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We consider an inverse problem of the form

( Dyu(t,z,y) = A(t,z, Dy)u(t, z,y)
+B(t7y7 Dy)u(t7x7 y) + g(tax)f(ta 33, y)a
¢ (t,x,y) € [0,T] x R™ x R,

u(0,z,y) = up(x,y), (x,y) € R™ xR",

| u(t,z,0) = ¢(t,z), (t,z)€[0,T] xR™,

(1)
with u and g unknown. A and B are elliptic
operators of order 2p in the variables x € R™
and y € R™ respectively. The last equation
in (1) should compensate the fact that g is
unknown.



e Related literature:

- Pripepko, Orlovsky, Vasin (2000) :

[ Dyu(t,z) = Leu(t,z) + f(2)h(t,z) + g(t, z),
(t,z) € (0,T) x €2,

{ Bu(t,z) =0b(t,z), (t,z) € (0,T) x 0%2,
u(0,z) = ug(x),r € €2,

lu(z) = x(x),x € Q,

‘ (2)
with L, second order elliptic, B suitable Dirich-
let or first order boundary conditions, h and

g given,

lu(z) = /O Ll 2)w(r)dr (3)
or

a(z) = u(T, z). (4)



The problems (2)-(3) and (2)-(4) are treated
also in the case of the linearized Navier-Stokes
equation (Chapter 4). Considered also

Dtll(t, :U) — L;Ell(t, 33') + f(t)h(ta x) + g(ta CIZ),
(t,z) € (0,T) x €,

{ Bu(t,z) =b(t,z), (¢,z)€ (0,T) x 0%,
u(0,z) = up(xz),z € €2,

lu(t) = x(t),¢t € (0,T),

.

\

(5)
with

lu(t) = /Q w(t, x)w(x)dx.



In Chapter 6 the abstract problem

( Dyu(t,z) = Au(t) + ®(t)p(t) + F(1),
t € [0,71],
u((0) =ug

| Bu(t) = (1)

(6)
with A infinitesimal generator of semigroup
in Banach space X, Y Banach space, ®©(t) €
L(Y,X), Bd(t) invertible forevery t, p: [0,T] —
Y unknown together with u, B € L(X,Y).
Assumed regularizing action of B with re-
spect to A, that is, BA € £(X,Y). Not ap-
plicable in our case.



-Belov (2002) treated the case p =1,

A(taxa Dﬂ?) — A(xa Dx):

n=1,B(t,y,Dy) = a(t)D; + b(t) Dy,

Main tool: Fourier transform in the y vari-
able.

-Very recent paper by Anikonov-Lorenzi (2007):

u'(t) = Au(t) + f(t)z, t e [0,T],

u(0) = uq (7)

Jo u(t)du(t) = uo,
with u and z unknown, A infinitesimal gener-
ator of an analytic exponentially decreasing
semigroup, f scalar valued, u Borel measure
in [0,7T]. Results of existence and uniqueness
of solution (u,z), together with representa-
tion formula.

e Now we want to state our main result. As-
sumptions:



(H1) m,neN, T € RT.

(H2) p S N; A(tavaZL‘) — Z‘Q{|§2pa’a(t7x)D%r
with aq € C([0,T] x R™) (uniformly continu-
ous and bounded),

t — aa(t,.) € B([0,T]; CY(R™)),
with 8 € (0,1); there exists v € R, such
that, V(t,x) € [0,T] x R™, V& € R™,

(=1)PRe( Y aa(t,z)e¥) < —v|€]?P.  (8)

|a|=2p

(H3) B(t,y, Dy) = ¥|51<2p bs(t, y) Dy, Withbg €
C([0, TIxR"), t — bg(t,.) € B([0,T]; CY(R™)),
V(t,y) € [0,T] x R", Vn € R",

(=1)PRe( Y bg(t,y)n”) < —vin|?P.  (9)
|B|=2p



(H4) f € C([0,T] x R™ x R"™), t — f(t,.,.) €
B([0,T]; CY(R™ x R™)), there exists u € RT,
such that

f(t,z,0)| > p, V(t,z) € [0,T] x R™. (10)
(H5) ug € C2PT0(R™ x R™).

(H6) ¢ € CL([0,T] x R™) (uniformly continu-
ous and bounded together with the first order
derivatives); the mapping

t — Dt¢(t, )
belongs to B([0,T];: CY(R™)); the mapping
t — ¢(t,.) belongs to B([0,T]; C2PT0(R™M)).

(H7) ug(z,0) = ¢(0,xz) Vz € R™,



Main result:

Theorem 1 Assume that the assumptions (H1)-
(H7) are satisfied. Then (1) has a unique
solution (u,g), such that

u € CL([0,T]; C(R™T™)) N B([0, T]; C2PTI(R™T™)),
Dwu € B([0,T]; CO(R™T™)),
(11)

g € C([0,T]; C(R™)) n B([0, T]; CY(R™)).
(12)



OQutline of the proof:

Proceeding formally, we get from (1), taking
y = O:
Dt¢(t7x> — A(taxa Dx)qb(tax)
_I_B(ta O) Dy)u(ta X, O) + g(ta CU)f(t, Z, O))

(t,x) € [0,400) x R,
(13)

so that, as f(¢t,2,0) %= 0 V(t,z) € [0,400) X
R™ we obtain

g(t,x) = —f(t,2,0) "1 B(t,0, Dy)u(t,=,0)+Fy (t,z),

(14)
with
Fy(t,z) = f(t,2,0) " [Do(t, z)—A(t, 2, De) (2, x)].
(15)

(completely known)
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Replacing (14) in (1), we are reduced to the
system

' Dyu(t, z,y) = A(t, =, Da)u(t, z,y)
+B(t, y, Dy)u(t, z,y)
_I_C(ta X, y)B(ta O) Dy)u(ta X, O) + F(ta X, y)a

(t,z,y) € [0, T] x R™ x R™,

. u(0,z,y) =ug(z,y), (z,y) € R xR",
(16)

with
C(t,ZC,y) .= —f(t,ZC, O)_lf(t,a:,y), (17)

F(t7w7y) = f(t,$, O)_l[Dt¢(t7$) (18)
_A(t7 €L, Dﬂ?)¢(t7 $)]f(t, L, y)
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e At first sight, it is unclear whether (16) is
well posed, as the term

C(ta x, y)B(t7 07 Dy)u(t7 Z, O)

does not seem a simple perturbation of the
remaining part.

To see that the situation is not so bad, we
start by considering the problem
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M (y) — B(y, Dy)v(y) — c(y)B(0, Dy)v(0) = f(y),
y € R™,
(19)

with the following assumptions:

(11) B(y,Dy) = X|g<2pbs(y) D}, with bg €
CY(R™) (6 € (0,1)); there exists v € RT, such
that, Vy € R"”, Vn € R",

(=1)PRe( 3" bg(y)n”) < —vin|?P.  (20)

|8|=2p

(I2) c € C?(RM).

We introduce the following operator By:

D(Bo) = {u € N1<qeos Wik I(R™) N C(R™)
. B(., Dy)u € C(R")},
Bou(y) := B(y,Dy)u(y), yecR™
(21)
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It is well known that Bg is the infinitesimal
generator of an analytic semigroup in C(R"™).
Moreover, if o € (0,1) and 2ap € N,

(C(R™), D(Bg))a,co = C?PYR™),  (22)

with equivalent norms. These results can be
extended to the operator Be:

{ D(B.) := D(By),
Beu(y) := Bou(y) + c(y)Bou(0), y € R™
(23)

We limit ourselves to show the following: that,
if A > 0, sufficiently large, \ € p(B:) and

IO = B Hizo@nyy = 0 (A — o0).

Let X\ € p(Bp). We consider the equation

Au — Beu = f, (24)
with f € C(R™). (24) is equivalent to

u= (A=Bg) ' f+Bou(0)(A\—Bg) " te, u e D(By).

(25)



(25) implies
Bou(0) = [Bo(A = Bo) 1/1(0) ¢,
+Bou(0)[Bo(A — Bp) 1] (0).

As Bgp generates a semigroup,

IBo(A—Bo) el orny = o(1) (A — o0) (27)

(in fact, asc e CH(R”“), ||BO()\_BO)_1C||C(R”) —
O(\—9/(2p)y.

So, if X\ is sufficiently large, from (26), we
obtain

[Bo(A — Bp)~1£1(0)

F0u0) = T Bo(x - o) 1dl(0)

(28)

and

[Bou(0)| < C|Bo(A—Bo) ' f1(0)| < C|Ifllc(rny-

(29)
with C independent of A and f. From (25),
we easily obtain

lullggny < CA HIfllony-  (30)

The next step is the following
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Theorem 2 Assume that A(t,x,Dy) = A(x, Dyz),
B(t,y, Dy) = B(y, Dy), ¢ € CO(R™*™),

lellcormny < A,
with A € RT. Consider the problem

)\U(ZC, y) T A(SIZ‘, Dx)u(xa y) T B(ya Dy)u(xa y)
_C(x7y)B(Oa Dy)u(wa O) — f(il?,y),
v e R™ y e R,

(31)
with A € C, f € CY(R™*tn), with 0 < ¢ < 6.
Then, there exist ¢ € (n/2,7), R>0,M >0
(independent of ¢ and f), such that, if |[A| >
R, |[Arg(\)| < ¢, then (31) has a unique so-
lution u belonging to C2Pt0' (Rm+n)  More-
over,
Aol o gencery F 100l i -y

32
S MHchQ’(Rm—I—n) ( )
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A proof of Theorem 2 can be obtained by
means of Theorem 2 and Da Prato-Grisvard’s
theory of sums of operators, allowing to con-
sider the simpler case that c(z,y) = ¢(y), in
such a way that A(z, D;) and u — B(y, Dy)u+
c(y)B(0, Dy)u(.,0) "commute”. The more
general case that ¢ depends also on x can
be obtain through a perturbation argument.

Using Theorem 2, one can prove the follow-
ing
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Theorem 3 Consider the problem

.

Dtu<t7 €L, y) — A(ta €L, Dw)u(tv X, y)
+B(t,y, Dy)u(t,z,y) + c(t,z,y)B(0, Dy)u(t, z,0)
+F(t,z,y), (tzy) €[0,T] xR™xR",

7\

u(0,z,y) = uo(z,y), (z,y) € R™xR",

(33)
with the assumptions that F ¢ C([0,T] x
R™+™) vt € [0,T] F(¢,.) € C/R™T™) and
t — F(t,.) € B([0,T]; C?(R™t")) and ug €
C2+0(R™+n) . Then (33) has a unique solu-
tion uw belonging to

cl([o,T]; C(R™T™)) N C([0, T]; C?P(R™T™))
NB([0, T]; C2PTI(R™TN)),

with Dyu € B([0,T]; C? (R™Tn)).

\

Theorem 1 is a straighforward consequence
of Theorem 3.

With similar (simpler) arguments, one can
show also the following fact, corresponding
to the case m = 0O:
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Theorem 4 Consider the problem

[ Dyu(t,y) = B(t,y, Dy)u(t,y) +g(t) f(¢,y),

(t,y) € [0,T] x R™,

u(0,y) =vuo(y), yeR",

u(t,0) = ¢(t), te€ [0,T]

\

(34)
with f € C([0, T]xR"), t — f(t,.,.) € B([0,T];
CY(R™)) and such that there exist u € Rt, so
that

in | £(t,0)| > 0 35
[raljo]lf(,)l>, (35)

ug € C2PT9(R™). Then (34) has a unique
solution (u,g), such that

u € CL([0,T]; C(R™)) N B([0, T]; C?PTO(R™)),

Dyu € B([0,T]; CY(R™)),
(36)

g € C([0,T7). (37)
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