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Motivated by control theory and prospecting by acoustical

and electromagnetic waves we consider the Cauchy problem

(∆ + a2
0k

2)u = f in Ω, (0.1)

u = u0, ∂νu = u1 on Γ, (0.2)

Ω is a domain in Rn and Γ ⊂ ∂Ω. Due to Fritz John [8] in

general case one can expect only quite weak logarithmic stabil-

ity. However in important examples ( e.g. nearfield acoustical

holography [3]) it was observed that stability and resolution are

increasing with k.

1 Increased stability estimates

Let Ω ⊂ {0 < xn < h, |x′| < r} with Lipschitz ∂Ω , Ω̄ ⊂
{xn < h} and Γ = ∂Ω ∩ {0 < xn < h}. Let Ω(d) = Ω ∩ {d <

xn}. C are constants which depend on Ω, Γ. ‖u‖(l)(Ω) is the

norm in the Sobolev space H l(Ω) and ‖u‖(Ω) = ‖u‖(0)(Ω).

We let M1 = ‖u‖(1)(Ω), F = ‖f‖(Ω)+‖u‖(Γ)+‖∇u‖(Γ) and

F (k, d) = ‖f‖(Ω) + (d−0.5k + d−1.5)‖u‖(Γ) + ‖∇u‖(Γ).

We assume that 1 ≤ k, F (k, d) < M1, d < 2r.
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Theorem 1.1 [7], [4] Let a0 ∈ C1(Ω), 0 < a0 on Ω and

0 < a0 +∇a0 · x + βn∂na0, 0 ≤ ∂na0 on Ω (1.1)

for some βn > 0.

Then for any ε there are C, C(ε), λ(d) ∈ (0, 1) such that

‖u‖(Ω(d)) ≤ C(F + ε‖u‖(1)(Ω) + C(ε)
M 1−λ

1 F (k, d)λ + F

d2k
)

for all u solving (0.1),(0.2).

If a0 = 1, then

‖u‖(Ω(d)) ≤ C(F +
M 1−λF (k, d)λ

d2−2λk
), (1.2)

where

λ =
2r2d + 3

8d
3

4r2h + h2d + 1
4d

2h + 3
8d

3 + 3r2d

Theorem 1.2 [2] There exists C such that

‖u‖2(Ω(0)) ≤ CM 2
1 (ε2

1 +
1

(−lnε1 + k)
1
8
), ε1 =

F

M1
,

for any solution u to (0.1),(0.2).

The John’s counterexample [8] shows that in case when Γ =

{x : |x| = 1} and Ω = {x : 1 < |x| < r1} in R2 the condi-

tional logarithmic stability bound is the optimal bound which

is uniform with respect to k.

Our proof of Theorem 1.1 is based on the following
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Theorem 1.3 There is a constant C such that for any so-

lution u to the Cauchy problem (0.1), (0.2)

‖u‖(1)(Ω(d)) ≤ CF (k, d)λ(
M

d2
)1−λ (1.3)

( λ is in Theorem 1.1).

2 Outlines of proofs

In the following, V (ξ, xn) denotes the (partial) Fourier transfor-

mation Fv(ξ, xn) of a function v(x) and Ω∗(d) = Rn−1×(d, h).

In the low frequency zone the equation (0.1) is xn-hyperbolic,

hence

Lemma 2.1 Let an ∈ C1([0, h]) and depend only on xn. Let

v ∈ C2(Ω̄∗) solve the initial value problem

(∆ + a2
nk

2)v = ∂1f1 + ... + ∂nfn + kfn+1 + k2f0 in Ω∗(d),

v = 0 on Ω∗(h1)

for some h1 < h, fj ∈ C∞(Ω̄∗(d)), fj = 0 on Ω∗(h1), and

V (ξ, xn) = 0 when
a2

n(xn)

2
k2 < |ξ|2 (2.1)

Then there is constant C depending only on h, sup|∂nan|,
supa−1

n over (0, h) such that

‖v‖(Ω∗(d)) ≤

C(‖f1‖(Ω∗(d))+...+‖fn+1‖(Ω∗(d))+‖f0‖(Ω∗(d))+‖∂nf0‖2(Ω∗(d)).
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Due to the Parseval’s identity it suffices to consider the initial

value problems for

∂2
nVj + (a2

nk
2 − |ξ|2)Vj = −iξjFj on (d, h), j = 1, ..., n− 1,

multiply by ∂nV̄je
τxn and integrate over (0, h).

Let

w(x; τ ) =

∫ 1

−1

exp(2τeσ(|x−β|2−θ2t2))dt, β = (0, ..., 0, βn).

Lemma 2.2 Let the condition (1.1) be satisfied.

Then there is constant C such that∫
Ω1

((τ 3 + τk2)|u|2 + τ |∇u|2)w(, τ ) ≤

C(

∫
Ω1

|(∆+a2
0k

2)u|2w(, τ )+

∫
∂Ω1

((τ 3+τk2)|u|2+τ |∇u|2)w(, τ ))

for all functions u ∈ H2(Ω1) and all τ > C.

It is known [5] that under the condition (1.1) there are posi-

tive σ, θ depending on Ω, a0, β such that with ϕ(x, t) = eσ(|x−β|2−θ2t2)

we have the Carleman (energy, with the weight eτϕ) estimate∫
Ω×(−T,T )

(τ 3|U |2 + τ |∇U |2 + τ |∂tU |2)e2τϕ ≤

C(

∫
Ω×(−T,T )

|(∆− a2
0∂

2
t )U |2e2τϕ + bdryintegrals. (2.2)

We will apply (2.2) to the function

U(x, t) = u(x)eikt.

When a0 = 1 there is a better bound. We denote l(x; β) =

|x + β|.
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Lemma 2.3 Let Ω1 be a bounded Lipschitz domain in Rn.

Let L = supL(x; β) over x ∈ Ω1. Let w(x) = exp(τ (x2
1 +

... + x2
n−1 + (xn + β)2).

Then for some constant C we have

32τ 3‖wlu‖2(Ω1) + 5τ‖w∇u‖2(Ω1) ≤ ‖w(∆ + k2)u‖2(Ω1)+

C((τ 3(L3+1)+τ (k2L+1))‖wu‖2(∂Ω1)+τ (L+1)‖w∇u‖2(∂Ω1))

for all functions u ∈ H2(Ω1) and all τ > 0.

Due to the substitution u = w−1v, the final bound follows

from

64τ 3‖lv‖2(Ω1) + 16τ‖∇v‖2 ≤
‖∆v− 4τ (x+βen) ·∇v +(4τ 2|x+βen|2− 2τn+k2)v‖2(Ω1)+

C((τ 3(L3+1)+τ (k2L+1))‖v‖2(∂Ω1)+τ (L+1)‖∇v‖2(∂Ω1)).

Obviously,

(∆v − 4τ (x + βen) · ∇v + (4τ 2|x + βen|2 − 2τn + k2)v)2 ≥

(∆v − 4τ (x + βen) · ∇v + (4τ 2|x + βen|2 − 2τn + k2)v)2−
(∆v + 4τ (x + βen) · ∇v + (4τ 2|x + βen|2 + 2τn + k2)v)2 =

−16τ (∆v)(x + βen) · ∇v − 8τnv∆v−
16τ (x+βen)·∇v(4τ 2|x+βen|2+k2)v−8τn(4τ 2|x+βen|2+k2)v2.

Now the proof can be completed by integration by parts.

Theorem 1.3 follows from Theorem 1.1 in a standard way [5]

Proof of Theorem 1.1.

Since Γ is Lipschitz, by known extension theorems there is a

function u∗ such that u = u∗,∇u = ∇u∗ on Γ and

‖u∗‖(1)(Ω
∗(0)) ≤ C(‖u‖(Γ) + ‖∇u‖(Γ)) ≤ CF,
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where we used the definition of F and the notation Ω∗(d) from

Lemma 2.1. Let u1 = u− u∗ on Ω and u1 = 0 on Ω∗(0) \Ω. It

suffices to obtain the bound (1.2) for u1 instead of u. Observe

that (in the weak sense)

∆u1 + k2u1 = f ∗ − k2u∗ in Ω∗(0),

where f ∗ is the linear continuous functional on H(1)(Ω
∗(0)) de-

fined as

f ∗(w) = −
∫

∂Ω

∂νuw +

∫
Ω

(fw +∇u · ∇w).

Due to known trace theorems

‖f ∗‖(−1)(Ω
∗) ≤ C‖u∗‖(1)(Ω

∗) ≤ CF.

By mollyfying we replace elements of negative Sobolev spaces

by smooth functions. We split u1 = v + u2. Let a cut off

function χk(ξ
′) = 1 when |ξ| ≤ k

2 and zero for other ξ′ ∈ Rn−1.

We let v = F−1χkFu1 and u2 = u1 − v. We have

(∆ + k2)v = ∂1f1 + ... + ∂nfn + fn+1 + k2f0 on Ω∗(d),

‖fj‖(Ω∗(d)) ≤ CF.

By Lemma 2.1

‖v‖(Ω∗(d)) ≤ CF.

Due to the definition of u2 and to the elementary properties of

the Fourier transformation,

‖u2‖(1)(Ω
∗(d)) ≤ ‖u1‖(1)(Ω

∗(d)) ≤ ‖u‖(1)(Ω) + ‖u∗‖(1)(Ω),

(2.3)

‖u2‖(Ω∗(d)) ≤ 2

k
‖u2‖(1)(Ω

∗(d)). (2.4)
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From (2.4), (2.3) we have

‖u2‖(Ω) ≤ 2

k
(‖u‖(1)(Ω) + CF ).

From this bound and from (1.3) we obtain the needed bound

(1.2) for u1 and complete the proof.

3 Numerical evidence

The setup for the exterior problem consists of two concentric

semispheres and a semi circle given by

Γ = {‖x‖ = r0, 0 < φ < π, 0 < θ < π}
Γ1 = {‖x‖ = r1, 0 < φ < π, 0 < θ < π}
Γ2 = {‖x‖ = r2, φ =

π

2
, 0 ≤ θ ≤ π

2
}

where φ, θ are polar angles, r0 = 2, r1 = 1 and r2 = 1
2. Five

acoustical sources are placed on the semicircle Γ2, their ampli-

tudes and positions are given by Table 1.

We discretize Γ and Γ1 by considering n equal angles between

φ1 and φ2 and between θ1 and θ2. We obtain n2 points on Γ

Amplitude Position
A1 = 1 (0, 0, 1

2
)

A2 = 4 (0, −1
2
√

2
, 1

2
√

2
)

A3 = 5 (0, −1
2
, 0)

A4 = 2 (0, −1√
22

, −1
2
√

2
)

A5 = 3 (0, 0, −1
2
)

Table 1: Amplitudes and positions of acoustical sources
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Frequency (k) Error of reconstruction(in %)
2.0 782.00
4.0 544.44
8.0 67.13
16.0 2.79

Table 2: Errors of reconstruction at various frequencies for the exterior problem

and n2 points on Γ1. For this experiment n = 10. The Cauchy

data are on Γ and we recontruct u on Γ1.

The acoustic pressure and its normal (radial) derivative on

Γ are given by

u(x) =

5∑
j=1

AjΦ(x, yj), Φ(x, y) =
eik|x−y|

4π|x− y|
. (3.1)

Using (3.1) we can generate the Cauchy data on Γ by adding

some 1% uniformly distributed random noise. Since u is a

radiating solution

u(x) ≈
N∑

n=0

n∑
m=−n

an,mh(1)
n (|x|)Y m

n

(
x

|x|

)
(3.2)

We chosen N = 9, 10. We find the coefficients an,m by match-

ing the series expansion of the solution with the Cauchy data

calculated from (3.1) on Γ. This is achieved by forming a linear

algebraic system Ax = b where x is a vector of coefficients to be

determined. The solution to this system is obtained by forming

the normal equations A∗Ax = A∗b and by applying conjugate

gradient technique.

Also, we would like to compare with the interior problem.

The experimental setup for the interior problem consists of two
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Frequency (k) Error of reconstruction(in %)
8.0 67.13
16.0 117

Table 3: Errors of reconstruction at various frequencies for the interior problem

concentric hemispheres and a semi-circle given by Γ, Γ1 and Γ2

which is same as the setup for the exterior problem but with

r0 = 1
2, r1 = 1 and r2 = 2. As before the Cauchy data is

prescribed on the discretized surface Γ0. This Cauchy data is

matched with the approximate series expansion of the solution

to the interior problem which is given by (3.2) with Bessel’s

functions jn instead of Hankel’s functions.

4 Inverse problem for the Schr ödinger equation

Let Ω be a domain in R3 with Lipschitz boundary. We consider

the Schrödinger equation

−∆u− k2u + cu = 0 in Ω (4.1)

with the Dirichlet boundary data

u = g on ∂Ω. (4.2)

We will assume that the (complex valued) potential c ∈ L∞(Ω).

We define the Dirichlet-to-Neumann map

Λcg = ∂νu on ∂Ω, g ∈ H
1
2(∂Ω). (4.3)

It is well-known that Λc is the continuous linear operator from

H
1
2(Γ) into H−1

2(Γ). We denote its norm by ||Λc||. Uniqueness

of c is due to groundbreaking result of Sylvester and Uhlmann
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(1987), logarithmic stability was proven by Alessandrini [1] and

its optimality by Mandache [9].

We assume that Ω ⊂ B(0; 1).

Theorem 4.1 Let

||cj||∞(Ω) ≤ M, ||cj||1,∞(Ω) ≤ M1, j = 1, 2. (4.4)

and ε = ‖Λ2 − Λ1‖, E = −logε.

If√
k +

1

16
≤ E

1

4
, 2 ≤ E, 2C2

0M <
E2

2
− E

4
− k + 2k2 + 4,

(4.5)

then there is constant C such that

||c2−c1||2 ≤ CM 4((E+k)−
1
2 +ε2−

√
2E5)+

4M 2
1

E + 4k + 1
. (4.6)

If
1

8
(E)2 ≤ k < ε−

9
10 , 2C2

0M < k2 + 2. (4.7)

then there is constant C such that

||c2 − c1||2 ≤ C0(M
4((E3 + k

1
10)(k2 + 2)−1+

ε(ε−
2
10 + M 4)(E3 + k

1
10)) +

M 2
1

E2 + k
1
10 + 1

. (4.8)

5 Conclusion

1) Increased stability should be more dramatic when the data

are given at a larger distance from Γ2, when singularities of the

solution are distributed over Γ2, and for large k.
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2) The increased stability for the Helmholtz equation is linked

and to the problem of the exact controllabity for the wave equa-

tion in a subdomain by the data on a (arbibrariry small) part

of the lateral boundary. The exact controllability for the wave

equation from a ”large” part of the boundary is relatively well

understood [5].

3) The next natural step is to obtain similar estimates for

the elliptic equations −∆u + k−1b · ∇u = 0 and corresponding

parabolic equations (large drift and small diffusion), the inverse

scattering problems by obstacles and by the medium.

4) The high frequencies k are not included in Theorem 3.1,

but they might be by using scattering theory as in [10]. The

challenging question concerns the equation −∆u− k2cu = 0.
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07-07734 and by Emylou Keith and Betty Dutcher Distinguished

Professorship at the Wichita State University.
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