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Introduction

Inverse problems for the equation

ut = a(t)uze + b(x,)ur + c(x,)u+ f(x,t), O0<xz<h(t),0<t<T

with unknown coefficient a = a(t) were considered from different
points of view in the case
* a(t) >0, t€ [0,T]; h(t) =h = const is known,

in the monograph

M.Ivanchov (2003) Inverse Problems for Equations of Parabolic Type.
Lviv: VNTL Publishers.

Inverse problems for degenerate parabolic equations when



* a(t) >0, te€ (0,7T], a(0) = 0; h(t) = h = const is known,
were studied in the papers

N.Saldina (2006) An inverse problem for a weakly degenerate parabolic
equation. Math. Methods and Phys.-Mech. Fields, V.49, no 3. P.7-
17 (Ukrainian);

M.Ivanchov, N.Saldina (2006) An inverse problem for a strongly de-
generate heat equation. J. Inv. Ill-Posed Probl., V.14, no 5. P.465-
430;

M.Ivanchov, N.Saldina (2006) An inverse problem for a strongly power
degenerate parabolic equation. Ukr. Math. J., V.58, no 11. P.1487-
1500 (Ukrainian).



Inverse problems for parabolic equations in free boundary domains
* a(t) >0, t€ [0,T]; h= h(t) is unknown,
were investigated in the papers

I.Baranska (2005) An inverse problem for a parabolic equation in a
free boundary domain. Math. Methods and Phys.-Mech. Fields,
V.48, no 2. P.32-42 (Ukrainian);

I.Baranska, M.Ivanchov (2007) An inverse problem for the two-dimensional
heat equation in a free boundary domain. Ukr. Math. Bull., V.4, no 4.
P.457-484 (Ukrainian).

In the papers



N.Hryntsiv (2007) An inverse problem for a degenerate parabolic
equation in a free boundary domain. Math. Methods and Phys.-
Mech. Fields, V.48, no 2. P.32-42 (Ukrainian);

N.Hryntsiv (2007) An inverse problem for a strongly degenerate parabolic
equation in a free boundary domain. Visnyk Lviv. Univer. Ser. Mech.-
Math. V.64. P.84-97 (Ukrainian)

was considered the case where
* a(t) >0, t € (0,T], a(0) =0, h = h(t) is unknown.

A problem in a free boundary domain degenerating at the initial mo-
ment

* a(t) >0, t € [0,T] is known, h=h(t) >0, te (0,7], h(0O) =0 is
unknown,



was studied in the paper

M.Ivanchov (2007) Heat conduction problem with a free boundary
degenerating at the initial moment. Math. Methods and Phys.-Mech.
Fields, V.50, no 3. P.82-87 (Ukrainian).

In the present work we consider an inverse problem for the heat equa-
tion in the domain which degenerates at the initial moment.

1. Statement of the problem

In the domain Qp = {(z,t) : 0 < x < t*h(t), 0 <t < T} with unknown
part of boundary h = h(t) we consider the following inverse problem
of finding functions (a(t),u(x,t)) :

ur = a(uge + f(x,t), (x,t) € Qp, (1)



w(0,t) = p1(8), uw(®h(t),t) = p2(t), 0<t<T, (2)

a(t)uz(0,t) = p3(t), 0<t<T, (3)
1R (1)

/ w(x,t)de = pua(t), 0<t<T. (4)

0

We define a solution of the problem (1)-(4) as a triple of functions
(a,h,u) € C([0,T]) x C}([0,T]) x C%1(Qp) NCHO(Qr), a(t) > 0, h(t) >
0,t € [0,T],a > O verifying the conditions (1)-(4).

Change of the variables. Introduce the new variables

Y o = t% (5)

0}



and notations:

u(yh(ol/@),ol/®) = v(y, ), a(ct/®) = b(o), h(l/Y) = g(o),
pi(el/®) = v(0), i=1,4 f(yh(cl/®), ot/ = F(y,0), Qp, ={(y.o:
O<y<o,0<o<Ty)}, T71 =T

Reduction to the equivalent problem. In new variables the problem
(1)-(4) is reduced to the equivalent problem

v =T Dy + D0, 4 2 ), (o) eQry (6)
w0,0) = (o), v(e0) =), 0<o<Ti, (D)

b(0)vy(0,0) = g(o)ra(o), 0<o<Th, (8)



9(0) [v(y,0)dy = va(0), 0<o<Ty (9)
0
with unknowns (g(o),b(o),v(y,o)).

Remark. (6)-(9) is an inverse problem for the degenerate parabolic

equation. We consider the case of the weak degeneration when % <

a < 1.

2. Construction of solution of the direct problem

Consider the following direct problem:

u(07t) — :U'l(t)7 u(t7t) — :U'Q(t)7 0<t<T. (11)



We will construct the solution of the problem (10), (11) with the aid
of the Green function.

Determination of the Green function. To construct the Green func-
tion we use the representation analogous to the parametrix method:

t o
G(2,1,€,7) = Go(w,1,6,7) + [ do [ Golw,t,n, )b (n, 0,6, m)dn,  (12)
0 0

where

N ) = 1 e (z—&+ 2nt)2>
Gola t,6,7) = 2,/m(6(¢) —0(7))nzzoo<exp< 4(6(t) — 6(7))

2 t
_exp (-“’7 + &+ 2nt) )) o) = [ a(r)dr
0]

4(0(t) —0(7))



and the function ®(x,t,&,7) is a solution of the integral equation

t o
¢($,t,€,7’) — —LGO(CU,t,S,T) T /dU/LGO(CUatﬂ?aU)Cb(na(fafﬂ')d??a
0] 0

(13)
where Lu = u; — a(t)ugz.

Solution of the problem (10), (11). Using the Green function we
obtain the solution of the problem (10), (11):

t t
w(z, t) =/Gg(x,t,o,f)a(T)m(T)dT—/Gg(x,t,T,T)a(fr)ug(T)dT
0 0]

t T
—|—/d7/G(a:,t,§,7)f(§,7)d§. (14)
0] 0



3. Reduction of the problem (6)-(9) to an equiv-
alent system of equations

We reduce the direct problem (6), (7) to the equivalent systems of
integral equations

v(y,0) = v1(0) + L(va(0) = v1(0)) + / dr / Gy, 7,€,7) (1737“15’(&, )

@) = S0 @) + S0n() — () + fpg e >>ds,
(15)
w(y,o) = v2() ; v1(9) + /dT/Gy(y,U,fS,T) (17'1?70617(577') — V/1(7')

Ep(T)
Tg(T)

——@ﬂﬂ—ﬂﬂﬂ)+—%wﬁﬁ—wﬁ)%+ (&:0%, (16)



where G(y,o,£,7) is the Green function for the equation

l—«
o a b(o)
ag?(o)
with conditions (7). We derive others equations from the conditions

(8), (9):

’Uyy‘l'F(yaU)

Vo —

o) =200, 0<o<my (7)
gy =D o<, (18)
Jv(y,o)dy
0 11—«
p(0) = (u4<a>-—;;a F13(0) = 12(@)g(0) =~ 50 Do)

vo(0)

1l 1—-«
- [Raa), 0<o<m (19)
87
o)



where w(y,o) = vy(y,0),p(c) = g’ (o).

4. Existence of solution to the system (15)-(19)
Assumptions. We suppose that the following assumptions are hold:
(A1) vy e CH([0,T1]), i=1,2,4, v3e€C([0,T1]), FeCHOQp);

(A2) v;(0) >0, 0 € [0,T1], i = 1,4, F(y,0) >0, (y,0) € Qp,, v1(0) =
12(0), vi1(o) <wvo(o), o€ (0,T1],

(A3) there exist the limits

0.

im v4a(0) S0 lim vo(o) —v1(o) S
c—0+ o oc—0+ o



Estimates. To apply Schauder fixed-point theorem we need the esti-
mates of the solutions of the system (15)-(19). From the maximum
principle, we obtain
v(y,o) > min{ min v1(o), min v>(o)} = Mg >0, (y,0) € Q. (20)
[0,71] [0,71]
This estimate allows us to evaluate g(y,o) from above:

1
g(y,0) < — max va(o)

=M1 >0, oe|0,T7]. 21
Mo [925 1 [0, T1] (21)

Having the estimation of the domain we apply the maximum principle
once more:

v(y,0) < My < oo, (y,0)€Qp (22)
and obtain the estimate of g(y,o) from below:
1
g(y,0) > — min va(o) = M3 >0, oe€]l0,T1]. (23)

- M2 [OaT].] o



It follows from the assumptions (A2) that there exists such number
15,0 < To <717y, that the following estimate is valid:

w(y,o) > 2 min 2D g s00 (o) e Ty (29)
2 [O,Tl] o

From this we derive

b(oc) < Mg < oo, o €][0,T5]. (25)

Notations. Let introduce the notations: W (o) = Orl1a<>< lw(y, )|, bmin(o)
<y<o

= min b W =14+ W(o).
Ul (1), Wi(e) =1+ W (o)
From (16) and (19) we deduce

[ dr [ ()W (r)dr
W) <C C C : 26
(0) < C1+ QO/WJ)_O(T)+ 30/¢9(0)_9(7) (26)




p(0)| < Ca 4 Cso a b(a)W (o). (27)

From the definition of 6(o) we have

o

0(c) —0(r) = |

0

Taking into account this inequality and (27) we put (26) under the
form

l1—a
w a b(w)dw
ag?(w)

C~ T W13(T)d7'
Wi(o) < Cg + : (28)
\/bmin(U)O/ Vo =T
To go on, we find from (28)
o W3 d o
J j%T < Cg + Co O/ W7 (r)dr. (29)



Finally, we arrive to the nonlinear inequality

C C
11 + 12
\/bmin(g) mln((7>
Applying the method of Gronwall’s inequality we conclude that there

exists such number 73,0 < T3 < 75, that the following estimate is
valid:

Wi(o) < C1o+ [wPydr, oclo, Bl (30)

i) = Got ¢b:i1n3<a> b%(fnléw / <1 " w)an(T))
b 16(7) exp(C’M/br_mf(w)dw)dT o € [0,T3]. (31)
We find from (17): T
bin(0) > —15_ 5 [0,T3). (32)

Wi(o)’



Substituting (31) into (32) we obtain

bmin(c) > Mg >0, o € [0,T4], (33)
for some number 14,0 < Ty <T3.Then from (30) we have

W1(o) < Mg < 00, o € [0,T34], or |w(y,o)| < Mg < 0o, (y,0) € Qr,.
(34)
After obtaining the estimates of solutions to the system (14)-(19)
we can apply the Schauder fixed-point theorem by the usual way.

Theorem 1.
Suppose that the following assumptions are fulfilled:
(B1) p; € CY([0,T)), i =1,2,4; pz € C([0,T]); fe CLO(Qy);

(B2) p;(t) >0, i =1,2,3, t € [0,T], pua(t) > 0, t € (0,7], puo(t) >
:ul(t)a t € (O7T]7 MQ(O) — /L]_(O), f(ajat) > 0, (:Uat) S ﬁT:



t) — t t
(B3) there exist the limits Ilim Ha(t) = pa (1) > 0, lim Ha(t) >0
t—0+4 te t—04 t&

Then it may be indicated such a number T,,0 < T, < T, which
depends on the given data, that there exists a solution to the problem
(1)-(4) defined for =z € [0,t],t € [0,T4].

5. Uniqueness of solution to the problem (1)-(4)
Theorem 2.

Suppose that the following assumptions are fulfilled:

(B4) f e chO(Qy);



/
(B6) there exists the limit lim "4 £ 0
t—0+ t«

Then the solution to the problem (1)-(4) is unique.

Let g;(0), b;(0), v;(y,0), i = 1,2, be two solutions to the
problem (6)-(9). Enter the following notations:

v = 01(0,0) — va(y0), 9(0) = g1(0) — g2(0), mio) = BT =
g; (o)

1,2, m(0) = my@) - ma(0), ai(@) = "B, 4@) = 1(0) - (o),

From (6)-(9) we deduce that the functions (v, g, m,q) are a solution
of the problem



v = ~a'w m1 (Yo + La1(0)vy + Sm(o)vayy (4,0) + La(o)uay (v, o)

+ 20 (Fe1(0), oY) ~ fyga(0), M), (o) €Qry,  (35)

v(0,0) =v(o,0) =0, o €][0,T4], (36)

1 1

100y (0,0) = m(o)vz,(0,0) +r1a(@) (=T ) a0l
(37)

91(0) [ v(y,0)dy = —g() [ valy,0)dy, o € [0,Tx] (38)

0 0

The problem (35)-(38) is equivalent to the following system of equa-
tions:

o) = [ dr [ Gloonen)(Sar(rdue, )+ Tm(ruage(e, ) + San)
o) 0



X ae(6) + 1w (€1 (1), ) ~ f(€ga(). rl/a»)dg, (y,0) € Qry,
(39)

wp.) = [ dr [ Gyloo6.n)(Eaa(rduten) + Tmruace(e,n) + San)
0 0

X 2e(6 ) + 1o (f(6g1(n), T — f(Ega(n), Tl/a»)dg, (v,0) € Qr,

(40)
1 1 1
m(a) - ’Uzy(O, O') (m]_(O')’IU(0,0') T V3(O-) <g]_(0'> T 92(0_)>>7 (OIS [07T1]7
(41)

—g1(0) [v(y, o)dy
g(o) = ———2 . oelo,T1], (42)
gvz(y,a)dy




1 (o 1 ia 1 1) oa
Q(J)_V2(0)<V4(J) o7 v )> <gl<a> 92(0)> NS

y (m(a)wl(a,a) n mo(o)w(o, o) 4 mo(o)wy (o, J)< 1 1 >>

g1(0) g2(0) g1(0)  g2(0)
l-a o
=20 [ yor (@), ) = [yga(0), oY/ *Ndy, o €0, Ta],  (43)
avz(o)
where G(y,0,£,7) is the Green function for the equation

l 1-a
Vo = —a a m1(o)vyy.
e

Taking into account the equalities

de,
z=yg2(o)+ybg(o)

1
Flygr (@), oY) = Fyga(0), /) = yg(o) [ 2201/
0

r 1 _ g(o)
gi1(o) go(o) g1(0)ga(o)’

(44)



we deduce from (39)-(44)

v(y,0) =w(y,0) =0, (y,0) € Qpy, blo) =g(c) =q(o) =0, 0 €[0,T1].



