A positivity principle for parabolic integro-differential equations and final overdetermination

Jaan Janno and Kairi Kasemets

We consider the following parabolic problem (direct problem):

$$
\begin{align*}
& \beta u_{t}=A u-m * A u+\chi \text { in } Q=\Omega \times(0, T), \tag{1}\\
& u=u_{0} \text { in } \Omega \times\{0\}, \tag{2}\\
& B u=b \text { in } S=\Gamma \times(0, T)
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{n}$ - bounded, open with sufficiently smooth boundary Γ,

$$
\beta(x), \chi(x, t), u_{0}(x), b(x, t) \text { and } m(t)-\text { given functions }
$$

and either

$$
\begin{equation*}
B u=u \quad(\text { case } \mathrm{I}) \tag{3}
\end{equation*}
$$

or

$$
\begin{align*}
B u(x, t)=\omega(x) & \cdot \nabla_{x} u(x, t) \\
& -\int_{0}^{t} m(t-\tau) \omega(x) \cdot \nabla_{x} u(x, \tau) d \tau \tag{4}
\end{align*}
$$

with $\omega(x) \cdot N(x)>0, \quad N(x)$ - outer normal of Γ at x. Moreover,

$$
\begin{equation*}
A=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{n} a_{j}(x) \frac{\partial}{\partial x_{j}}+a(x, t) \tag{5}
\end{equation*}
$$

and $*$ stands for the time convolution, i.e.

$$
v * w=\int_{0} v(\cdot-\tau) w(\tau) d \tau
$$

We assume the relations

$$
\begin{equation*}
-\sum_{i, j=1}^{N} a_{i j} \lambda_{i} \lambda_{j} \geq \epsilon|\lambda|^{2} \quad \text { for any } \lambda \in \mathbb{R}^{n} \quad \text { with some } \quad \epsilon \in(0, \infty) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta \geq \beta_{0}>0 \quad \text { with some } \beta_{0} \in(0, \infty) \tag{7}
\end{equation*}
$$

be valid in Ω.

Inverse problems:

IP1: Let the source term be of the following form:

$$
\begin{equation*}
\chi(x, t)=z(x) \phi(x, t)+\chi_{0}(x, t) \tag{8}
\end{equation*}
$$

Given $m, \beta, a_{i j}, a_{j}, a, u_{0}, b, \phi, \chi_{0}$ and a function $u_{T}(x), x \in \Omega$,
find z and u so that the direct problem (1), (10), the relation (8) and the final condition

$$
\begin{equation*}
u=u_{T} \text { in } \Omega \times\{T\} \tag{9}
\end{equation*}
$$

hold.
IP2: Let $a_{t}=0$. Given $m, \beta, a_{i j}, a_{j}, u_{0}, b, \chi$ and a function $u_{T}(x), x \in \Omega$, find a and u so that the direct problem (1), (10) and final condition (9) hold.

IP3: Given $m, a_{i j}, a_{j}, a, u_{0}, b, \chi$ and a function $u_{T}(x), x \in \Omega$, find β and u so that the direct problem (1), (10) and final conditon (9) hold.

Let U be a finite-dimensional manifold and $f, g \in L^{1}(U)$. We write

$$
\begin{aligned}
& f \geq g \text { in } U \quad \text { if } f(x) \geq g(x) \text { a.e. } x \in U, \\
& f>g \text { in } U \quad \text { if } \forall U_{1}: \bar{U}_{1} \subseteq U \quad \exists \varepsilon_{U_{1}} \in \mathbb{R}, \varepsilon_{U_{1}}>0: f \geq g+\varepsilon_{U_{1}} \text { in } U_{1} .
\end{aligned}
$$

It is not difficult to prove that

$$
f \geq g, f \neq g \text { in } U \quad \Rightarrow \quad \exists U_{2} \subseteq U: \text { meas } U_{2} \neq 0, f>g \text { in } U_{2} .
$$

Positivity principle. Sign inertia.

$$
\begin{aligned}
& \beta u_{t}=A u-m * A u+\chi \text { in } Q=\Omega \times(0, T), \\
& u=u_{0} \text { in } \Omega \times\{0\}, \\
& B u=b \text { in } S=\Gamma \times(0, T)
\end{aligned}
$$

We introduce the resolvent kernel k satisfying the equation

$$
\begin{equation*}
k(t)-\int_{0}^{t} m(t-\tau) k(\tau) d \tau=m(t), \quad t \in(0, T) . \tag{10}
\end{equation*}
$$

Denote

$$
\begin{align*}
& f=\chi+k * \chi \tag{11}\\
& g=b \text { in case I, } \\
& g=b+k * b \text { in case II. } \tag{12}
\end{align*}
$$

Theorem 1. Assume (6), (7), $\beta, a_{i j}, a_{j} \in C(\bar{\Omega}), a \in C(\bar{Q})$ and

$$
\begin{equation*}
k \in W_{1}^{1}(0, T), \quad k \geq 0, \quad k^{\prime} \leq 0 . \tag{13}
\end{equation*}
$$

Let $u \in W_{p}^{2,1}(Q)$ with some $p \in(1, \infty)$ solve the direct problem (1), (10) and

$$
u_{0} \geq 0, \quad g \geq 0, \quad f \geq 0 .
$$

Then the following assertions are valid:
(i) $u \geq 0$;
(ii) if, in addition, $\beta, a_{i j}, a_{j} \in C^{l}(\Omega), a \in C^{l, \frac{l}{2}}(Q)$ with some $l \in(0,1)$ and either $f \neq 0$ or $g \neq 0$, then
$u(\cdot, T)>0$ in Ω in case I and $u(\cdot, T)>0$ in $\bar{\Omega}$ in case II.

Sufficient conditions for

$$
k \in W_{1}^{1}(0, T), \quad k \geq 0, \quad k^{\prime} \leq 0
$$

in terms of original kernel m are

$$
m \in W_{1}^{1}(0, T), \quad m \geq 0, \quad m^{\prime}(t) \leq-m(0) m(t)
$$

For instance, the exponential kernels $m(t)=\sum_{i=1}^{N} \alpha_{i} e^{-\beta_{i} t}$ satisfy these conditions provided

$$
\beta_{i} \geq \alpha_{i} \geq 0 .
$$

Example for the assumption

$$
f=\chi+k * \chi \geq 0
$$

(χ is the original source term.)
Let $k \geq 0, k \neq 0$.
Choosing

$$
\chi=1 \text { in } \Omega \times(0, T-\delta) \quad \text { and } \quad \chi=-\epsilon<0 \text { in } \Omega \times(T-\delta, T),
$$

where the numbers $\epsilon>0$ and $\delta>0$ are sufficiently small, so that

$$
\int_{0}^{T-\delta} k(t-\tau) d \tau \geq \epsilon\left(1+\int_{T-\delta}^{t} k(t-\tau) d \tau\right) \quad \text { for any } \quad t \in(T-\delta, T)
$$

then we have

$$
f=\chi+k * \chi \geq 0
$$

Sketch of proof of Thm 1 assertion (i).

$$
\begin{aligned}
& \beta u_{t}=A u-m * A u+\chi \text { in } Q=\Omega \times(0, T), \\
& u=u_{0} \text { in } \Omega \times\{0\}, \\
& B u=b \text { in } S=\Gamma \times(0, T)
\end{aligned}
$$

Apply operator $I+k *$ to the parabolic equation and the boundary condition in case II:

$$
\begin{aligned}
& \beta u_{t}+k * u_{t}=A u+\underbrace{\chi+k * \chi}_{f} \text { in } Q, \\
& u=u_{0} \text { in } \Omega \times\{0\}, \\
& B_{1} u=g \text { in } S .
\end{aligned}
$$

Here $B_{1}=I$ in case I, $B_{1}=\omega \cdot \nabla$ in case II.

Integrate by parts in the term $k * u_{t}$:

$$
\begin{aligned}
& \beta u_{t}+k^{\prime} * u+k(0) u-k u_{0}=A u+f \text { in } Q, \\
& \quad u=u_{0} \text { in } \Omega \times\{0\}, \\
& B_{1} u=g \text { in } S
\end{aligned}
$$

Transform the terms with k to the right-hand side:

$$
\begin{aligned}
& \beta u_{t}=(A-k(0)) u-k^{\prime} * u+k u_{0}+f \text { in } Q, \\
& \quad u=u_{0} \text { in } \Omega \times\{0\}, \\
& B_{1} u=g \text { in } S
\end{aligned}
$$

We represent u as the limit

$$
u=\lim _{n \rightarrow \infty} u^{n}
$$

where $u^{0}=0$ and $u^{n}, n=1,2, \ldots$ solve the problems

$$
\begin{aligned}
& \beta u_{t}^{n}=(A-k(0)) u^{n}-k^{\prime} * u^{n-1}+k u_{0}+f \text { in } Q \\
& u^{n}=u_{0} \text { in } \Omega \times\{0\} \\
& B_{1} u^{n}=g \text { in } S
\end{aligned}
$$

Assuming $f \geq 0, u_{0} \geq 0, g \geq 0, k \geq 0, k^{\prime} \leq 0$ and $u^{n-1} \geq 0$, well-known extremum principle for parabolic equations implies $u^{n} \geq 0$.

Thus, we have the implication

$$
u^{n-1} \geq 0 \quad \Rightarrow \quad u^{n} \geq 0
$$

Since $u^{0}=0$, we obtain $u^{n} \geq 0$ for $n=1,2, \ldots$.
This proves

$$
u=\lim u^{n} \geq 0
$$

Results for IP1

IP1 is equivalent to the following problem for (z, u) :

$$
\begin{align*}
& \beta\left(u_{t}+k * u_{t}\right)=A u+z r+f_{0} \text { in } Q \\
& \tag{14}\\
& u=u_{0} \text { in } \Omega \times\{0\} \\
& \tag{15}\\
& B_{1} u=g \text { in } S \\
& u=u_{T} \text { in } \Omega \times\{T\},
\end{align*}
$$

where $B_{1}=I$ in case $I, B_{1}=\omega \cdot \nabla$ in case II, as before, and

$$
\begin{equation*}
r=\phi+k * \phi, \quad f_{0}=\chi_{0}+k * \chi_{0} \tag{16}
\end{equation*}
$$

Theorem 2. Let (6), (7) hold, $k \in W_{1}^{1}(0, T), k \geq 0, k^{\prime} \leq 0$ and $\beta, a_{i j}, a_{j} \in C^{l}(\Omega), a \in C^{l, \frac{l}{2}}(Q), a_{t} \in L^{p}(Q)$ with some $l \in(0,1), p \in(1, \infty)$. Moreover, let $a_{t} \geq 0, r \in C^{l, \frac{l}{2}}(Q), r_{t} \in L^{p}(Q)$,

$$
\begin{equation*}
r \geq 0, \quad r_{t}+k * r_{t}-\theta r \geq 0 \tag{17}
\end{equation*}
$$

and for any $U \subseteq \Omega$, meas $U>0$, there holds

$$
\begin{equation*}
r_{t}+k * r_{t}-\theta r \neq 0 \text { in } U \times(0, T) \tag{18}
\end{equation*}
$$

Here

$$
\theta=\sup _{x \in \Omega} \frac{a(x, T)}{\beta(x)} .
$$

If $(z, u) \in C^{l}(\Omega) \times C^{2+l, 1+\frac{l}{2}}(Q)$ solves $(14),(15)$ and $f_{0}, u_{0}, g, u_{T}=0$ then $z=0, u=0$.

To deal with the existence and stability we have to impose additional assumptions on r :
$r \geq \delta$ in $\bar{\Omega} \times(T-\delta, T) \quad$ with some $\delta \in\left(0, \frac{T}{2}\right)$ and
either $r \geq \delta$ in $\bar{\Omega} \times(0, \delta) \quad($ case (1)) or $r=0$ in $\bar{\Omega} \times(0, \delta) \quad$ (case (2)).
In case I \& (1) it is possible to reformulate IP1 so that the unknown z is zero at the boundary Γ.

Theorem 3. Let (6), (7) hold and $\beta, a_{i j}, a_{j} \in C^{l}(\Omega), a \in C^{l, \frac{l}{2}}(Q)$, $a_{t} \in L^{p}(Q)$, with some $l \in(0,1), p \in(1, \infty)$ and $a_{t} \geq 0$.
In addition, let $f_{0} \in C^{l, \frac{l}{2}}(Q), u_{0} \in C^{2+l}(\Omega), g \in C^{2+l-\nu, 1+\frac{l}{2}-\frac{\nu}{2}}(S), u_{T} \in$ $C^{2+l}(\Omega)$ and the consistency conditions

$$
\begin{align*}
& u_{0}=g, \quad \beta g_{t}=A u_{0}+f_{0} \quad \text { in case } \mathrm{I} \text { in } \Gamma \times\{0\}, \\
& \omega \cdot \nabla_{x} u_{0}=g \text { in case II in } \Gamma \times\{0\} \tag{20}\\
& u_{T}=g \text { in case } \mathrm{I}, \quad \omega \cdot \nabla_{x} u_{T}=g \text { in case II in } \Gamma \times\{T\}
\end{align*}
$$

be satisfied.
Moreover, let r satisfy the assumptions listed in Theorem 2 and (19) and $k \in W_{\frac{2}{2-l}}^{1}(0, T), k \geq 0, k^{\prime} \leq 0$.
In case $\mathrm{I} \&(1)$ we assume $A u_{T}=0$ in $\Gamma \times\{T\}$, too.
Then the inverse problem (14), (15) has a unique solution (z, u) in the space $C^{l}(\Omega) \times C^{2+l, 1+\frac{l}{2}}(Q)$ and in case I \& (1) there holds $z=0$ in Γ. The solution satisfies the following stability estimate:

$$
\begin{align*}
& \|z\|_{l}+\|u\|_{2+l, 1+\frac{l}{2}} \\
& \quad \leq \Lambda\left(\beta, a_{i j}, a_{j}, a, k, r\right)\left\{\left\|f_{0}\right\|_{l, \frac{l}{2}}+\left\|u_{0}\right\|_{2+l}+\|g\|_{2+l-\nu, 1+\frac{l}{2}-\frac{\nu}{2}}+\left\|u_{T}\right\|_{2+l}\right\}^{(2)} \tag{21}
\end{align*}
$$

with some constant Λ depending on the quantities shown in brackets.

Here ν is the order of the boundary operator B, i.e $\nu=0$ in case I and $\nu=1$ in case II.

Results for IP2

IP2 is equivalent to the following problem for (a, u) :

$$
\begin{align*}
& \beta\left(u_{t}+k * u_{t}\right)=A_{0} u+a u+f \text { in } Q, \\
& u=u_{0} \text { in } \Omega \times\{0\}, \quad B_{1} u=g \text { in } S, \tag{22}\\
& u=u_{T} \text { in } \Omega \times\{T\}, \tag{23}
\end{align*}
$$

where f, B_{1} and g are given as before and

$$
A_{0} u=\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}+\sum_{j=1}^{n} a_{j} u_{x_{j}} .
$$

Let us define the following set of the coefficients a that depends on $\theta \in \mathbb{R}$:

$$
\mathcal{A}_{\beta, \theta}^{l}=\left\{a \in C^{l}(\Omega): \sup _{x \in \Omega} \frac{a(x)}{\beta(x)} \leq \theta\right\} .
$$

Theorem 4. Let (6), (7) hold, $\beta, a_{i j}, a_{j} \in C^{l}(\Omega)$ with some $l \in(0,1)$ and $\theta \in \mathbb{R}$. Then the following assertions are valid.
(i) If $k \in W_{1}^{1}(0, T), k \geq 0, k^{\prime} \leq 0$ and the problem (22), (23) has the solutions $\left(a_{1}, u_{1}\right) \in C^{l}(\Omega) \times C^{2+l, 1+\frac{l}{2}}(Q),\left(a_{2}, u_{2}\right) \in \mathcal{A}_{\beta, \theta}^{l} \times C^{2+l, 1+\frac{l}{2}}(Q)$, where $u=u_{1}$ satisfies the conditions

$$
\begin{align*}
& u \geq 0, \quad u_{t}+k * u_{t}-\theta u \geq 0 \\
& \text { for any } U \subseteq \Omega \text {, meas } U>0 \tag{24}\\
& \text { there holds } u_{t}+k * u_{t}-\theta u \neq 0 \text { in } U \times(0, T),
\end{align*}
$$

then $a_{1}=a_{2}$ and $u_{1}=u_{2}$.
(ii) If $k \in W_{\frac{2}{2-l}}^{1}(0, T), k \geq 0, k^{\prime} \leq 0$ and (22), (23) has a solution $(a, u) \in$ $\mathcal{A}_{\beta, \theta}^{l} \times C^{2+l, 1+\frac{l}{2}}(Q)$ such that u fulfills (24),

$$
\begin{align*}
& u \geq \delta \text { in } \bar{\Omega} \times(T-\delta, T) \text { and } \\
& u=0 \text { in } \bar{\Omega} \times(0, \delta) \text { with some } \delta \in\left(0, \frac{T}{2}\right), \tag{25}
\end{align*}
$$

then for any $\widetilde{f}, \widetilde{u}_{0}, \widetilde{g}, \widetilde{u}_{T}$ such that

$$
\begin{aligned}
& D:=\|\tilde{f}-f\|_{l, \frac{l}{2}}+\left\|\widetilde{u}_{0}-u_{0}\right\|_{2+l}+\|\widetilde{g}-g\|_{2+l-\nu, 1+\frac{l}{2}-\frac{\nu}{2}}+\left\|\widetilde{u}_{T}-u_{T}\right\|_{2+l}<\frac{1}{2 \lambda^{2}}, \\
& \lambda=\Lambda\left(\beta, a_{i j}, a_{j}, a, k, u\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \widetilde{u}_{0}=\widetilde{g}, \quad \beta \widetilde{g}_{t}=\left(A_{0}+a\right) \widetilde{u}_{0}+\widetilde{f} \text { in case } \mathrm{I} \text { in } \Gamma \times\{0\}, \\
& \omega \cdot \nabla_{x} \widetilde{u}_{0}=\widetilde{g} \text { in case II in } \Gamma \times\{0\}, \\
& \widetilde{u}_{T}=\widetilde{g} \text { in case } \mathrm{I}, \quad \omega \cdot \nabla_{x} \widetilde{u}_{T}=\widetilde{g} \text { in case II in } \Gamma \times\{T\},
\end{aligned}
$$

the problem (22), (23) with f_{0}, u_{0}, g, u u_{T} replaced by $\widetilde{f}_{0}, \widetilde{u}_{0}, \widetilde{g}, \widetilde{u}_{T}$, has a unique solution $(\widetilde{a}, \widetilde{u})$ in the ball

$$
\mathcal{U}=\left\{(\widetilde{a}, \widetilde{u}):\|\widetilde{a}-a\|_{l}+\|\widetilde{u}-u\|_{2+l, 1+\frac{l}{2}} \leq \frac{1}{\lambda}\left(1-\sqrt{1-2 \lambda^{2} D}\right)\right\} .
$$

(iii) If $k \in W_{1}^{1}(0, T), k \geq 0, k^{\prime} \leq 0, a \in \mathcal{A}_{\beta, \theta}^{l}, u_{0} \in C^{2+l}(\Omega)$, $A_{0} u_{0} \in W_{p}^{2-\frac{2}{p}}(\Omega), f \in C^{l, \frac{l}{2}}(Q), f_{t} \in L^{p}(Q), g \in C^{2+l-\nu, 1+\frac{l}{2}-\frac{\nu}{2}}(S)$, $g_{t} \in W_{p}^{2-\nu-\frac{1}{p}, 1-\frac{\nu}{2}-\frac{1}{2 p}}(S)$ with some $p \in(1, \infty)$,

$$
\begin{aligned}
& u_{0}=g, \beta g_{t}+A_{0} u_{0}+a u_{0}=f \text { in case I in } \Gamma \times\{0\}, \\
& \omega \cdot \nabla_{x} u_{0}=g \text { in case II in } \Gamma \times\{0\}, \\
& u_{0} \geq 0, f \geq 0, g \geq 0, f_{t}+k * f_{t}-\theta f \geq 0, g_{t}+k * g_{t}-\theta g \geq 0, \\
& f_{t}+k * f_{t}-\theta f \neq 0 \text { or } g_{t}+k * g_{t}-\theta g \neq 0
\end{aligned}
$$

and

$$
(\theta \beta-a) u_{0} \leq A_{0} u_{0}+f(\cdot, 0)
$$

then the solution u of the direct problem (22) belongs to $C^{2+l, 1+\frac{l}{2}}(Q)$ and satisfies (24).

If, in addition, $f(\cdot, t)=0$ and $g(\cdot, t)=0$ for $t \in\left(0, \delta_{0}\right)$ with some $\delta_{0} \in\left(0, \frac{T}{2}\right), u_{0}=0$ and $g>0$ in $\Gamma \times\{T\}$ in case I, then u satisfies (25), too.

We remark that in case $u_{0}=0$ the assumptions of (iii) do not contain the unknown a, except for the condition $a \in \mathcal{A}_{\beta, \theta}^{l}$.

Results for IP3

IP3 is equivalent to the following problem for (β, u) :

$$
\begin{align*}
& \beta\left(u_{t}+k * u_{t}\right)=A u+f \text { in } Q, \\
& u=u_{0} \text { in } \Omega \times\{0\}, \quad B_{1} u=g \text { in } S, \tag{26}\\
& \quad u=u_{T} \text { in } \Omega \times\{T\} . \tag{27}
\end{align*}
$$

Let us introduce the following set for the coefficients β that depends on $\beta_{0}>0$:

$$
\mathcal{B}_{\beta_{0}}^{l}=\left\{\beta \in C^{l}(\Omega): \inf _{x \in \Omega} \beta(x) \geq \beta_{0}\right\}
$$

and define $\theta_{\beta_{0}}=\max \left\{0 ; \frac{1}{\beta_{0}} \sup _{x \in \Omega} a(x, T)\right\}$.

Theorem 5. Let (6) hold, $a_{i j}, a_{j} \in C^{l}(\Omega), a \in C^{l, \frac{l}{2}}(Q), a_{t} \in L^{p}(Q)$ with some $l \in(0,1), p \in(1, \infty), a_{t} \geq 0$ and $\beta_{0}>0$. Then the following assertions are valid.
(i) If $k \in W_{1}^{1}(0, T), k \geq 0, k^{\prime} \leq 0$ and the problem (26), (27) has the solutions $\left(\beta_{1}, u_{1}\right) \in C^{l}(\Omega) \times C^{2+l, 1+\frac{l}{2}}(Q),\left(\beta_{2}, u_{2}\right) \in \mathcal{B}_{\beta_{0}}^{l} \times C^{2+l, 1+\frac{l}{2}}(Q)$ where $u=u_{1}$ satisfies the conditions

$$
\begin{align*}
& u_{t t} \in L^{p}(\Omega) \text { and } \\
& u_{t}+k * u_{t} \geq 0, \\
& \hat{u}:=\left(u_{t}+k * u_{t}\right)_{t}+k *\left(u_{t}+k * u_{t}\right)_{t}-\theta_{\beta_{0}}\left(u_{t}+k * u_{t}\right) \geq 0, \tag{28}\\
& \text { for any } U \subseteq \Omega \text {, meas } U>0 \text { there holds } \hat{u} \neq 0 \text { in } U \times(0, T),
\end{align*}
$$

then $\beta_{1}=\beta_{2}$ and $u_{1}=u_{2}$.
(ii) If $k \in W_{\frac{2}{2-l}}^{1}(0, T), k \geq 0, k^{\prime} \leq 0$ and the problem (26), (27) has a solution $(\beta, u) \in \mathcal{B}_{\beta_{0}}^{l} \times C^{2+l, 1+\frac{l}{2}}(Q)$ such that u fulfills (28),

$$
\begin{align*}
& u_{t}+k * u_{t} \geq \delta \text { in } \bar{\Omega} \times(T-\delta, T) \text { and } \\
& u_{t}=0 \text { in } \bar{\Omega} \times(0, \delta) \text { with some } \delta \in\left(0, \frac{T}{2}\right), \tag{29}
\end{align*}
$$

then for any $\widetilde{f}, \widetilde{u}_{0}, \widetilde{g}, \widetilde{u}_{T}$ such that $D<\frac{1}{2 \bar{\lambda}^{2}(1+\|k\|)}, \quad \bar{\lambda}=\Lambda\left(\beta, a_{i j}, a_{j}, a, k, u_{t}+k * u_{t}\right),\|k\|=\|k\|_{C[0, T]}$, with D defined in Theorem 4,

$$
\begin{aligned}
& \widetilde{u}_{0}=\widetilde{g}, \beta \widetilde{g}_{t}=A \widetilde{u}_{0}+\widetilde{f} \text { in case } \mathrm{I} \text { in } \Gamma \times\{0\}, \\
& \omega \cdot \nabla_{x} \widetilde{u}_{0}=\widetilde{g} \text { in case II in } \Gamma \times\{0\}, \\
& \widetilde{u}_{T}=\widetilde{g} \text { in case } \mathrm{I}, \quad \omega \cdot \nabla_{x} \widetilde{u}_{T}=\widetilde{g} \text { in case II in } \Gamma \times\{T\},
\end{aligned}
$$

the problem (26), (27) with f_{0}, u_{0}, g, u_{T} replaced by $\widetilde{f}_{0}, \widetilde{u}_{0}, \widetilde{g}, \widetilde{u}_{T}$, has a unique solution $(\widetilde{\beta}, \widetilde{u})$ in the ball

$$
\begin{aligned}
\overline{\mathcal{U}}=\{(\widetilde{\beta}, \widetilde{u}) & :\|\widetilde{\beta}-\beta\|_{l}+\|\widetilde{u}-u\|_{2+l, 1+\frac{l}{2}} \\
& \left.\leq \frac{1}{\bar{\lambda}(1+\|k\|)}\left(1-\sqrt{1-2 \bar{\lambda}^{2}(1+\|k\|) D}\right)\right\}
\end{aligned}
$$

(iii) If $k \in W_{1}^{1}(0, T), k \geq 0, k^{\prime} \leq 0, \beta \in \mathcal{B}_{\beta_{0}}^{l}$, $a_{t}=0, u_{0} \in C^{2+l}(\Omega)$, $A(0) u_{0} \in W_{p}^{2-\frac{2}{p}}(\Omega), f \in C^{l, \frac{l}{2}}(Q), f_{t}, f_{t t} \in L^{p}(Q), f_{t}(\cdot, 0) \in W_{p}^{2-\frac{2}{p}}(\Omega)$, $g \in C^{2+l-\nu, 1+\frac{l}{2}-\frac{\nu}{2}}(S), g_{t}, g_{t t} \in W_{p}^{2-\nu-\frac{1}{p}, 1-\frac{\nu}{2}-\frac{1}{2 p}}(S)$,

$$
r_{f}:=f_{t}+k * f_{t} \geq 0, r_{g}:=g_{t}+k * g_{t} \geq 0,
$$

$$
\hat{r}_{f}:=r_{f, t}+k * r_{f, t}-\theta_{\beta_{0}} r_{f} \geq 0
$$

$$
\hat{r}_{g}:=r_{g, t}+k * r_{g, t}-\theta_{\beta_{0}} r_{g} \geq 0,
$$

$$
\hat{r}_{f} \neq 0 \text { or } \hat{r}_{g} \neq 0,
$$

$$
\begin{aligned}
& u_{0}=g, \beta g_{t}+A_{0} u_{0}+a u_{0}=f \text { in case I in } \Gamma \times\{0\}, \\
& \omega \cdot \nabla_{x} u_{0}=g \text { in case II in } \Gamma \times\{0\}
\end{aligned}
$$

and the relations

$$
\begin{aligned}
& \frac{1}{\beta}\left(A(0) u_{0}+f(\cdot, 0)\right) \in W_{p}^{2}(\Omega), A\left[\frac{1}{\beta}\left(A(0) u_{0}+f(\cdot, 0)\right)\right] \in W_{p}^{2-\frac{2}{p}}(\Omega), \\
& A(0) u_{0}+f(\cdot, 0) \geq 0, \\
& A\left[\frac{1}{\beta}\left(A(0) u_{0}+f(\cdot, 0)\right)\right]-\theta_{\beta_{0}} A(0) u_{0}+f_{t}(\cdot, 0)-\theta_{\beta_{0}} f(\cdot, 0) \geq 0
\end{aligned}
$$

hold, then the solution u of the direct problem (26) belongs to $C^{2+l, 1+\frac{l}{2}}(Q)$ and satisfies (28).

If, in addition,

$$
\begin{aligned}
& f_{t}(\cdot, t)=0, g_{t}(\cdot, t)=0 \text { for } t \in\left(0, \delta_{0}\right) \text { with some } \delta_{0} \in\left(0, \frac{T}{2}\right), \\
& A(0) u_{0}+f(\cdot, 0)=0
\end{aligned}
$$

and $r_{g}>0$ in $\Gamma \times\{T\}$ in case I, then u satisfies (29), too.

We remark that in case $u_{0}=0$ and $f(\cdot, 0)=0$ then the assumptions of (iii) do not contain the unknown β, except for $\beta \in \mathcal{B}_{\beta_{0}}^{l}$.

