A positivity principle for parabolic integro-differential equations and final overdetermination

Jaan Janno and Kairi Kasemets

We consider the following parabolic problem (direct problem):

$$\beta u_t = Au - m * Au + \chi \quad \text{in} \quad Q = \Omega \times (0, T), \tag{1}$$

$$u = u_0 \text{ in } \Omega \times \{0\}, \qquad (2)$$

$$Bu = b$$
 in $S = \Gamma \times (0, T)$

where $\Omega \subset \mathbb{R}^n$ – bounded, open with sufficiently smooth boundary Γ ,

$$\beta(x), \chi(x,t), u_0(x), b(x,t)$$
 and $m(t)$ – given functions

and either

$$Bu = u \qquad (case I) \tag{3}$$

or

$$Bu(x,t) = \omega(x) \cdot \nabla_x u(x,t)$$

$$-\int_0^t m(t-\tau) \,\omega(x) \cdot \nabla_x u(x,\tau) d\tau \qquad (case \text{ II})$$
(4)

with $\omega(x) \cdot N(x) > 0$, N(x) - outer normal of Γ at x. Moreover,

$$A = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{n} a_j(x) \frac{\partial}{\partial x_j} + a(x,t)$$
(5)

and * stands for the time convolution, i.e.

$$v * w = \int_0^{\cdot} v(\cdot - \tau) w(\tau) d\tau.$$

We assume the relations

$$-\sum_{i,j=1}^{N} a_{ij} \lambda_i \lambda_j \ge \epsilon |\lambda|^2 \quad \text{for any } \lambda \in \mathbb{R}^n \quad \text{with some} \quad \epsilon \in (0,\infty) \quad (6)$$

and

$$\beta \ge \beta_0 > 0 \quad \text{with some} \quad \beta_0 \in (0, \infty)$$
 (7)

be valid in Ω .

Inverse problems:

IP1: Let the source term be of the following form:

$$\chi(x,t) = z(x)\phi(x,t) + \chi_0(x,t).$$
 (8)

Given $m, \beta, a_{ij}, a_j, a, u_0, b, \phi, \chi_0$ and a function $u_T(x), x \in \Omega$,

find z and u so that the direct problem (1), (10), the relation (8) and the final condition

$$u = u_T \text{ in } \Omega \times \{T\} \tag{9}$$

hold.

IP2: Let $a_t = 0$. Given $m, \beta, a_{ij}, a_j, u_0, b, \chi$ and a function $u_T(x), x \in \Omega$, find a and u so that the direct problem (1), (10) and final condition (9) hold.

IP3: Given $m, a_{ij}, a_j, a, u_0, b, \chi$ and a function $u_T(x), x \in \Omega$,

find β and u so that the direct problem (1), (10) and final conditon (9) hold.

Let U be a finite-dimensional manifold and $f, g \in L^1(U)$. We write

$$\begin{split} &f \geq g \ \text{ in } U \quad \text{if } f(x) \geq g(x) \text{ a.e. } x \in U, \\ &f > g \ \text{ in } U \quad \text{if } \forall U_1 \text{: } \overline{U}_1 \subseteq U \ \exists \varepsilon_{_{U_1}} \in \mathbb{R}, \varepsilon_{_{U_1}} > 0 \text{: } f \geq g + \varepsilon_{_{U_1}} \text{ in } U_1. \end{split}$$

It is not difficult to prove that

 $f \ge g, f \ne g$ in $U \implies \exists U_2 \subseteq U : \text{meas } U_2 \ne 0, f > g$ in U_2 .

Positivity principle. Sign inertia.

$$\beta u_t = Au - m * Au + \chi \quad \text{in} \quad Q = \Omega \times (0, T),$$
$$u = u_0 \quad \text{in} \ \Omega \times \{0\},$$
$$Bu = b \quad \text{in} \ S = \Gamma \times (0, T)$$

We introduce the resolvent kernel k satisfying the equation

$$k(t) - \int_0^t m(t-\tau)k(\tau)d\tau = m(t), \ t \in (0,T).$$
(10)

Denote

$$f = \chi + k * \chi, \tag{11}$$

$$g = b$$
 in case I,
 $g = b + k * b$ in case II. (12)

Theorem 1. Assume (6), (7), $\beta, a_{ij}, a_j \in C(\overline{\Omega}), a \in C(\overline{Q})$ and

$$k \in W_1^1(0,T), \quad k \ge 0, \quad k' \le 0.$$
 (13)

Let $u \in W_p^{2,1}(Q)$ with some $p \in (1,\infty)$ solve the direct problem (1), (10) and

 $u_0 \ge 0, \ g \ge 0, \ f \ge 0.$

Then the following assertions are valid:

(i) $u \ge 0;$

(ii) if, in addition, β, a_{ij}, a_j ∈ C^l(Ω), a ∈ C^{l, ^l/₂}(Q) with some l ∈ (0, 1) and either f ≠ 0 or g ≠ 0, then
u(·, T) > 0 in Ω in case I and u(·, T) > 0 in Ω in case II.

Sufficient conditions for

$$k \in W_1^1(0,T), \quad k \ge 0, \quad k' \le 0.$$

in terms of original kernel \boldsymbol{m} are

$$m \in W_1^1(0,T), \ m \ge 0, \ m'(t) \le -m(0)m(t).$$

For instance, the exponential kernels $m(t) = \sum_{i=1}^{N} \alpha_i e^{-\beta_i t}$ satisfy these conditions provided

$$\beta_i \geq \alpha_i \geq 0.$$

Example for the assumption

$$f = \chi + k * \chi \ge 0.$$

 $(\chi \text{ is the original source term.})$

Let $k \ge 0, k \ne 0$.

Choosing

$$\chi = 1 ext{ in } \Omega imes (0, T - \delta) ext{ and } \chi = -\epsilon < 0 ext{ in } \Omega imes (T - \delta, T),$$

where the numbers $\epsilon>0$ and $\delta>0$ are sufficiently small, so that

$$\int_0^{T-\delta} k(t-\tau) d\tau \ge \epsilon \left(1 + \int_{T-\delta}^t k(t-\tau) d\tau \right) \quad \text{for any} \quad t \in (T-\delta,T)$$

then we have

$$f = \chi + k * \chi \ge 0.$$

Sketch of proof of Thm 1 assertion (i).

$$\beta u_t = Au - m * Au + \chi \quad \text{in} \quad Q = \Omega \times (0, T),$$
$$u = u_0 \quad \text{in} \ \Omega \times \{0\},$$
$$Bu = b \quad \text{in} \ S = \Gamma \times (0, T)$$

Apply operator I+k* to the parabolic equation and the boundary condition in case II:

$$\beta u_t + k * u_t = Au + \underbrace{\chi + k * \chi}_{f} \quad \text{in} \quad Q,$$
$$u = u_0 \quad \text{in} \quad \Omega \times \{0\},$$
$$B_1 u = g \quad \text{in} \quad S.$$

Here $B_1 = I$ in case I, $B_1 = \omega \cdot \nabla$ in case II.

Integrate by parts in the term $k * u_t$:

$$\beta u_t + k' * u + k(0)u - ku_0 = Au + f \quad \text{in} \quad Q,$$
$$u = u_0 \quad \text{in} \ \Omega \times \{0\},$$
$$B_1 u = g \quad \text{in} \ S$$

Transform the terms with k to the right-hand side:

$$\beta u_t = (A - k(0))u - k' * u + ku_0 + f \quad \text{in} \quad Q,$$
$$u = u_0 \quad \text{in} \ \Omega \times \{0\},$$
$$B_1 u = g \quad \text{in} \ S$$

We represent u as the limit

$$u = \lim_{n \to \infty} u^n$$

where $u^0 = 0$ and u^n , n = 1, 2, ... solve the problems

$$\beta u_t^n = (A - k(0))u^n - k' * u^{n-1} + ku_0 + f \quad \text{in} \quad Q,$$
$$u^n = u_0 \quad \text{in} \ \Omega \times \{0\},$$
$$B_1 u^n = g \quad \text{in} \ S$$

Assuming $f \ge 0$, $u_0 \ge 0$, $g \ge 0$, $k \ge 0$, $k' \le 0$ and $u^{n-1} \ge 0$, well-known extremum principle for parabolic equations implies $u^n \ge 0$.

Thus, we have the implication

$$u^{n-1} \ge 0 \quad \Rightarrow \quad u^n \ge 0.$$

Since $u^0 = 0$, we obtain $u^n \ge 0$ for $n = 1, 2, \ldots$

This proves

$$u = \lim u^n \ge 0.$$

Results for IP1

IP1 is equivalent to the following problem for (z, u):

$$\beta(u_t + k * u_t) = Au + zr + f_0 \text{ in } Q,$$

$$u = u_0 \text{ in } \Omega \times \{0\},$$

$$B_1 u = g \text{ in } S,$$

$$u = u_T \text{ in } \Omega \times \{T\}$$
(15)

$$u = u_T \text{ in } \Omega \times \{T\}, \tag{15}$$

where $B_1 = I$ in case I, $B_1 = \omega \cdot \nabla$ in case II, as before, and

$$r = \phi + k * \phi, \quad f_0 = \chi_0 + k * \chi_0. \tag{16}$$

Theorem 2. Let (6), (7) hold, $k \in W_1^1(0,T)$, $k \ge 0$, $k' \le 0$ and $\beta, a_{ij}, a_j \in C^l(\Omega)$, $a \in C^{l,\frac{l}{2}}(Q)$, $a_t \in L^p(Q)$ with some $l \in (0,1)$, $p \in (1,\infty)$. Moreover, let $a_t \ge 0$, $r \in C^{l,\frac{l}{2}}(Q)$, $r_t \in L^p(Q)$,

 $r \ge 0, \quad r_t + k * r_t - \theta r \ge 0 \tag{17}$

and for any
$$U \subseteq \Omega$$
, meas $U > 0$, there holds
 $r_t + k * r_t - \theta r \neq 0$ in $U \times (0, T)$.
(18)

Here

$$\theta = \sup_{x \in \Omega} \frac{a(x,T)}{\beta(x)}$$

If $(z, u) \in C^{l}(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$ solves (14), (15) and $f_{0}, u_{0}, g, u_{T} = 0$ then z = 0, u = 0.

To deal with the existence and stability we have to impose additional assumptions on r:

 $r \ge \delta$ in $\overline{\Omega} \times (T - \delta, T)$ with some $\delta \in (0, \frac{T}{2})$ and either $r \ge \delta$ in $\overline{\Omega} \times (0, \delta)$ (case (1)) or r = 0 in $\overline{\Omega} \times (0, \delta)$ (case (2)).⁽¹⁹⁾

In case I & (1) it is possible to reformulate IP1 so that the unknown z is zero at the boundary Γ .

Theorem 3. Let (6), (7) hold and β , a_{ij} , $a_j \in C^l(\Omega)$, $a \in C^{l,\frac{1}{2}}(Q)$, $a_t \in L^p(Q)$, with some $l \in (0,1)$, $p \in (1,\infty)$ and $a_t \ge 0$. In addition, let $f_0 \in C^{l,\frac{1}{2}}(Q)$, $u_0 \in C^{2+l}(\Omega)$, $g \in C^{2+l-\nu,1+\frac{l}{2}-\frac{\nu}{2}}(S)$, $u_T \in C^{2+l}(\Omega)$ and the consistency conditions

$$u_{0} = g, \quad \beta g_{t} = Au_{0} + f_{0} \quad in \ case \ I \quad in \ \Gamma \times \{0\}, \\ \omega \cdot \nabla_{x} u_{0} = g \quad in \ case \ II \quad in \ \Gamma \times \{0\} \\ u_{T} = g \quad in \ case \ I, \quad \omega \cdot \nabla_{x} u_{T} = g \quad in \ case \ II \quad in \ \Gamma \times \{T\}$$

$$(20)$$

be satisfied.

Moreover, let r satisfy the assumptions listed in Theorem 2 and (19) and $k \in W^{1}_{\frac{2}{2-l}}(0,T), k \geq 0, k' \leq 0.$

In case I & (1) we assume $Au_T = 0$ in $\Gamma \times \{T\}$, too.

Then the inverse problem (14), (15) has a unique solution (z, u) in the space $C^{l}(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$ and in case I & (1) there holds z = 0 in Γ . The solution satisfies the following stability estimate:

$$\|z\|_{l} + \|u\|_{2+l,1+\frac{l}{2}} \\ \leq \Lambda(\beta, a_{ij}, a_{j}, a, k, r) \left\{ \|f_{0}\|_{l,\frac{l}{2}} + \|u_{0}\|_{2+l} + \|g\|_{2+l-\nu,1+\frac{l}{2}-\frac{\nu}{2}} + \|u_{T}\|_{2+l} \right\}^{(21)}$$

with some constant Λ depending on the quantities shown in brackets.

Here ν is the order of the boundary operator B, i.e $\nu = 0$ in case I and $\nu = 1$ in case II.

Results for IP2

IP2 is equivalent to the following problem for (a, u):

$$\beta(u_t + k * u_t) = A_0 u + au + f \text{ in } Q,$$

$$u = u_0 \text{ in } \Omega \times \{0\}, \quad B_1 u = g \text{ in } S,$$
(22)

$$u = u_T \text{ in } \Omega \times \{T\}, \qquad (23)$$

where f, B_1 and g are given as before and

$$A_0 u = \sum_{i,j=1}^n a_{ij} u_{x_i x_j} + \sum_{j=1}^n a_j u_{x_j}.$$

Let us define the following set of the coefficients *a* that depends on $\theta \in \mathbb{R}$:

$$\mathcal{A}_{\beta,\theta}^{l} = \{a \in C^{l}(\Omega) : \sup_{x \in \Omega} \frac{a(x)}{\beta(x)} \le \theta\}.$$

Theorem 4. Let (6), (7) hold, β , a_{ij} , $a_j \in C^l(\Omega)$ with some $l \in (0, 1)$ and $\theta \in \mathbb{R}$. Then the following assertions are valid.

(i) If $k \in W_1^1(0,T)$, $k \ge 0$, $k' \le 0$ and the problem (22), (23) has the solutions $(a_1, u_1) \in C^l(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$, $(a_2, u_2) \in \mathcal{A}_{\beta,\theta}^l \times C^{2+l,1+\frac{l}{2}}(Q)$, where $u = u_1$ satisfies the conditions

$$u \ge 0, \quad u_t + k * u_t - \theta u \ge 0,$$

for any $U \subseteq \Omega$, meas $U > 0$
there holds $u_t + k * u_t - \theta u \ne 0$ in $U \times (0, T)$, (24)

then $a_1 = a_2$ and $u_1 = u_2$.

(ii) If $k \in W^1_{\frac{2}{2-l}}(0,T)$, $k \ge 0$, $k' \le 0$ and (22), (23) has a solution $(a,u) \in \mathcal{A}^l_{\beta,\theta} \times C^{2+l,1+\frac{l}{2}}(Q)$ such that u fulfills (24),

$$u \ge \delta \quad in \ \Omega \times (T - \delta, T) \quad \text{and} \\ u = 0 \quad in \ \overline{\Omega} \times (0, \delta) \quad with \ some \ \delta \in (0, \frac{T}{2}),$$
(25)

then for any $\tilde{f}, \tilde{u}_0, \tilde{g}, \tilde{u}_T$ such that

$$D := \|\widetilde{f} - f\|_{l,\frac{l}{2}} + \|\widetilde{u}_0 - u_0\|_{2+l} + \|\widetilde{g} - g\|_{2+l-\nu,1+\frac{l}{2}-\frac{\nu}{2}} + \|\widetilde{u}_T - u_T\|_{2+l} < \frac{1}{2\lambda^2},$$

$$\lambda = \Lambda(\beta, a_{ij}, a_j, a, k, u),$$

where

$$\begin{split} \widetilde{u}_0 &= \widetilde{g} , \quad \beta \widetilde{g}_t = (A_0 + a) \widetilde{u}_0 + \widetilde{f} \quad in \ case \ \mathrm{I} \quad in \ \Gamma \times \{0\}, \\ \omega \cdot \nabla_x \widetilde{u}_0 &= \widetilde{g} \quad in \ case \ \mathrm{II} \quad in \ \Gamma \times \{0\}, \\ \widetilde{u}_T &= \widetilde{g} \quad in \ case \ \mathrm{I}, \quad \omega \cdot \nabla_x \widetilde{u}_T = \widetilde{g} \quad in \ case \ \mathrm{II} \quad in \ \Gamma \times \{T\}, \end{split}$$

the problem (22), (23) with f_0, u_0, g, u_T replaced by $\tilde{f}_0, \tilde{u}_0, \tilde{g}, \tilde{u}_T$, has a unique solution (\tilde{a}, \tilde{u}) in the ball

$$\mathcal{U} = \left\{ (\widetilde{a}, \widetilde{u}) : \|\widetilde{a} - a\|_{l} + \|\widetilde{u} - u\|_{2+l, 1+\frac{l}{2}} \le \frac{1}{\lambda} \left(1 - \sqrt{1 - 2\lambda^2 D} \right) \right\}.$$

(iii) If
$$k \in W_1^1(0,T), k \ge 0, k' \le 0, a \in \mathcal{A}_{\beta,\theta}^l, u_0 \in C^{2+l}(\Omega),$$

 $A_0 u_0 \in W_p^{2-\frac{2}{p}}(\Omega), f \in C^{l,\frac{l}{2}}(Q), f_t \in L^p(Q), g \in C^{2+l-\nu,1+\frac{l}{2}-\frac{\nu}{2}}(S),$
 $g_t \in W_p^{2-\nu-\frac{1}{p},1-\frac{\nu}{2}-\frac{1}{2p}}(S)$ with some $p \in (1,\infty),$
 $u_0 = g, \ \beta g_t + A_0 u_0 + a u_0 = f \quad in \ case \ I \quad in \ \Gamma \times \{0\},$
 $\omega \cdot \nabla_x u_0 = g \quad in \ case \ II \quad in \ \Gamma \times \{0\},$
 $u_0 \ge 0, \ f \ge 0, \ g \ge 0, \ f_t + k * f_t - \theta f \ge 0, \ g_t + k * g_t - \theta g \ge 0,$
 $f_t + k * f_t - \theta f \ne 0 \quad or \quad g_t + k * g_t - \theta g \ne 0$

and

$$(\theta\beta - a)u_0 \le A_0u_0 + f(\cdot, 0)$$

then the solution u of the direct problem (22) belongs to $C^{2+l,1+\frac{l}{2}}(Q)$ and satisfies (24).

If, in addition, $f(\cdot, t) = 0$ and $g(\cdot, t) = 0$ for $t \in (0, \delta_0)$ with some $\delta_0 \in (0, \frac{T}{2})$, $u_0 = 0$ and g > 0 in $\Gamma \times \{T\}$ in case I, then u satisfies (25), too.

We remark that in case $u_0 = 0$ the assumptions of (iii) do not contain the unknown a, except for the condition $a \in \mathcal{A}_{\beta,\theta}^l$.

Results for IP3

IP3 is equivalent to the following problem for (β, u) :

$$\beta(u_t + k * u_t) = Au + f \text{ in } Q,$$

$$u = u_0 \text{ in } \Omega \times \{0\}, \quad B_1 u = g \text{ in } S,$$
(26)

$$u = u_T \text{ in } \Omega \times \{T\}.$$
(27)

Let us introduce the following set for the coefficients β that depends on $\beta_0 > 0$:

$$\mathcal{B}_{\beta_0}^l = \{\beta \in C^l(\Omega) : \inf_{x \in \Omega} \beta(x) \ge \beta_0\}$$

and define $\theta_{\beta_0} = \max\{0; \frac{1}{\beta_0} \sup_{x \in \Omega} a(x, T)\}.$

Theorem 5. Let (6) hold, $a_{ij}, a_j \in C^l(\Omega)$, $a \in C^{l,\frac{l}{2}}(Q)$, $a_t \in L^p(Q)$ with some $l \in (0,1)$, $p \in (1,\infty)$, $a_t \ge 0$ and $\beta_0 > 0$. Then the following assertions are valid.

(i) If $k \in W_1^1(0,T)$, $k \ge 0$, $k' \le 0$ and the problem (26), (27) has the solutions $(\beta_1, u_1) \in C^l(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$, $(\beta_2, u_2) \in \mathcal{B}_{\beta_0}^l \times C^{2+l,1+\frac{l}{2}}(Q)$ where $u = u_1$ satisfies the conditions

$$u_{tt} \in L^{p}(\Omega) \text{ and}$$

$$u_{t} + k * u_{t} \geq 0,$$

$$\hat{u} := (u_{t} + k * u_{t})_{t} + k * (u_{t} + k * u_{t})_{t} - \theta_{\beta_{0}}(u_{t} + k * u_{t}) \geq 0,$$

$$for \ any \ U \subseteq \Omega, \ \text{meas} \ U > 0 \ \ there \ holds \ \ \hat{u} \neq 0 \ \ in \ U \times (0, T),$$

$$(28)$$

then $\beta_1 = \beta_2$ and $u_1 = u_2$.

(ii) If $k \in W^{1}_{\frac{2}{2-l}}(0,T), k \ge 0, k' \le 0$ and the problem (26), (27) has a solution $(\beta, u) \in \mathcal{B}^{l}_{\beta_{0}} \times C^{2+l,1+\frac{l}{2}}(Q)$ such that u fulfills (28),

$$u_t + k * u_t \ge \delta \quad in \ \overline{\Omega} \times (T - \delta, T) \quad \text{and} \\ u_t = 0 \quad in \ \overline{\Omega} \times (0, \delta) \quad with \ some \ \delta \in (0, \frac{T}{2}),$$
(29)

then for any $\widetilde{f}, \widetilde{u}_0, \widetilde{g}, \widetilde{u}_T$ such that

$$D < \frac{1}{2\bar{\lambda}^2(1+\|k\|)}, \quad \bar{\lambda} = \Lambda(\beta, a_{ij}, a_j, a, k, u_t + k * u_t), \ \|k\| = \|k\|_{C[0,T]},$$

with D defined in Theorem 4,

$$\begin{split} \widetilde{u}_0 &= \widetilde{g} , \quad \beta \widetilde{g}_t = A \widetilde{u}_0 + \widetilde{f} \quad in \ case \ \mathbf{I} \quad in \ \Gamma \times \{0\}, \\ \omega \cdot \nabla_x \widetilde{u}_0 &= \widetilde{g} \quad in \ case \ \mathbf{II} \quad in \ \Gamma \times \{0\}, \\ \widetilde{u}_T &= \widetilde{g} \quad in \ case \ \mathbf{I}, \quad \omega \cdot \nabla_x \widetilde{u}_T = \widetilde{g} \quad in \ case \ \mathbf{II} \quad in \ \Gamma \times \{T\}, \end{split}$$

the problem (26), (27) with f_0, u_0, g, u_T replaced by $\tilde{f}_0, \tilde{u}_0, \tilde{g}, \tilde{u}_T$, has a unique solution $(\tilde{\beta}, \tilde{u})$ in the ball

$$\begin{aligned} \bar{\mathcal{U}} &= \Big\{ (\widetilde{\beta}, \widetilde{u}) : \|\widetilde{\beta} - \beta\|_l + \|\widetilde{u} - u\|_{2+l, 1+\frac{l}{2}} \\ &\leq \frac{1}{\bar{\lambda}(1+\|k\|)} \left(1 - \sqrt{1 - 2\bar{\lambda}^2(1+\|k\|)D} \right) \Big\}. \end{aligned}$$

(iii) If
$$k \in W_1^1(0,T), k \ge 0, k' \le 0, \beta \in \mathcal{B}_{\beta_0}^l, a_t = 0, u_0 \in C^{2+l}(\Omega),$$

 $A(0)u_0 \in W_p^{2-\frac{2}{p}}(\Omega), f \in C^{l,\frac{1}{2}}(Q), f_t, f_{tt} \in L^p(Q), f_t(\cdot,0) \in W_p^{2-\frac{2}{p}}(\Omega),$
 $g \in C^{2+l-\nu,1+\frac{1}{2}-\frac{\nu}{2}}(S), g_t, g_{tt} \in W_p^{2-\nu-\frac{1}{p},1-\frac{\nu}{2}-\frac{1}{2p}}(S),$
 $r_f := f_t + k * f_t \ge 0, r_g := g_t + k * g_t \ge 0,$
 $\hat{r}_f := r_{f,t} + k * r_{f,t} - \theta_{\beta_0}r_f \ge 0,$
 $\hat{r}_g := r_{g,t} + k * r_{g,t} - \theta_{\beta_0}r_g \ge 0,$
 $\hat{r}_f \neq 0 \text{ or } \hat{r}_g \neq 0,$
 $u_0 = g, \ \beta g_t + A_0u_0 + au_0 = f \text{ in case I in } \Gamma \times \{0\},$

$$\omega_0 = g, \ \beta g_t + \Lambda_0 u_0 + u u_0 = f \quad in \ case \ \Gamma \quad in \ \Gamma \times \{0\}$$
$$\omega \cdot \nabla_x u_0 = g \quad in \ case \ \Pi \quad in \ \Gamma \times \{0\}$$

and the relations

$$\frac{1}{\beta}(A(0)u_0 + f(\cdot, 0)) \in W_p^2(\Omega), \ A\Big[\frac{1}{\beta}(A(0)u_0 + f(\cdot, 0))\Big] \in W_p^{2-\frac{2}{p}}(\Omega),$$

$$A(0)u_0 + f(\cdot, 0) \ge 0,$$

$$A\Big[\frac{1}{\beta}(A(0)u_0 + f(\cdot, 0))\Big] - \theta_{\beta_0}A(0)u_0 + f_t(\cdot, 0) - \theta_{\beta_0}f(\cdot, 0) \ge 0$$

hold, then the solution u of the direct problem (26) belongs to $C^{2+l,1+\frac{l}{2}}(Q)$ and satisfies (28).

If, in addition,

$$f_t(\cdot, t) = 0, \ g_t(\cdot, t) = 0 \ for \ t \in (0, \delta_0) \ with \ some \ \delta_0 \in (0, \frac{T}{2}),$$

 $A(0)u_0 + f(\cdot, 0) = 0$

and $r_g > 0$ in $\Gamma \times \{T\}$ in case I, then u satisfies (29), too.

We remark that in case $u_0 = 0$ and $f(\cdot, 0) = 0$ then the assumptions of (iii) do not contain the unknown β , except for $\beta \in \mathcal{B}_{\beta_0}^l$.