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We consider the following parabolic problem (direct problem):

Pus =Au—mxAu+x in Q=Qx(0,7),
u=muy in Qx {0},

Bu=bin S=Tx(0,T)

where €2 C R" — bounded, open with sufficiently smooth boundary T,

B(x), x(x,t), up(x), b(x,t) and m(t) — given functions
and either
Bu=u (case I)

or

Bu(z,t) = w(x) - Vyu(z, t)
— fot m(t — 1)w(x) - Vyu(x, 7)dr (case II)

with w(z) - N(x) > 0, N(x) - outer normal of I" at x. Moreover,

0
A= Zaw 8x8x]+za‘7 a—%Jra(a: 1)

1,7=1 j=1

and * stands for the time convolution, i.e.

vxw — /'v(.—T)w(T)dT.
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We assume the relations
N
— Z aij \i\j > €[A]* for any A € R"  with some €€ (0,00) (6)
ij=1
and
B> Gy >0 with some )€ (0,00) (7)
be valid in ().

Inverse problems:

IP1: Let the source term be of the following form:

x(z,t) = z(z)o(z, t) + xo(z,1). (8)
Given m, 3, a;;, aj, a,up, b, ¢, xo and a function ur(z), z € €,

find z and u so that the direct problem (1), (10), the relation (8) and the
final condition

u = up in Q x{T} (9)
hold.

IP2: Let a; = 0. Given m, 3, a;j, a;, uo, b, x and a function up(x), x € €,

find @ and u so that the direct problem (1), (10) and final condition (9)
hold.

IP3: Given m,a;j, a;,a,up, b, x and a function up(x), v € Q,

find 5 and u so that the direct problem (1), (10) and final conditon (9) hold.



Let U be a finite-dimensional manifold and f, g € L*(U). We write
f>g inU if f(z) > g(z) ae. z €U,

f>ginU ifVU: U CU Je, €R,e, >0: f>g+¢e, inlU.

It is not difficult to prove that

f>g9,f#g inU = 3FU;CU:measU;#0, f>gin Us.



Positivity principle. Sign inertia.

Pus =Au—mxAu+x in Q=Qx(0,7T),
u=1uy in Q x {0},

Bu=0binS=Tx(0,T)

We introduce the resolvent kernel k satisfying the equation

t
k(t) — / m(t — P)k(r)dr = m(t), te (0,T). (10)
0
Denote
f=x+kxx (11)
g=2> in casel,
(12)
g=>b+kx0b in case IL.
Theorem 1. Assume (6), (7), 3, aij,a; € C(Q), a € C(Q) and
ke Who,T), k>0, kK <O0. (13)

Let u € WPHQ) with some p € (1,00) solve the direct problem (1), (10)
and
u0207 9207 fZO

Then the following assertions are valid:
(i) u > 0;

(i) 4f, in addition, 3, a;;,a; € C'(Q), a € Ch2(Q) with some L € (0,1) and
either f #0 or g # 0, then

u(-,T) > 0 in Q in case I and u(-,T) > 0 in Q in case 11,



Sufficient conditions for
ke WHO,T), k>0, kK <o.
in terms of original kernel m are

m € WHO0,T), m>0, m(t)<—m(0)m(t).

N
For instance, the exponential kernels m(t) = > a;e %" satisfy these con-
i=1
ditions provided
Bi > a; > 0.



FExample for the assumption
f=x+kxx>0.

(x is the original source term.)
Let £ >0, k # 0.
Choosing

x=1in @x (0, 7—-0) and xy=—-€e<0 in Qx (T —46,7),
where the numbers € > 0 and 6 > 0 are sufficiently small, so that

T4 t

/0 k(t —71)dT > € <1 + /T5 k(t — T)dT) forany t e (T —9,T)

then we have
f=x+kxx>0.



Sketch of proof of Thm 1 assertion (i).

Pus =Au—mxAu+x in Q=Qx(0,7T),
u=1uy in Q x {0},

Bu=0binS=Tx(0,T)

Apply operator I+kx* to the parabolic equation and the boundary condition
in case II:

ﬁut+k*ut:Au+&+k*X in Q,
f

u=ug in Qx {0},

Biu=g in S.
Here By = I in case I, B; = w - V in case II.

Integrate by parts in the term £ * wy:
Bus + K xu+ k() — kug = Au+ f in Q,
u=wy in Q x {0},
Biu=g in S
Transform the terms with k£ to the right-hand side:
Pug = (A—k(0)u—K xu+kuy+ f in Q,
u=muy in Qx {0},

Biu=g¢g in S



We represent u as the limit

u = lim u"
n—oo

where ©’ = 0 and ©", n = 1,2, ... solve the problems

Bul = (A —k(0)u" — K s u" ' +kug+ f in Q,
u" =wuy in Q x {0},
Biu" =g in S

Assuming f >0, u9>0,¢9>0, k>0, %k <0and u"! >0,
well-known extremum principle for parabolic equations implies u" > 0.

Thus, we have the implication
>0 = " >0.
Since u” = 0, we obtain " >0 forn =1,2,....

This proves
w=limu" > 0.



Results for IP1
[P1 is equivalent to the following problem for (z,u):

Blus+ kxup) = Au+zr + fo in Q,
u=ug in Q x {0},
Biu=g¢g in S,

u = ur in Q x {T'},

where B; = [ in case I, By = w - V in case II, as before, and

r=¢+k*x¢, fo=xo0+k*Xo.

Theorem 2. Let (6), (7) hold, k € W}(0,T), k >0, ¥ <0 and

(14)

(15)

(16)

B,aij,a; € CY(Q), a € Cl’é(Q), a; € LP(Q) with some [ € (0,1),p € (1, 00).

Moreover, let a; > 0, r € C2(Q), 1y € LP(Q),
r>0, ri+k*xr,—0r>0
and for any U C 2, measU > 0, there holds
re+kxry—60r#£0 in U x (0,7).

Here ( T)
a(x
0 = su 7.
vet B@)

If (z,u) € CHQ) x C2H:143(Q) solves (14), (15) and fo, ug, g, ur = 0 then

z2=0,u=0.



To deal with the existence and stability we have to impose additional as-
sumptions on r:

r>6 inQx (T —94,T) with some d € (0,%) and (19)
either r > ¢ in Q x (0,6) (case (1)) or 7 =0 in Q x (0,9) (case (2)).

In case I & (1) it is possible to reformulate IP1 so that the unknown z is
zero at the boundary I'.

Theorem 3.  Let (6), (7) hold and §3,a;;,a; € CY(Q), a € Cl’%(Q),
a; € LP(Q), with some l € (0,1),p € (1,00) and a; > 0.

In addition, let fy € C"2(Q), up € C*(Q), g € C*H"14275(8), up €
C**(Q) and the consistency conditions

uw =g, Bgr=Aug+ fo incasel in T x {0},

w-Vyug=g incasell in T x {0} (20)

up =g imcasel, w-Vyur=g incasell inT x{T}

be satisfied.
Moreover, let r satisfy the assumptions listed in Theorem 2 and (19) and

keWl (0,T), k>0, k <0.

2—1

In case 1 & (1) we assume Aup =0 in T x {T'}, too.

Then the inverse problem (14), (15) has a unique solution (z,u) in the
space C1(Q) x C2142(Q) and in case I & (1) there holds z = 0 in T'. The
solution satisfies the following stability estimate:

2l + Tleellpgr14 8

(21)
< A8, aigra5,08,7) {1 ol + luollost + 11gllari g + Nurllass}

with some constant A depending on the quantities shown in brackets.

Here v is the order of the boundary operator B, i.e v = 0 in case I and
v =1 in case II.
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Results for I1P2

[P2 is equivalent to the following problem for (a,u):
Blus + kxu;) = Agu+au+ f in Q,
u=1uy in 2 x {0}, Biju=g in S,
u=ur in Qx {T}, (23)

(22)

where f, By and g are given as before and

n n
A()U = .Zl aijuxixj + 21 ajuxj.
L]= J=

Let us define the following set of the coefficients a that depends on # € R:

AZM = {acC(Q) : ilelg gg% < 0}.
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Theorem 4. Let (6), (7) hold, 3,a;j,a; € CY(Q) with some | € (0,1) and
6 € R. Then the following assertions are valid.

(i) If k € WE0,T), k > 0, k¥ < 0 and the problem (22), (23) has the
solutions (ay,u1) € CH(2) x C*HAT2(Q), (as, us) € AL g % CTHIT2(Q),
where u = uy satisfies the conditions

’LLZO, ut—l—k*ut—euzo,
for any U C Q, measU > 0 (24)
there holds w; + kxu, —0u #0 in U x (0,7,
then a1 = as and u; = us.
(i) If ke WL (0,T), k>0, ¥ <0 and (22), (23) has a solution (a,u) €
2—1
Al g X C2H143(Q) such that u fulfills (24),
u>d inQx (T—6T) and
T

n ‘ (25)
u=0 i Q x(0,5) with some 6 € (0, 5);

then for any f, U, g, ur such that

rl ~ ~ - 1
D= 1f = fllig + o = wollzvi + 119 = gllai-ies—y + llur —urllzn < 535,

)‘:A(ﬁ7aij7ajaa’7k7u)7
where
W=7, BG=(Ag+a)ug+ f incasel inT x {0},

w-Vyug=9 in casell in T x {0},
ur=9 incasel, w-Vyur=9g incasell inT x {T},

the problem (22), (23) with fo,ug, g, ur replaced by %,ﬂo,ﬁ, ur, has a
unique solution (a,w) in the ball

- - - 1
U = {@a) : fa—al+ 17—l < 5 (1= VI-222D) }.
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GgeW, 7 %(S) with some p € (1, 00),
uy =g, Bgr + Agug + aug = f in case I in T x {0},
w-Vyug=g in case Il inT x {0},
up >0, f>20,9>0, fy+kx*fi—0f>0, gg+kx*g —0g=>0,
fetkxfi=0f#0 or g+kxg —0g#0

and

(08 — a)uy < Agug + f(-,0)

then the solution u of the direct problem (22) belongs to C*H1+2(Q)
and satisfies (24).

If, in addition, f(-,t) =0 and g(-,t) = 0 fort € (0,0¢) with some
5 € (0,%), up =0 and g > 0 in T x {T} in case I, then u satisfies
(25), too.

We remark that in case ug = 0 the assumptions of (iii) do not contain the
unknown a, except for the condition a € Alﬁﬁ.
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Results for IP3

IP3 is equivalent to the following problem for (3, u):
Blup +k*xu) =Au+ f in Q,
u=1uy in 2 x {0}, Biju=g in S,
u=ur in Qx{T}. (27)

(26)

Let us introduce the following set for the coefficients § that depends on
50 > 0:
By, = {8€C(Q) : inf B(z) > fo}
xe

and define 05, = maX{O; % ilelga(% T)}

Theorem 5. Let (6) hold, a;j,a; € C(Q), a € C*2(Q), a; € LP(Q)
with some 1 € (0,1), p € (1,00), a; > 0 and [y > 0. Then the following
assertions are valid.

(i) If k € W(0,T), k > 0, ¥ < 0 and the problem (26), (27) has the
solutions (0, u;) € C1(Q) x C2H2(Q), (B, ug) € B, x CHHL3(Q)
where u = uy satisfies the conditions

uy € LP(Q?) and

up+ kxu >0,

U= (u +kxu)e +k* (u+ kxup)y — O, (wp + kxup) >0,
for any U C Q, measU > 0 there holds u # 0 in U x (0,7T),

(28)

then (31 = By and uy = us.
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(i) If k € WL (0,7), k > 0, k¥ < 0 and the problem (26), (27) has a
solution (3,u) € BY x C*H+5(Q) such that u fulfills (28),

w+k*xu >0 inQx (T —6,T) and

E 29
up =0 in Q x (0,6) with some § € (0,%), (29)

then for any ]7, ug, g, ur such that
1
D < —
2X2(1 + [|K11)
with D defined in Theorem 4,

; 5‘ — A(ﬁaaijaajuaakyut + k *'U/t), HkH = Hk‘HC[O,T})

Uo=3, BG = Atg+ f incasel inT x {0},
w-Vyug=9g in caseIl inT x {0},
up =9 incasel, w-Vyupr=9¢ incasell inT x{T},

the problem (26), (27) with fo,ug, g, ur replaced by fo, 70, 3, Ut has a

~

unique solution (3,u) in the ball
= { (B 18— Bll+ 15 = ullyy 1o
1 < -
<——— (1 —y/1 =221+ Hk:H)D) .
AL+ |[£]]) \/ }
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(iii) If k € WO, T), k > 0,k <0, 3 € By, a; =0, up € C**'(),
22 2-2
A(O)uo € W, "(Q), f € C3(Q), fu, fu € L'(Q), fi(-,0) € W "(Q),

v 2—y—11-¥—
ge C2+l—u71+é—§(5)7 G, gu € W, Vot T2 2p(5)’

rri=fi+tkxf; >0, ryi =g +kxg >0,
ff = Tfi-i-k*?”f’t—eg(]?"f > 0,

g =Trgs T k*7rgs =057 20,

7r#0 ort, #0,

wy =g, Bgr + Agug + aug = f in case I in T x {0},
w-Vyug=g incasell inT x {0}

and the relations

%(A(O)Uo + f(-,0)) € WH(Q), A[%M(omo +1e.op]ews (@),

A(0)ug + f(-,0) = 0.

A [%(Am)uo + 1(0)| =04, A(O0)uo + i, 0) = 04, (,0) > 0

hold, then the solution u of the direct problem (26) belongs to C2H-1+2(Q)
and satisfies (28).

If, in addition,

fi(-;t) =0, g:(-,t) =0 fort € (0,8) with some §y € (0, %),

and ry >0 in I' x {T'} in case I, then u satisfies (29), too.

We remark that in case 1o = 0 and f(-,0) = 0 then the assumptions of (iii)
do not contain the unknown (3, except for 3 € Blﬂo.
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