Partial reconstruction of a source term in a linear parabolic problem

Davide Guidetti
(Bologna)

We consider an inverse problem of the form

$$
\left\{\begin{array}{l}
D_{t} \mathbf{u}(t, x, y)=A\left(t, x, D_{x}\right) \mathbf{u}(t, x, y) \tag{1}\\
+B\left(t, y, D_{y}\right) \mathbf{u}(t, x, y)+\mathbf{g}(t, x) f(t, x, y) \\
(t, x, y) \in[0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{n} \\
\mathbf{u}(0, x, y)=u_{0}(x, y), \quad(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \\
\mathbf{u}(t, x, 0)=\phi(t, x), \quad(t, x) \in[0, T] \times \mathbb{R}^{m}
\end{array}\right.
$$

with \mathbf{u} and \mathbf{g} unknown. A and B are elliptic operators of order $2 p$ in the variables $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ respectively. The last equation in (1) should compensate the fact that g is unknown.

- Related literature:
- Pripepko, Orlovsky, Vasin (2000) :

$$
\left\{\begin{array}{l}
D_{t} \mathbf{u}(t, x)=L_{x} \mathbf{u}(t, x)+\mathbf{f}(x) h(t, x)+g(t, x), \tag{2}\\
(t, x) \in(0, T) \times \Omega, \\
B \mathbf{u}(t, x)=b(t, x), \quad(t, x) \in(0, T) \times \partial \Omega, \\
\mathbf{u}(0, x)=u_{0}(x), x \in \Omega, \\
l \mathbf{u}(x)=\chi(x), x \in \Omega,
\end{array}\right.
$$

with L_{x} second order elliptic, B suitable Dirichlet or first order boundary conditions, h and g given,

$$
\begin{equation*}
l \mathbf{u}(x)=\int_{0}^{T} \mathbf{u}(\tau, x) \omega(\tau) d \tau \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
l \mathbf{u}(x)=\mathbf{u}(T, x) . \tag{4}
\end{equation*}
$$

The problems (2)-(3) and (2)-(4) are treated also in the case of the linearized Navier-Stokes equation (Chapter 4). Considered also

$$
\left\{\begin{array}{l}
D_{t} \mathbf{u}(t, x)=L_{x} \mathbf{u}(t, x)+\mathbf{f}(t) h(t, x)+g(t, x), \\
(t, x) \in(0, T) \times \Omega, \\
B \mathbf{u}(t, x)=b(t, x),(t, x) \in(0, T) \times \partial \Omega, \\
\mathbf{u}(0, x)=u_{0}(x), x \in \Omega, \\
l \mathbf{u}(t)=\chi(t), t \in(0, T), \tag{5}
\end{array}\right.
$$

with

$$
l u(t)=\int_{\Omega} u(t, x) \omega(x) d x
$$

In Chapter 6 the abstract problem

$$
\left\{\begin{array}{l}
D_{t} \mathbf{u}(t, x)=A \mathbf{u}(t)+\Phi(t) \mathbf{p}(t)+F(t) \tag{6}\\
t \in[0, T] \\
\mathbf{u}\left((0)=u_{0}\right. \\
B \mathbf{u}(t)=\psi(t)
\end{array}\right.
$$

with A infinitesimal generator of semigroup in Banach space X, Y Banach space, $\Phi(t) \in$ $\mathcal{L}(Y, X), B \Phi(t)$ invertible for every $t, p:[0, T] \rightarrow$ Y unknown together with $u, B \in \mathcal{L}(X, Y)$. Assumed regularizing action of B with respect to A, that is, $\overline{B A} \in \mathcal{L}(X, Y)$. Not applicable in our case.
-Belov (2002) treated the case $p=1$,

$$
\begin{aligned}
A\left(t, x, D_{x}\right) & =A\left(x, D_{x}\right) \\
n=1, B\left(t, y, D_{y}\right) & =a(t) D_{y}^{2}+b(t) D_{y}
\end{aligned}
$$

Main tool: Fourier transform in the y variable.
-Very recent paper by Anikonov-Lorenzi (2007):

$$
\left\{\begin{array}{l}
\mathbf{u}^{\prime}(t)=A \mathbf{u}(t)+f(t) \mathbf{z}, \quad t \in[0, T] \tag{7}\\
\mathbf{u}(0)=u_{1} \\
\int_{0}^{T} \mathbf{u}(t) d \mu(t)=u_{2}
\end{array}\right.
$$

with \mathbf{u} and \mathbf{z} unknown, A infinitesimal generator of an analytic exponentially decreasing semigroup, f scalar valued, μ Borel measure in $[0, T]$. Results of existence and uniqueness of solution (\mathbf{u}, \mathbf{z}), together with representation formula.

- Now we want to state our main result. Assumptions:
(H1) $m, n \in \mathbb{N}, T \in \mathbb{R}^{+}$.
(H2) $p \in \mathbb{N} ; A\left(t, x, D_{x}\right)=\sum_{|\alpha| \leq 2 p} a_{\alpha}(t, x) D_{x}^{\alpha}$, with $a_{\alpha} \in C\left([0, T] \times \mathbb{R}^{m}\right)$ (uniformly continuous and bounded),

$$
t \rightarrow a_{\alpha}(t, .) \in B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{m}\right)\right),
$$

with $\theta \in(0,1)$; there exists $\nu \in \mathbb{R}^{+}$, such that, $\forall(t, x) \in[0, T] \times \mathbb{R}^{m}, \forall \xi \in \mathbb{R}^{m}$,

$$
\begin{equation*}
(-1)^{p} \operatorname{Re}\left(\sum_{|\alpha|=2 p} a_{\alpha}(t, x) \xi^{\alpha}\right) \leq-\nu|\xi|^{2 p} . \tag{8}
\end{equation*}
$$

(H3) $B\left(t, y, D_{y}\right)=\sum_{|\beta| \leq 2 p} b_{\beta}(t, y) D_{y}^{\beta}$, with $b_{\beta} \in$ $C\left([0, T] \times \mathbb{R}^{n}\right), t \rightarrow b_{\beta}(t,.) \in B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{n}\right)\right)$; $\forall(t, y) \in[0, T] \times \mathbb{R}^{n}, \forall \eta \in \mathbb{R}^{n}$,

$$
\begin{equation*}
(-1)^{p} \operatorname{Re}\left(\sum_{|\beta|=2 p} b_{\beta}(t, y) \eta^{\beta}\right) \leq-\nu|\eta|^{2 p} . \tag{9}
\end{equation*}
$$

(H4) $f \in C\left([0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right), t \rightarrow f(t, .,.) \in$ $B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)\right)$, there exists $\mu \in \mathbb{R}^{+}$, such that

$$
\begin{equation*}
|f(t, x, 0)| \geq \mu, \quad \forall(t, x) \in[0, T] \times \mathbb{R}^{m} . \tag{10}
\end{equation*}
$$

$(H 5) u_{0} \in C^{2 p+\theta}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$.
(H6) $\phi \in C^{1}\left([0, T] \times \mathbb{R}^{m}\right)$ (uniformly continuous and bounded together with the first order derivatives); the mapping

$$
t \rightarrow D_{t} \phi(t, .)
$$

belongs to $B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{m}\right)\right)$; the mapping $t \rightarrow \phi(t,$.$) belongs to B\left([0, T] ; C^{2 p+\theta}\left(\mathbb{R}^{m}\right)\right)$.
$(H 7) u_{0}(x, 0)=\phi(0, x) \forall x \in \mathbb{R}^{m}$.

Main result:

Theorem 1 Assume that the assumptions (H1)(H7) are satisfied. Then (1) has a unique solution (u, g), such that

$$
\begin{gathered}
u \in C^{1}\left([0, T] ; C\left(\mathbb{R}^{m+n}\right)\right) \cap B\left([0, T] ; C^{2 p+\theta}\left(\mathbb{R}^{m+n}\right)\right) \\
D_{t} u \in B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{m+n}\right)\right)
\end{gathered}
$$

(11)
$g \in C\left([0, T] ; C\left(\mathbb{R}^{m}\right)\right) \cap B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{m}\right)\right)$.
(12)

Outline of the proof:

Proceeding formally, we get from (1), taking $y=0$:

$$
\begin{gather*}
D_{t} \phi(t, x)=A\left(t, x, D_{x}\right) \phi(t, x) \\
+B\left(t, 0, D_{y}\right) u(t, x, 0)+g(t, x) f(t, x, 0), \\
(t, x) \in[0,+\infty) \times \mathbb{R}^{n}, \tag{13}
\end{gather*}
$$

so that, as $f(t, x, 0) \neq 0 \forall(t, x) \in[0,+\infty) \times$ \mathbb{R}^{n}, we obtain
$g(t, x)=-f(t, x, 0)^{-1} B\left(t, 0, D_{y}\right) u(t, x, 0)+F_{1}(t, x)$,
with
$F_{1}(t, x)=f(t, x, 0)^{-1}\left[D_{t} \phi(t, x)-A\left(t, x, D_{x}\right) \phi(t, x)\right]$.
(15)
(completely known)

Replacing (14) in (1), we are reduced to the system

$$
\left\{\begin{array}{c}
D_{t} u(t, x, y)=A\left(t, x, D_{x}\right) u(t, x, y) \\
+B\left(t, y, D_{y}\right) u(t, x, y) \\
+c(t, x, y) B\left(t, 0, D_{y}\right) u(t, x, 0)+F(t, x, y) \\
(t, x, y) \in[0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{n} \\
\\
u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{n}
\end{array}\right.
$$

(16)
with

$$
\begin{align*}
& c(t, x, y):=-f(t, x, 0)^{-1} f(t, x, y) \tag{17}\\
& F(t, x, y):=f(t, x, 0)^{-1}\left[D_{t} \phi(t, x)\right. \tag{18}\\
& \left.-A\left(t, x, D_{x}\right) \phi(t, x)\right] f(t, x, y)
\end{align*}
$$

- At first sight, it is unclear whether (16) is well posed, as the term

$$
c(t, x, y) B\left(t, 0, D_{y}\right) u(t, x, 0)
$$

does not seem a simple perturbation of the remaining part.

To see that the situation is not so bad, we start by considering the problem

$$
\begin{gather*}
\lambda v(y)-B\left(y, D_{y}\right) v(y)-c(y) B\left(0, D_{y}\right) v(0)=f(y), \\
y \in \mathbb{R}^{n}, \tag{19}
\end{gather*}
$$

with the following assumptions:
(I1) $B\left(y, D_{y}\right)=\sum_{|\beta| \leq 2 p} b_{\beta}(y) D_{y}^{\beta}$, with $b_{\beta} \in$ $C^{\theta}\left(\mathbb{R}^{n}\right)(\theta \in(0,1))$; there exists $\nu \in \mathbb{R}^{+}$, such that, $\forall y \in \mathbb{R}^{n}, \forall \eta \in \mathbb{R}^{n}$,

$$
\begin{equation*}
(-1)^{p} \operatorname{Re}\left(\sum_{|\beta|=2 p} b_{\beta}(y) \eta^{\beta}\right) \leq-\nu|\eta|^{2 p} . \tag{20}
\end{equation*}
$$

(I2) $c \in C^{\theta}\left(\mathbb{R}^{n}\right)$.

We introduce the following operator B_{0} :

$$
\left\{\begin{align*}
D\left(B_{0}\right) & :=\left\{u \in \cap_{1 \leq q<\infty} W_{l o c}^{2 p, q}\left(\mathbb{R}^{n}\right) \cap C\left(\mathbb{R}^{n}\right)\right. \tag{21}\\
& \left.: B\left(., D_{y}\right) u \in C\left(\mathbb{R}^{n}\right)\right\}, \\
B_{0} u(y) & :=B\left(y, D_{y}\right) u(y), \quad y \in \mathbb{R}^{n} .
\end{align*}\right.
$$

It is well known that B_{0} is the infinitesimal generator of an analytic semigroup in $C\left(\mathbb{R}^{n}\right)$. Moreover, if $\alpha \in(0,1)$ and $2 \alpha p \notin \mathbb{N}$,

$$
\begin{equation*}
\left(C\left(\mathbb{R}^{n}\right), D\left(B_{0}\right)\right)_{\alpha, \infty}=C^{2 p \alpha}\left(\mathbb{R}^{n}\right) \tag{22}
\end{equation*}
$$

with equivalent norms. These results can be extended to the operator B_{c} :

$$
\left\{\begin{array}{l}
D\left(B_{c}\right):=D\left(B_{0}\right) \tag{23}\\
B_{c} u(y):=B_{0} u(y)+c(y) B_{0} u(0), \quad y \in \mathbb{R}^{n}
\end{array}\right.
$$

We limit ourselves to show the following: that, if $\lambda>0$, sufficiently large, $\lambda \in \rho\left(B_{c}\right)$ and

$$
\left\|\left(\lambda-B_{c}\right)^{-1}\right\|_{\mathcal{L}\left(C\left(\mathbb{R}^{n}\right)\right)}=O\left(\lambda^{-1}\right) \quad(\lambda \rightarrow \infty)
$$

Let $\lambda \in \rho\left(B_{0}\right)$. We consider the equation

$$
\begin{equation*}
\lambda u-B_{c} u=f \tag{24}
\end{equation*}
$$

with $f \in C\left(\mathbb{R}^{n}\right)$. (24) is equivalent to

$$
u=\left(\lambda-B_{0}\right)^{-1} f+B_{0} u(0)\left(\lambda-B_{0}\right)^{-1} c, \quad u \in \underset{(25)}{D}\left(B_{0}\right)
$$

(25) implies

$$
\begin{align*}
& B_{0} u(0)=\left[B_{0}\left(\lambda-B_{0}\right)^{-1} f\right](0) \tag{26}\\
& +B_{0} u(0)\left[B_{0}\left(\lambda-B_{0}\right)^{-1} c\right](0)
\end{align*}
$$

As B_{0} generates a semigroup,

$$
\left\|B_{0}\left(\lambda-B_{0}\right)^{-1} c\right\|_{C\left(\mathbb{R}^{n}\right)}=o(1) \quad(\lambda \rightarrow \infty)
$$

(in fact, as $c \in C^{\theta}\left(\mathbb{R}^{n}\right),\left\|B_{0}\left(\lambda-B_{0}\right)^{-1} c\right\|_{C\left(\mathbb{R}^{n}\right)}=$ $O\left(\lambda^{-\theta /(2 p)}\right)$.

So, if λ is sufficiently large, from (26), we obtain

$$
\begin{equation*}
B_{0} u(0)=\frac{\left[B_{0}\left(\lambda-B_{0}\right)^{-1} f\right](0)}{1-\left[B_{0}\left(\lambda-B_{0}\right)^{-1} c\right](0)} \tag{28}
\end{equation*}
$$

and
$\left.\left|B_{0} u(0)\right| \leq C \mid B_{0}\left(\lambda-B_{0}\right)^{-1} f\right](0) \mid \leq C\|f\|_{C\left(\mathbb{R}^{n}\right)}$.
(29)
with C independent of λ and f. From (25), we easily obtain

$$
\begin{equation*}
\|u\|_{C\left(\mathbb{R}^{n}\right)} \leq C \lambda^{-1}\|f\|_{C\left(\mathbb{R}^{n}\right)} \tag{30}
\end{equation*}
$$

The next step is the following

Theorem 2 Assume that $A\left(t, x, D_{x}\right)=A\left(x, D_{x}\right)$, $B\left(t, y, D_{y}\right)=B\left(y, D_{y}\right), c \in C^{\theta}\left(\mathbb{R}^{m+n}\right)$,

$$
\|c\|_{C^{\theta}\left(\mathbb{R}^{m+n}\right)} \leq A
$$

with $A \in \mathbb{R}^{+}$. Consider the problem
$\left\{\begin{array}{l}\lambda u(x, y)-A\left(x, D_{x}\right) u(x, y)-B\left(y, D_{y}\right) u(x, y) \\ -c(x, y) B\left(0, D_{y}\right) u(x, 0)=f(x, y), \\ x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n},\end{array}\right.$
(31)
with $\lambda \in \mathbb{C}, f \in C^{\theta^{\prime}}\left(\mathbb{R}^{m+n}\right)$, with $0<\theta^{\prime} \leq \theta$. Then, there exist $\phi \in(\pi / 2, \pi), R>0, M>0$ (independent of c and f), such that, if $|\lambda| \geq$ $R,|\operatorname{Arg}(\lambda)| \leq \phi$, then (31) has a unique solution u belonging to $C^{2 p+\theta^{\prime}}\left(\mathbb{R}^{m+n}\right)$. Moreover,

$$
\begin{gather*}
|\lambda|\|u\|_{C^{\theta^{\prime}}\left(\mathbb{R}^{m+n}\right)}+\|u\|_{C^{2 p+\theta^{\prime}}\left(\mathbb{R}^{m+n}\right)} \tag{32}\\
\leq M\|f\|_{C^{\theta^{\prime}}\left(\mathbb{R}^{m+n}\right)}
\end{gather*}
$$

A proof of Theorem 2 can be obtained by means of Theorem 2 and Da Prato-Grisvard's theory of sums of operators, allowing to consider the simpler case that $c(x, y)=c(y)$, in such a way that $A\left(x, D_{x}\right)$ and $u \rightarrow B\left(y, D_{y}\right) u+$ $c(y) B\left(0, D_{y}\right) u(., 0)$ "commute". The more general case that c depends also on x can be obtain through a perturbation argument.

Using Theorem 2, one can prove the following

Theorem 3 Consider the problem

$$
\left\{\begin{array}{c}
D_{t} u(t, x, y)=A\left(t, x, D_{x}\right) u(t, x, y) \tag{33}\\
+B\left(t, y, D_{y}\right) u(t, x, y)+c(t, x, y) B\left(0, D_{y}\right) u(t, x, 0) \\
+F(t, x, y), \quad(t, x, y) \in[0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{n} \\
u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{n}
\end{array}\right.
$$

with the assumptions that $F \in C([0, T] \times$ $\left.\mathbb{R}^{m+n}\right), \forall t \in[0, T] F(t,.) \in C^{\theta}\left(\mathbb{R}^{m+n}\right)$ and $t \rightarrow F(t,.) \in B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{m+n}\right)\right)$ and $u_{0} \in$ $C^{2+\theta}\left(\mathbb{R}^{m+n}\right)$. Then (33) has a unique solution u belonging to

$$
\begin{gathered}
C^{1}\left([0, T] ; C\left(\mathbb{R}^{m+n}\right)\right) \cap C\left([0, T] ; C^{2 p}\left(\mathbb{R}^{m+n}\right)\right) \\
\cap B\left([0, T] ; C^{2 p+\theta}\left(\mathbb{R}^{m+n}\right)\right),
\end{gathered}
$$

with $D_{t} u \in B\left([0, T] ; C^{\theta^{\prime}}\left(\mathbb{R}^{m+n}\right)\right)$.

Theorem 1 is a straighforward consequence of Theorem 3.

With similar (simpler) arguments, one can show also the following fact, corresponding to the case $m=0$:

Theorem 4 Consider the problem

$$
\left\{\begin{array}{l}
D_{t} \mathbf{u}(t, y)=B\left(t, y, D_{y}\right) \mathbf{u}(t, y)+\mathbf{g}(t) f(t, y) \\
(t, y) \in[0, T] \times \mathbb{R}^{n} \\
\mathbf{u}(0, y)=u_{0}(y), \quad y \in \mathbb{R}^{n} \\
\mathbf{u}(t, 0)=\phi(t), \quad t \in[0, T] \tag{34}
\end{array}\right.
$$

with $f \in C\left([0, T] \times \mathbb{R}^{n}\right), t \rightarrow f(t, .,.) \in B([0, T]$; $\left.C^{\theta}\left(\mathbb{R}^{n}\right)\right)$ and such that there exist $\mu \in \mathbb{R}^{+}$, so that

$$
\begin{equation*}
\min _{[0, T]}|f(t, 0)|>0 \tag{35}
\end{equation*}
$$

$u_{0} \in C^{2 p+\theta}\left(\mathbb{R}^{n}\right)$. Then (34) has a unique solution (u, g), such that $u \in C^{1}\left([0, T] ; C\left(\mathbb{R}^{n}\right)\right) \cap B\left([0, T] ; C^{2 p+\theta}\left(\mathbb{R}^{n}\right)\right)$,

$$
\begin{gather*}
D_{t} u \in B\left([0, T] ; C^{\theta}\left(\mathbb{R}^{n}\right)\right) \tag{36}\\
g \in C([0, T]) \tag{37}
\end{gather*}
$$

