}{l}
(\varepsilon \theta+\lambda \chi)_{t}-\int_{0}^{\infty} k(s) \Delta \theta(t-s) d s=0 \\
\chi_{t}+\int_{0}^{\infty} h(s)(-\Delta \chi+f(\chi)-\lambda \theta)(t-s) d s=0 \\
\chi_{t}+\int_{0}^{\infty} \ell(s)\left(-\Delta_{\Gamma} \chi+\chi+g(\chi)+\partial_{\mathbf{n}} \chi\right)(t-s) d s=\theta=0 \\
\theta(s)=\tilde{\theta}_{0}(-s), \chi(s)=\tilde{\chi}_{0}(-s) \quad \text { in } \Omega, s \geq 0
\end{array}\right.
$$

- $h, k, \ell \geq 0$ smooth exp. decreasing relaxation kernels
- DN and NN cases: G. \& Rotstein (2001), Rotstein et al. (2001), Novick-Cohen (2002), G. \& Pata (2004, 2005), Grinfeld \& Novick-Cohen (2006), Vergara (2007), G. (2008)

