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Phase-field systems

bdd domain Q ¢ R® with smooth bdry I

two-phase stress-free material occupying Q, vVt > 0
0 (relative) temperature

x order parameter (or phase-field)

| (e0+Ax)i — kD0 =0

Xt —alAx+ F'(x)—X0=0

k, o, e positive coefficients, A € R

F nonconvex potential



A naive derivation

@ bulk free energy functional

2

«
Ea(x.0) = /Q [E\Vx\z + F(x) — A0 — 592} dx

@ equation for the temperature

[(-0Ea(x.0) +V-a=0, aq=—kVo]

@ equation for the order parameter

| xt = —Ea(x.)]




Mathematical results

Main topics
@ well-posedness and longtime behavior of solutions
@ nature of stationary states
@ existence and smoothness of global attractors
@ existence of exponential attractors
@ construction of inertial manifolds (one or two spatial dim.)
@ convergence of trajectories to single equilibria

Some contributors: S.Aizicovici, PW.Bates, G.Caginalp, Chen
Xinfu, L.Cherfils, P.Colli, C.M.Elliott, M.Fabrizio, G.J.Fix,
E.Feireisl, S.Gatti, G.Gilardi, C.Giorgi, D.Hilhorst,
K.-H.Hoffmann, N.Kenmochi, PKreici, Ph.Laurencot,
A.Miranville, A.Novick-Cohen, V.Pata, H.Petzeltovd, E.Rocca,
G.Schimperna, J.Sprekels, S.Zelik, Zheng Songmu, . ..



Dynamic boundary conditions

Most papers are devoted to DN, NN or RN bdry conditions:

| b0 + ¢ = Onx =0

more recently, dynamic bdry conditions have been considered
for x (see Maass et al. for separation processes, Qian et al. for
immiscible two-phase flows)

o0 =0, xt=PBArx—adnx — G (x)

@3>0
@ Ar Laplace-Beltrami operator
@ G bdry (nonconvex) potential



Dynamic bdry conditions: known results

Chill, Fasangova & Priiss (2006)

@ F polynomially controlled growth of degree 6
e G=0
@ 3 smooth solutions

@ convergence to single equilibria via Lojasiewicz-Simon
inequality (F real analytic)

Gatti & Miranville (2006)

@ F and G smooth potentials (no growth restrictions)
@ construction of a s-continuous dissipative semigroup
@ Jglobal attractor A, upper semicontinuous ate =0
@ dexponential attractors &,



Dynamic bdry conditions: known results

Cherfils & Miranville (2007)

@ F singular potential defined on (—1,1)

@ G smooth potential (sign restrictions)

@ construction of a s-continuous dissipative semigroup
@ 7 global attractor of finite fractal dimension

@ convergence to single equilibria via £-S method (F real
analytic, G = 0)

Gatti, Cherfils & Miranville (2007 and 2008)

@ F singular potential defined on (—1,1)

@ G smooth potential (sign restrictions are removed)

@ separation property and existence of global solutions
@ existence of global and exponential attractors



Dynamic bdry conditions: known results

Gal & G. (2007)

@ F and G smooth potential (more general than Gatti &
Miranville)

@ more general bdry condition for 6

| a0: + bdnf + 0 = 0|

with a, b, ¢ > 0 (not all = 0)

@ construction of a dissipative semigroup (larger phase
spaces w.r.t. Gatti & Miranville)

@ 1 global attractor, 3 exponential attractors
Gal, G. & Miranville (2007)

e Jfamily of exponential attractors {£.} stable as £ \, 0 in
thecasea=c=0,b=1



Coupled dynamic bdry conditions

Gal, G. & Miranville (2008)
dynamic bdry conditions for 8 = coupling effects on I’

[cf. also Savaré & Visintin (1997) and Schimperna (1999) for
concentrated capacity pbs]

@ surface free energy functional

a
Er(0) = [ | 519rd? + G0 - o0 - 52| o5

where § >0anda>0
@ dynamic bdry condition for y

Xt = —OyEr(x,0) — aOnx = BArx — adnx — G/(X) + 40




Coupled dynamic bdry conditions

@ first Law of Thermodynamics

/Q( )dx+/ /v q+/ (x,t,6,v6)dS

where

‘ eq = —Eq(x,0) =0 + A\x, er = —0pEr(x,0)=ad + 5X‘

@ dynamic bdry condition for ¢

| (a0 +0x)1 = (X, 1,0, V0)|

@ our choice

| O(x,1,0,V0) = —kdn — ¢, ¢ >0|
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Phase-field system with coupled dyn. bdry conditions

@ equations in Q x (0, o0)

{ (0 + \x); — kA =0

Xt —alx+F'(x) -0 =0

@ equations on I x (0, )

{ (a0 +0x)t + konb +c =0

Xt — BArx + adnx + G'(x) — 00 =0

@ initial conditions

[6(0)=6,,  x(0) = xo]
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Assumptions on F and G

@ well-posedness (= 3 continuous semigroup): we suppose

F,G € C?(R)
I‘ir|ninf F'(y) >0, I‘ir|ninf G'(y)>0
y|—o0 y|—o0

@ dissipativity and 3 global attractor: if ¢ = 0 we also require

F'(y)y > kiy? — ko, G (y)y > ksy® — ks, Yy eR, k>0

@ J exponential attractors: we add

F", G" € Cipd(R)

@ convergence to single equilibria: we must require F and G
to be real analytic
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Interpreting the bdry conditions for ¢

e X =L2(Q,dx ® adS)
° |©]% = llo1l5q + allozl5

| A=-A:DA)CX X |

@ D(A) is contained in

{ue H2.(Q) : AueX, a(Au)|r + kdnu + cu = 0}

A Is nonnegative, self-adjoint and generates an analytic
semigroup on X [see Favini et al. (2002)]
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The phase space for ¢

Z. = H'(Q)

endowed with the norms

® |lulZ, = kIVulq +clulrlzr [c>0]
o |[ullZ, = kIVullZq + [((u))]* [c=0]

<<u>>:|Q|J:a|r|(/qudx+/raudS)

where
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The phase space for y

Aeranlls

o Vs =(Cs(Q))

o [[viio=IIVIEq + IVIrlI3

o |[vilh = alVviEq + BIVrvIrlEr + IvIrli3,
@ Vs = HS(Q) @ H5(IN)

Vo = H?(Q) @ H?(TN)

with norm [ W[13, = [V 220 + V2l 2er)
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Problem P,

Problem P For any given (6g, xo) € Z; x V5 find

| (6,x) € C([0,00);: Ze x V) |

s.t.

(6(0),x(0)) = (fo. x0), (01, x1) € L2((0,0); X x Vy)

and

(g0 + Ax)t — kA =0

Xt —alAx+ F'(x) — A0 =0

(@l + ox)t + konb +¢c =0

Xt — BArx + adnx + G'(x) — 960 =0
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Existence result

P. has a solution s.t. § € L2 ([0, c0); D(A)) and, ¥t > 0,

loc

[1(6(1), x(1)) = (0, xo) ifc=0 ]

where

I(u, V):|Q|l.a|r\ (/Q(sujt)\v)dxjt/raudS)

Fixed-point argument to get a local smooth solution which
satisfies suitable a priori bounds
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The solution semigroup

Let (0(t), xi(t)) be solutions corresponding to
(90,', Xo,‘) € Z:xVo,i=1,2. Then

(01 — 62)(H)l1x + Il (x1 — x2)(t)]lv,
< C1%! (||6o1 — O2lx + [x01 — xo2lv,)

vt >0, where C; = C; (||(60i, x0i)ll z¢xv,) > 0

Sc(t) . ZC X Vz — ZC X VZ deflned by

(0(1), x(1)) = Sc(t)(6o, x0), Vt=0

is a closed semigroup
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Compact absorbing sets

eifc>0
YC:ZcXV2

eifc=0
Ye = {(U7 V) € ZO X Va ’]I(Uv V)’ < M}

forsome M >0
@ Y. is a complete metric space

Sc(t) has an absorbing set bdd in H? x V3
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Global and exponential attractors

@ J compact absorbing set
@ Sc(t) is a closed semigroup

then, thanks to Pata & Zelik (2007), we deduce

Sc(t) has the global connected attractor A which is bdd in
Hz(Q) X V3

we can also prove (via smoothing property)

S¢(t) has an exponential attractor &

which yields as a by-product

A¢ has finite fractal dimension
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Lyapunov functional

(Ye, Sc(t)) is a gradient system with Lyapunov functional

Lo(u,v) = UG g + allulr |3 +allVVvIBg
+ BIVrVIF3r +2F(v) +2G(v)

so that, if ¥ is the set of equilibria, then

@ A, coincides with the unstable manifold of X

@ w(fy, xo) C X is nonempty, connected and compact in Y
for any (6o, x0) € Ye
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Convergence to single equilibria

Theorem

If F and G are real analytic, then, for any given (6y, xo0) € Y,
3 (A, X0 ) SOlution to the stationary problem s.t.

u)(GOa XO) = {(9007 Xoo)}

and3¢ € (0,1/2)and C > 0s.t,Vt >0,

&
1(t) = Xoollv, + [16(t) = ool (@) < C(1 + 1) =%

The argument is based on a suitable version of the
tojasiewicz-Simon inequality
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Enlarging the phase space

@ F with polynomially controlled growth of degree 4

@ G with polynomially controlled growth of degree 2 if 5 =0
(i.e., no diffusion on ')

ec>0
YC:XXV‘]

ec=0
Yo ={(u,v) €Xx V; : |I(u,v)| < M}

@ Sc(t) can be extended to the phase space Y,

ALL THE PREVIOUS RESULTS STILL HOLD l
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Nonlinear coupling

@ equations in Q x (0, o0)

{ (20 + A(x))t — kA = 0

xt —alDx + F'(x) = X(x)0 =0

@ equations on I x (0, )

{ (afd +6(x))t + kdnb +c0 =0

xt — BArx + adnx + G (x) — 0'(x)0 =0

@ initial conditions

[6(0)=6,,  x(0) = xo]
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Nonlinear coupling in the bulk only

Problem P Find # and x s.t.

(26 + A\(x))t — kAO = 0
xt — alx + F'(x) = N(x)0 =0
=0

xt — BArx + adnx + G'(x) =0
0(0) =60y,  x(0) = xo

Results [Cavaterra, Gal, G. & Miranville, in preparation]

@ well-posedness

@ existence of the global attractor

@ existence of an exponential attractor

@ convergence to single equilibria (F, G real analytic)
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Well-posedness

Basic assumptions
F,G, )\ € C3(R)
IF"(y)] < co(1 + 1y?)
Fy)y =z ailyl* - c

G (y)y > cslyl? — ca
A" bdd

For any given (6, xo) € L? x V4, 31(0,x) € C([0, x0); L2 x V)
which solves P and satisfies

@ x: € L?((0,00); Vo)

o 0 € [2((0,00); H})

@ x € L2 ((0,00);V2)

loc

26/29



Attractors

We can define a s-continuous dissipative semigroup
S(t): 2 x Vy — L% x Vq

by setting
(0(1), x(1)) = S(t)(6o, x0), Vt=0

Theorem
S(t) has the global attractor A bdd in H} x Vs

v

If F" and G" are loc. Lip., then S(t) has an exponential
attractor € bdd in H} x Vy (= A has finite fractal dimension)

o’
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Work in progress and future issues

G., Miranville & Schimperna (in progress)

@ bdry coupling with singular F (and, possibly, G) of the form

F(s) = v[(1 +s)In(1+8)+ (1 —s)In(1 — 8)] — 728?

[see G., Petzeltova & Schimperna (2006) for DN case]
future issues

@ nonlinear coupling in the bulk and on the bdry
@ memory effects (hyperbolic behavior)
@ Penrose-Fife systems with dynamic bdry conditions
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Memory and dynamic bdry conditions: an example

(0 + M)t — /OO K(s)A6(t — s)ds = 0
0
Xt + /OO h(s)(—Ax + F(x) — A)(t — 8)ds = 0
0

Xt+/0°°€(5)(—ArX+X+g(X)+@nx)(t_S)dS:920

0(s) = Op(—s), x(s) = Ko(—s) in Q, >0
@ h, k,¢ > 0 smooth exp. decreasing relaxation kernels

@ DN and NN cases: G. & Rotstein (2001), Rotstein et al.
(2001), Novick-Cohen (2002), G. & Pata (2004, 2005),
Grinfeld & Novick-Cohen (2006), Vergara (2007), G. (2008)
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