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We consider an inverse problem of the form

Dtu(t, x, y) = A(t, x,Dx)u(t, x, y)

+B(t, y,Dy)u(t, x, y) + g(t, x)f(t, x, y),

(t, x, y) ∈ [0, T ]× Rm × Rn,

u(0, x, y) = u0(x, y), (x, y) ∈ Rm × Rn,

u(t, x,0) = φ(t, x), (t, x) ∈ [0, T ]× Rm,
(1)

with u and g unknown. A and B are elliptic

operators of order 2p in the variables x ∈ Rm

and y ∈ Rn respectively. The last equation

in (1) should compensate the fact that g is

unknown.
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• Related literature:

- Pripepko, Orlovsky, Vasin (2000) :

Dtu(t, x) = Lxu(t, x) + f(x)h(t, x) + g(t, x),
(t, x) ∈ (0, T )×Ω,
Bu(t, x) = b(t, x), (t, x) ∈ (0, T )× ∂Ω,
u(0, x) = u0(x), x ∈ Ω,
lu(x) = χ(x), x ∈ Ω,

(2)

with Lx second order elliptic, B suitable Dirich-

let or first order boundary conditions, h and

g given,

lu(x) =
∫ T

0
u(τ, x)ω(τ)dτ (3)

or

lu(x) = u(T, x). (4)
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The problems (2)-(3) and (2)-(4) are treated

also in the case of the linearized Navier-Stokes

equation (Chapter 4). Considered also

Dtu(t, x) = Lxu(t, x) + f(t)h(t, x) + g(t, x),
(t, x) ∈ (0, T )×Ω,
Bu(t, x) = b(t, x), (t, x) ∈ (0, T )× ∂Ω,
u(0, x) = u0(x), x ∈ Ω,
lu(t) = χ(t), t ∈ (0, T ),

(5)

with

lu(t) =
∫

Ω
u(t, x)ω(x)dx.
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In Chapter 6 the abstract problem
Dtu(t, x) = Au(t) + Φ(t)p(t) + F (t),
t ∈ [0, T ],
u((0) = u0
Bu(t) = ψ(t)

(6)

with A infinitesimal generator of semigroup

in Banach space X, Y Banach space, Φ(t) ∈
L(Y,X), BΦ(t) invertible for every t, p : [0, T ]→
Y unknown together with u, B ∈ L(X,Y ).

Assumed regularizing action of B with re-

spect to A, that is, BA ∈ L(X,Y ). Not ap-

plicable in our case.

5



-Belov (2002) treated the case p = 1,

A(t, x,Dx) = A(x,Dx),

n = 1, B(t, y,Dy) = a(t)D2
y + b(t)Dy.

Main tool: Fourier transform in the y vari-

able.

-Very recent paper by Anikonov-Lorenzi (2007):
u′(t) = Au(t) + f(t)z, t ∈ [0, T ],
u(0) = u1∫ T
0 u(t)dµ(t) = u2,

(7)

with u and z unknown, A infinitesimal gener-

ator of an analytic exponentially decreasing

semigroup, f scalar valued, µ Borel measure

in [0, T ]. Results of existence and uniqueness

of solution (u, z), together with representa-

tion formula.

• Now we want to state our main result. As-

sumptions:
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(H1) m,n ∈ N, T ∈ R+.

(H2) p ∈ N; A(t, x,Dx) =
∑
|α|≤2p aα(t, x)Dα

x ,

with aα ∈ C([0, T ] × Rm) (uniformly continu-

ous and bounded),

t→ aα(t, .) ∈ B([0, T ];Cθ(Rm)),

with θ ∈ (0,1); there exists ν ∈ R+, such

that, ∀(t, x) ∈ [0, T ]× Rm, ∀ξ ∈ Rm,

(−1)pRe(
∑
|α|=2p

aα(t, x)ξα) ≤ −ν|ξ|2p. (8)

(H3) B(t, y,Dy) =
∑
|β|≤2p bβ(t, y)Dβ

y , with bβ ∈
C([0, T ]×Rn), t→ bβ(t, .) ∈ B([0, T ]; Cθ(Rn));

∀(t, y) ∈ [0, T ]× Rn, ∀η ∈ Rn,

(−1)pRe(
∑
|β|=2p

bβ(t, y)ηβ) ≤ −ν|η|2p. (9)
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(H4) f ∈ C([0, T ] × Rm × Rn), t → f(t, ., .) ∈
B([0, T ]; Cθ(Rm × Rn)), there exists µ ∈ R+,

such that

|f(t, x,0)| ≥ µ, ∀(t, x) ∈ [0, T ]× Rm. (10)

(H5) u0 ∈ C2p+θ(Rm × Rn).

(H6) φ ∈ C1([0, T ]×Rm) (uniformly continu-

ous and bounded together with the first order

derivatives); the mapping

t→ Dtφ(t, .)

belongs to B([0, T ];Cθ(Rm)); the mapping

t→ φ(t, .) belongs to B([0, T ];C2p+θ(Rm)).

(H7) u0(x,0) = φ(0, x) ∀x ∈ Rm.
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Main result:

Theorem 1 Assume that the assumptions (H1)-

(H7) are satisfied. Then (1) has a unique

solution (u, g), such that

u ∈ C1([0, T ];C(Rm+n)) ∩B([0, T ];C2p+θ(Rm+n)),

Dtu ∈ B([0, T ];Cθ(Rm+n)),
(11)

g ∈ C([0, T ];C(Rm)) ∩B([0, T ];Cθ(Rm)).

(12)
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Outline of the proof:

Proceeding formally, we get from (1), taking

y = 0:

Dtφ(t, x) = A(t, x,Dx)φ(t, x)
+B(t,0, Dy)u(t, x,0) + g(t, x)f(t, x,0),

(t, x) ∈ [0,+∞)× Rn,
(13)

so that, as f(t, x,0) 6= 0 ∀(t, x) ∈ [0,+∞) ×
Rn, we obtain

g(t, x) = −f(t, x,0)−1B(t,0, Dy)u(t, x,0)+F1(t, x),

(14)

with

F1(t, x) = f(t, x,0)−1[Dtφ(t, x)−A(t, x,Dx)φ(t, x)].

(15)

(completely known)
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Replacing (14) in (1), we are reduced to the

system

Dtu(t, x, y) = A(t, x,Dx)u(t, x, y)
+B(t, y,Dy)u(t, x, y)

+c(t, x, y)B(t,0, Dy)u(t, x,0) + F (t, x, y),

(t, x, y) ∈ [0, T ]× Rm × Rn,

u(0, x, y) = u0(x, y), (x, y) ∈ Rm × Rn,
(16)

with

c(t, x, y) := −f(t, x,0)−1f(t, x, y), (17)

F (t, x, y) := f(t, x,0)−1[Dtφ(t, x)
−A(t, x,Dx)φ(t, x)]f(t, x, y).

(18)
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• At first sight, it is unclear whether (16) is

well posed, as the term

c(t, x, y)B(t,0, Dy)u(t, x,0)

does not seem a simple perturbation of the

remaining part.

To see that the situation is not so bad, we

start by considering the problem
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λv(y)−B(y,Dy)v(y)− c(y)B(0, Dy)v(0) = f(y),
y ∈ Rn,

(19)

with the following assumptions:

(I1) B(y,Dy) =
∑
|β|≤2p bβ(y)Dβ

y , with bβ ∈
Cθ(Rn) (θ ∈ (0,1)); there exists ν ∈ R+, such

that, ∀y ∈ Rn, ∀η ∈ Rn,

(−1)pRe(
∑
|β|=2p

bβ(y)ηβ) ≤ −ν|η|2p. (20)

(I2) c ∈ Cθ(Rn).

We introduce the following operator B0:
D(B0) := {u ∈

⋂
1≤q<∞W

2p,q
loc (Rn) ∩ C(Rn)

: B(., Dy)u ∈ C(Rn)},
B0u(y) := B(y,Dy)u(y), y ∈ Rn.

(21)
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It is well known that B0 is the infinitesimal
generator of an analytic semigroup in C(Rn).
Moreover, if α ∈ (0,1) and 2αp 6∈ N,

(C(Rn), D(B0))α,∞ = C2pα(Rn), (22)

with equivalent norms. These results can be
extended to the operator Bc:

{
D(Bc) := D(B0),
Bcu(y) := B0u(y) + c(y)B0u(0), y ∈ Rn.

(23)

We limit ourselves to show the following: that,
if λ > 0, sufficiently large, λ ∈ ρ(Bc) and

‖(λ−Bc)−1‖L(C(Rn)) = O(λ−1) (λ→∞).

Let λ ∈ ρ(B0). We consider the equation

λu−Bcu = f, (24)

with f ∈ C(Rn). (24) is equivalent to

u = (λ−B0)−1f+B0u(0)(λ−B0)−1c, u ∈ D(B0).
(25)
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(25) implies

B0u(0) = [B0(λ−B0)−1f ](0)
+B0u(0)[B0(λ−B0)−1c](0).

(26)

As B0 generates a semigroup,

‖B0(λ−B0)−1c‖C(Rn) = o(1) (λ→∞) (27)

(in fact, as c ∈ Cθ(Rn), ‖B0(λ−B0)−1c‖C(Rn) =

O(λ−θ/(2p)).

So, if λ is sufficiently large, from (26), we

obtain

B0u(0) =
[B0(λ−B0)−1f ](0)

1− [B0(λ−B0)−1c](0)
, (28)

and

|B0u(0)| ≤ C|B0(λ−B0)−1f ](0)| ≤ C‖f‖C(Rn).

(29)

with C independent of λ and f . From (25),

we easily obtain

‖u‖C(Rn) ≤ Cλ
−1‖f‖C(Rn). (30)

The next step is the following
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Theorem 2 Assume that A(t, x,Dx) = A(x,Dx),

B(t, y,Dy) = B(y,Dy), c ∈ Cθ(Rm+n),

‖c‖Cθ(Rm+n) ≤ A,

with A ∈ R+. Consider the problem
λu(x, y)−A(x,Dx)u(x, y)−B(y,Dy)u(x, y)
−c(x, y)B(0, Dy)u(x,0) = f(x, y),
x ∈ Rm, y ∈ Rn,

(31)

with λ ∈ C, f ∈ Cθ′(Rm+n), with 0 < θ′ ≤ θ.

Then, there exist φ ∈ (π/2, π), R > 0,M > 0

(independent of c and f), such that, if |λ| ≥
R, |Arg(λ)| ≤ φ, then (31) has a unique so-

lution u belonging to C2p+θ′(Rm+n). More-

over,

|λ|‖u‖
Cθ
′(Rm+n)

+ ‖u‖
C2p+θ′(Rm+n)

≤M‖f‖
Cθ
′(Rm+n)

(32)
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A proof of Theorem 2 can be obtained by

means of Theorem 2 and Da Prato-Grisvard’s

theory of sums of operators, allowing to con-

sider the simpler case that c(x, y) = c(y), in

such a way that A(x,Dx) and u→ B(y,Dy)u+

c(y)B(0, Dy)u(.,0) ”commute”. The more

general case that c depends also on x can

be obtain through a perturbation argument.

Using Theorem 2, one can prove the follow-

ing
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Theorem 3 Consider the problem

Dtu(t, x, y) = A(t, x,Dx)u(t, x, y)
+B(t, y,Dy)u(t, x, y) + c(t, x, y)B(0, Dy)u(t, x,0)

+F (t, x, y), (t, x, y) ∈ [0, T ]× Rm × Rn,

u(0, x, y) = u0(x, y), (x, y) ∈ Rm × Rn,
(33)

with the assumptions that F ∈ C([0, T ] ×
Rm+n), ∀t ∈ [0, T ] F (t, .) ∈ Cθ(Rm+n) and

t → F (t, .) ∈ B([0, T ]; Cθ(Rm+n)) and u0 ∈
C2+θ(Rm+n). Then (33) has a unique solu-

tion u belonging to

C1([0, T ];C(Rm+n)) ∩ C([0, T ];C2p(Rm+n))
∩B([0, T ];C2p+θ(Rm+n)),

with Dtu ∈ B([0, T ];Cθ
′
(Rm+n)).

Theorem 1 is a straighforward consequence

of Theorem 3.

With similar (simpler) arguments, one can

show also the following fact, corresponding

to the case m = 0:
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Theorem 4 Consider the problem

Dtu(t, y) = B(t, y,Dy)u(t, y) + g(t)f(t, y),

(t, y) ∈ [0, T ]× Rn,

u(0, y) = u0(y), y ∈ Rn,

u(t,0) = φ(t), t ∈ [0, T ]
(34)

with f ∈ C([0, T ]×Rn), t→ f(t, ., .) ∈ B([0, T ];

Cθ(Rn)) and such that there exist µ ∈ R+, so

that

min
[0,T ]

|f(t,0)| > 0, (35)

u0 ∈ C2p+θ(Rn). Then (34) has a unique

solution (u, g), such that

u ∈ C1([0, T ];C(Rn)) ∩B([0, T ];C2p+θ(Rn)),

Dtu ∈ B([0, T ];Cθ(Rn)),
(36)

g ∈ C([0, T ]). (37)
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