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We consider the following parabolic problem (direct problem):

βut = Au−m ∗ Au + χ in Q = Ω× (0, T ), (1)

u = u0 in Ω× {0} ,

Bu = b in S = Γ× (0, T )
(2)

where Ω ⊂ Rn – bounded, open with sufficiently smooth boundary Γ,

β(x), χ(x, t), u0(x), b(x, t) and m(t) − given functions

and either

Bu = u (case I) (3)

or

Bu(x, t) = ω(x) · ∇x u(x, t)

− ∫ t

0 m(t− τ) ω(x) · ∇x u(x, τ)dτ (case II)
(4)

with ω(x) ·N(x) > 0, N(x) - outer normal of Γ at x. Moreover,

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

j=1

aj(x)
∂

∂xj
+ a(x, t) (5)

and ∗ stands for the time convolution, i.e.

v ∗ w =
∫ ·

0
v(· − τ)w(τ)dτ.
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We assume the relations

−
N∑

i,j=1

aij λiλj ≥ ε|λ|2 for any λ ∈ Rn with some ε ∈ (0,∞) (6)

and

β ≥ β0 > 0 with some β0 ∈ (0,∞) (7)

be valid in Ω.

Inverse problems:

IP1: Let the source term be of the following form:

χ(x, t) = z(x)φ(x, t) + χ0(x, t). (8)

Given m,β, aij, aj, a, u0, b, φ, χ0 and a function uT (x), x ∈ Ω,

find z and u so that the direct problem (1), (10), the relation (8) and the
final condition

u = uT in Ω× {T} (9)

hold.

IP2: Let at = 0. Given m,β, aij, aj, u0, b, χ and a function uT (x), x ∈ Ω,

find a and u so that the direct problem (1), (10) and final condition (9)
hold.

IP3: Given m, aij, aj, a, u0, b, χ and a function uT (x), x ∈ Ω,

find β and u so that the direct problem (1), (10) and final conditon (9) hold.
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Let U be a finite-dimensional manifold and f, g ∈ L1(U). We write

f ≥ g in U if f(x) ≥ g(x) a.e. x ∈ U,

f > g in U if ∀U1: U1 ⊆ U ∃ε
U1
∈ R, ε

U1
> 0: f ≥ g + ε

U1
in U1.

It is not difficult to prove that

f ≥ g, f 6= g in U ⇒ ∃U2 ⊆ U : meas U2 6= 0, f > g in U2.
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Positivity principle. Sign inertia.

βut = Au−m ∗ Au + χ in Q = Ω× (0, T ),

u = u0 in Ω× {0} ,

Bu = b in S = Γ× (0, T )

We introduce the resolvent kernel k satisfying the equation

k(t)−
∫ t

0
m(t− τ)k(τ)dτ = m(t), t ∈ (0, T ). (10)

Denote

f = χ + k ∗ χ, (11)

g = b in case I ,

g = b + k ∗ b in case II.
(12)

Theorem 1. Assume (6), (7), β, aij, aj ∈ C(Ω), a ∈ C(Q) and

k ∈ W 1
1 (0, T ) , k ≥ 0 , k′ ≤ 0. (13)

Let u ∈ W 2,1
p (Q) with some p ∈ (1,∞) solve the direct problem (1), (10)

and
u0 ≥ 0, g ≥ 0, f ≥ 0.

Then the following assertions are valid:

(i) u ≥ 0;

(ii) if, in addition, β, aij, aj ∈ C l(Ω), a ∈ C l, l
2 (Q) with some l ∈ (0, 1) and

either f 6= 0 or g 6= 0, then

u(·, T ) > 0 in Ω in case I and u(·, T ) > 0 in Ω in case II.
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Sufficient conditions for

k ∈ W 1
1 (0, T ) , k ≥ 0 , k′ ≤ 0.

in terms of original kernel m are

m ∈ W 1
1 (0, T ), m ≥ 0 , m′(t) ≤ −m(0)m(t).

For instance, the exponential kernels m(t) =
N∑

i=1
αie

−βit satisfy these con-

ditions provided
βi ≥ αi ≥ 0.
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Example for the assumption

f = χ + k ∗ χ ≥ 0.

(χ is the original source term.)

Let k ≥ 0, k 6= 0.

Choosing

χ = 1 in Ω× (0, T − δ) and χ = −ε < 0 in Ω× (T − δ, T ),

where the numbers ε > 0 and δ > 0 are sufficiently small, so that
∫ T−δ

0
k(t− τ)dτ ≥ ε

(
1 +

∫ t

T−δ

k(t− τ)dτ

)
for any t ∈ (T − δ, T )

then we have
f = χ + k ∗ χ ≥ 0.
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Sketch of proof of Thm 1 assertion (i).

βut = Au−m ∗ Au + χ in Q = Ω× (0, T ),

u = u0 in Ω× {0} ,

Bu = b in S = Γ× (0, T )

Apply operator I+k∗ to the parabolic equation and the boundary condition
in case II:

βut + k ∗ ut = Au + χ + k ∗ χ︸ ︷︷ ︸
f

in Q,

u = u0 in Ω× {0} ,

B1u = g in S .

Here B1 = I in case I, B1 = ω · ∇ in case II.

Integrate by parts in the term k ∗ ut:

βut + k′ ∗ u + k(0)u− ku0 = Au + f in Q,

u = u0 in Ω× {0} ,

B1u = g in S

Transform the terms with k to the right-hand side:

βut = (A− k(0))u− k′ ∗ u + ku0 + f in Q,

u = u0 in Ω× {0} ,

B1u = g in S

7



We represent u as the limit

u = lim
n→∞

un

where u0 = 0 and un, n = 1, 2, . . . solve the problems

βun
t = (A− k(0))un − k′ ∗ un−1 + ku0 + f in Q,

un = u0 in Ω× {0} ,

B1u
n = g in S

Assuming f ≥ 0, u0 ≥ 0, g ≥ 0, k ≥ 0, k′ ≤ 0 and un−1 ≥ 0,
well-known extremum principle for parabolic equations implies un ≥ 0.

Thus, we have the implication

un−1 ≥ 0 ⇒ un ≥ 0.

Since u0 = 0, we obtain un ≥ 0 for n = 1, 2, . . ..

This proves
u = lim un ≥ 0.
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Results for IP1

IP1 is equivalent to the following problem for (z, u):

β(ut + k ∗ ut) = Au + zr + f0 in Q ,

u = u0 in Ω× {0} ,

B1u = g in S,

(14)

u = uT in Ω× {T}, (15)

where B1 = I in case I, B1 = ω · ∇ in case II, as before, and

r = φ + k ∗ φ , f0 = χ0 + k ∗ χ0. (16)

Theorem 2. Let (6), (7) hold, k ∈ W 1
1 (0, T ), k ≥ 0, k′ ≤ 0 and

β, aij, aj ∈ C l(Ω), a ∈ C l, l
2 (Q), at ∈ Lp(Q) with some l ∈ (0, 1), p ∈ (1,∞).

Moreover, let at ≥ 0, r ∈ C l, l
2 (Q), rt ∈ Lp(Q),

r ≥ 0 , rt + k ∗ rt − θr ≥ 0 (17)

and for any U ⊆ Ω, meas U > 0, there holds

rt + k ∗ rt − θr 6= 0 in U × (0, T ).
(18)

Here

θ = sup
x∈Ω

a(x, T )
β(x)

.

If (z, u) ∈ C l(Ω) × C2+l,1+ l
2 (Q) solves (14), (15) and f0, u0, g, uT = 0 then

z = 0, u = 0.
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To deal with the existence and stability we have to impose additional as-
sumptions on r:

r ≥ δ in Ω× (T − δ, T ) with some δ ∈ (0, T
2 ) and

either r ≥ δ in Ω× (0, δ) (case (1)) or r = 0 in Ω× (0, δ) (case (2)).
(19)

In case I & (1) it is possible to reformulate IP1 so that the unknown z is
zero at the boundary Γ.

Theorem 3. Let (6), (7) hold and β, aij, aj ∈ C l(Ω), a ∈ C l, l
2 (Q),

at ∈ Lp(Q), with some l ∈ (0, 1), p ∈ (1,∞) and at ≥ 0.

In addition, let f0 ∈ C l, l
2 (Q), u0 ∈ C2+l(Ω), g ∈ C2+l−ν,1+ l

2−ν
2 (S), uT ∈

C2+l(Ω) and the consistency conditions

u0 = g , βgt = Au0 + f0 in case I in Γ× {0},
ω · ∇xu0 = g in case II in Γ× {0}
uT = g in case I, ω · ∇xuT = g in case II in Γ× {T}

(20)

be satisfied.

Moreover, let r satisfy the assumptions listed in Theorem 2 and (19) and

k ∈ W 1
2

2−l

(0, T ), k ≥ 0, k′ ≤ 0.

In case I & (1) we assume AuT = 0 in Γ× {T}, too.

Then the inverse problem (14), (15) has a unique solution (z, u) in the
space C l(Ω)×C2+l,1+ l

2 (Q) and in case I & (1) there holds z = 0 in Γ. The
solution satisfies the following stability estimate:

‖z‖l + ‖u‖2+l,1+ l
2

≤ Λ(β, aij, aj, a, k, r)
{
‖f0‖l, l

2
+ ‖u0‖2+l + ‖g‖2+l−ν,1+ l

2−ν
2

+ ‖uT‖2+l

}(21)

with some constant Λ depending on the quantities shown in brackets.

Here ν is the order of the boundary operator B, i.e ν = 0 in case I and
ν = 1 in case II.
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Results for IP2

IP2 is equivalent to the following problem for (a, u):

β(ut + k ∗ ut) = A0u + au + f in Q ,

u = u0 in Ω× {0} , B1u = g in S ,
(22)

u = uT in Ω× {T} , (23)

where f , B1 and g are given as before and

A0u =
n∑

i,j=1
aijuxixj

+
n∑

j=1
ajuxj

.

Let us define the following set of the coefficients a that depends on θ ∈ R:

Al
β,θ = {a ∈ C l(Ω) : sup

x∈Ω

a(x)
β(x)

≤ θ}.
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Theorem 4. Let (6), (7) hold, β, aij, aj ∈ C l(Ω) with some l ∈ (0, 1) and
θ ∈ R. Then the following assertions are valid.

(i) If k ∈ W 1
1 (0, T ), k ≥ 0, k′ ≤ 0 and the problem (22), (23) has the

solutions (a1, u1) ∈ C l(Ω)×C2+l,1+ l
2 (Q), (a2, u2) ∈ Al

β,θ×C2+l,1+ l
2 (Q),

where u = u1 satisfies the conditions

u ≥ 0 , ut + k ∗ ut − θu ≥ 0 ,

for any U ⊆ Ω, meas U > 0

there holds ut + k ∗ ut − θu 6= 0 in U × (0, T ),

(24)

then a1 = a2 and u1 = u2.

(ii) If k ∈ W 1
2

2−l

(0, T ), k ≥ 0, k′ ≤ 0 and (22), (23) has a solution (a, u) ∈
Al

β,θ × C2+l,1+ l
2 (Q) such that u fulfills (24),

u ≥ δ in Ω× (T − δ, T ) and

u = 0 in Ω× (0, δ) with some δ ∈ (0, T
2 ),

(25)

then for any f̃ , ũ0, g̃, ũT such that

D := ‖f̃ − f‖l, l
2

+ ‖ũ0 − u0‖2+l + ‖g̃ − g‖2+l−ν,1+ l
2−ν

2
+ ‖ũT − uT‖2+l <

1
2λ2

,

λ = Λ(β, aij, aj, a, k, u),

where

ũ0 = g̃ , βg̃t = (A0 + a)ũ0 + f̃ in case I in Γ× {0},
ω · ∇xũ0 = g̃ in case II in Γ× {0},
ũT = g̃ in case I, ω · ∇xũT = g̃ in case II in Γ× {T},

the problem (22), (23) with f0, u0, g, uT replaced by f̃0, ũ0, g̃, ũT , has a
unique solution (ã, ũ) in the ball

U =
{

(ã, ũ) : ‖ã− a‖l + ‖ũ− u‖2+l,1+ l
2
≤ 1

λ

(
1−

√
1− 2λ2D

)}
.

12



(iii) If k ∈ W 1
1 (0, T ), k ≥ 0, k′ ≤ 0, a ∈ Al

β,θ, u0 ∈ C2+l(Ω),

A0u0 ∈ W
2− 2

p
p (Ω), f ∈ C l, l

2 (Q), ft ∈ Lp(Q), g ∈ C2+l−ν,1+ l
2−ν

2 (S),

gt ∈ W
2−ν− 1

p ,1−ν
2− 1

2p
p (S) with some p ∈ (1,∞),

u0 = g, βgt + A0u0 + au0 = f in case I in Γ× {0},
ω · ∇xu0 = g in case II in Γ× {0},
u0 ≥ 0, f ≥ 0, g ≥ 0, ft + k ∗ ft − θf ≥ 0, gt + k ∗ gt − θg ≥ 0,

ft + k ∗ ft − θf 6= 0 or gt + k ∗ gt − θg 6= 0

and

(θβ − a)u0 ≤ A0u0 + f(·, 0)

then the solution u of the direct problem (22) belongs to C2+l,1+ l
2 (Q)

and satisfies (24).

If, in addition, f(·, t) = 0 and g(·, t) = 0 for t ∈ (0, δ0) with some
δ0 ∈ (0, T

2 ), u0 = 0 and g > 0 in Γ × {T} in case I, then u satisfies
(25), too.

We remark that in case u0 = 0 the assumptions of (iii) do not contain the
unknown a, except for the condition a ∈ Al

β,θ.
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Results for IP3

IP3 is equivalent to the following problem for (β, u):

β(ut + k ∗ ut) = Au + f in Q ,

u = u0 in Ω× {0} , B1u = g in S ,
(26)

u = uT in Ω× {T} . (27)

Let us introduce the following set for the coefficients β that depends on
β0 > 0:

Bl
β0

= {β ∈ C l(Ω) : inf
x∈Ω

β(x) ≥ β0}

and define θβ0 = max
{

0; 1
β0

sup
x∈Ω

a(x, T )
}
.

Theorem 5. Let (6) hold, aij, aj ∈ C l(Ω), a ∈ C l, l
2 (Q), at ∈ Lp(Q)

with some l ∈ (0, 1), p ∈ (1,∞), at ≥ 0 and β0 > 0. Then the following
assertions are valid.

(i) If k ∈ W 1
1 (0, T ), k ≥ 0, k′ ≤ 0 and the problem (26), (27) has the

solutions (β1, u1) ∈ C l(Ω)× C2+l,1+ l
2 (Q), (β2, u2) ∈ Bl

β0
× C2+l,1+ l

2 (Q)
where u = u1 satisfies the conditions

utt ∈ Lp(Ω) and

ut + k ∗ ut ≥ 0 ,

û := (ut + k ∗ ut)t + k ∗ (ut + k ∗ ut)t − θβ0(ut + k ∗ ut) ≥ 0 ,

for any U ⊆ Ω, meas U > 0 there holds û 6= 0 in U × (0, T ),

(28)

then β1 = β2 and u1 = u2.
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(ii) If k ∈ W 1
2

2−l

(0, T ), k ≥ 0, k′ ≤ 0 and the problem (26), (27) has a

solution (β, u) ∈ Bl
β0
× C2+l,1+ l

2 (Q) such that u fulfills (28),

ut + k ∗ ut ≥ δ in Ω× (T − δ, T ) and

ut = 0 in Ω× (0, δ) with some δ ∈ (0, T
2 ),

(29)

then for any f̃ , ũ0, g̃, ũT such that

D <
1

2λ̄2(1 + ‖k‖) , λ̄ = Λ(β, aij, aj, a, k, ut + k ∗ ut), ‖k‖ = ‖k‖C[0,T ],

with D defined in Theorem 4,

ũ0 = g̃ , βg̃t = Aũ0 + f̃ in case I in Γ× {0},
ω · ∇xũ0 = g̃ in case II in Γ× {0},
ũT = g̃ in case I, ω · ∇xũT = g̃ in case II in Γ× {T},

the problem (26), (27) with f0, u0, g, uT replaced by f̃0, ũ0, g̃, ũT , has a
unique solution (β̃, ũ) in the ball

Ū =
{

(β̃, ũ) : ‖β̃ − β‖l + ‖ũ− u‖2+l,1+ l
2

≤ 1

λ̄(1 + ‖k‖)

(
1−

√
1− 2λ̄2(1 + ‖k‖)D

) }
.
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(iii) If k ∈ W 1
1 (0, T ), k ≥ 0, k′ ≤ 0, β ∈ Bl

β0
, at = 0, u0 ∈ C2+l(Ω),

A(0)u0 ∈ W
2− 2

p
p (Ω), f ∈ C l, l

2 (Q), ft, ftt ∈ Lp(Q), ft(·, 0) ∈ W
2− 2

p
p (Ω),

g ∈ C2+l−ν,1+ l
2−ν

2 (S), gt, gtt ∈ W
2−ν− 1

p ,1−ν
2− 1

2p
p (S),

rf := ft + k ∗ ft ≥ 0, rg := gt + k ∗ gt ≥ 0,

r̂f := rf,t + k ∗ rf,t − θβ0rf ≥ 0,

r̂g := rg,t + k ∗ rg,t − θβ0rg ≥ 0,

r̂f 6= 0 or r̂g 6= 0,

u0 = g, βgt + A0u0 + au0 = f in case I in Γ× {0},
ω · ∇xu0 = g in case II in Γ× {0}

and the relations

1
β

(A(0)u0 + f(·, 0)) ∈ W 2
p (Ω), A

[1
β

(A(0)u0 + f(·, 0))
]
∈ W

2− 2
p

p (Ω),

A(0)u0 + f(·, 0) ≥ 0,

A
[1
β

(A(0)u0 + f(·, 0))
]
−θβ0A(0)u0 + ft(·, 0)− θβ0f(·, 0) ≥ 0

hold, then the solution u of the direct problem (26) belongs to C2+l,1+ l
2 (Q)

and satisfies (28).

If, in addition,

ft(·, t) = 0, gt(·, t) = 0 for t ∈ (0, δ0) with some δ0 ∈ (0, T
2 ),

A(0)u0 + f(·, 0) = 0

and rg > 0 in Γ× {T} in case I, then u satisfies (29), too.

We remark that in case u0 = 0 and f(·, 0) = 0 then the assumptions of (iii)
do not contain the unknown β, except for β ∈ Bl

β0
.
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