Some uniqueness results for parameter identification in nonlinear hyperbolic PDEs

Barbara Kaltenbacher
University of Stuttgart

joint work with
Alfredo Lorenzi, Università degli Studi di Milano
Gen Nakamura, Hokkaido University, Michiyuki Watanabe, Tokyo University of Science

Overview

- Motivation: reversibly nonlinear material behaviour in piezoelectricity
- Identifiability by reformulation as a Volterra integral equation
- Identifiability by closeness to an identifiable problem
- Identifiability by ε-expansion

Piezoelectric Transducers

Direct effect: apply mechanical force \longrightarrow measure electric voltage
Indirect effect: impress electric voltage \longrightarrow observe mechanical displacement Application Areas:

- Ultrasound (medical imaging \& therapy)
- Force- and acceleration Sensors
- Actor injection valves (common-rail Diesel engines)
- SAW (surface-acoustic-wave) sensors

Piezoelectric PDEs:

$$
\begin{aligned}
& \rho \frac{\partial^{2} \vec{d}}{\partial t^{2}}-D I V\left(\mathbf{c}^{E} D I V^{T} \vec{d}+\mathbf{e}^{T} \operatorname{grad} \phi\right)=0 \\
&-\operatorname{in} \Omega \\
&-\operatorname{div}\left(\mathbf{e} D I V^{T} \vec{d}-\varepsilon^{S} \operatorname{grad} \phi\right)=0 \\
& \text { in } \Omega
\end{aligned}
$$

Boundary conditions:

$$
\begin{array}{lll}
N^{T} \sigma & =0 & \\
\text { on } \partial \Omega \\
\phi & =0 & \\
\text { on } \Gamma_{g} \\
\phi & =\phi^{e} & \\
\text { on } \Gamma_{e} \\
\vec{D} \cdot \vec{n} & =0 & \\
\text { on } \Gamma
\end{array}
$$

$$
\begin{array}{ll}
\Gamma_{e} \ldots \text { loaded electrode } & \Gamma_{g} \ldots \text { grounded electrode } \\
\Gamma=\partial \Omega \backslash\left(\Gamma_{g} \cup \Gamma_{e}\right) & \phi^{e} \ldots \text { impressend voltage }
\end{array}
$$

Well-posedness:
[Miara '01], [Akamatsu \& Nakamura '02], [Sändig\& Geis \& Mishuris '04], [Nicaise \& Mercier, '06], [B.K. \& Lahmer \& Mohr, '06] Simulation of piezoelectric transducers requires knowledge of material tensors $\mathbf{c}^{E}, \mathbf{e}, \varepsilon^{S}$

Nonlinear Material Behaviour: Higher Harmonics

Current response for harmonic voltage excitation (electric field $E \sim 200 \mathrm{KV} / \mathrm{m}$):

- current measurement
... voltage excitation (scaled)

Fourier transformed:

Nonlinear Piezoelectric PDEs

Large excitations (actuator applications):

$$
\begin{aligned}
\rho \frac{\partial^{2} \vec{d}}{\partial t^{2}}-D I V\left(\mathbf{c}^{E}(S) D I V^{T} \vec{d}+\mathbf{e}(S, E)^{T} \operatorname{grad} \phi\right) & =0 \\
-\operatorname{div}\left(\mathbf{e}(S, E) D I V^{T} \vec{d}-\varepsilon^{S}(E) \operatorname{grad} \phi\right) & =0
\end{aligned}
$$

$$
S=\left|D I V^{T} \vec{d}\right| \quad E=|\operatorname{grad} \phi|
$$

Identification of the (typically smooth) curves $\mathbf{c}^{E}, \mathbf{e}, \varepsilon^{S}$ is an infinite dimensional (unstable) problem.

Appropriate measurement setup
\leadsto elimination of ϕ, nonlinearity of only one curve, reduction to one space dimension

Identifiability: A Model Problem

PDE:

boundary conditions:
initial conditions:
measurements:
searched for parameter curve: $\quad \lambda \rightarrow c(\lambda)$

Well-posedness of forward problem:

$c \in C^{3}, c(0)=0, c^{\prime} \geq \underline{\gamma}>0$, initial and boundary data smooth and compatible \Rightarrow existence and uniqueness of $C^{2,3}$ solution u
\Rightarrow Exact data $m=u(\cdot, 1)$ are C^{2}-smooth.

Instability

$$
\begin{array}{ll}
\text { PDE: } & u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=0 \quad \text { in }(0, T) \times(0,1) \\
\text { boundary conditions: } & u(\cdot, 0)=0 \quad c\left(u_{x}(\cdot, 1)\right)=g \\
\text { initial conditions: } & u(0, \cdot)=u_{0} \quad u_{t}(0, \cdots)=u_{1} \\
\text { measurements: } & m=u(\cdot, 1) \\
\text { searched for parameter curve: } & \lambda \rightarrow c(\lambda)
\end{array}
$$

Exact data $m=u(\cdot, 1)$ are C^{2}-smooth.
Measured data are only L^{∞}-smooth (pointwise measurement error - derivatives cannot be measured)
\Rightarrow III-posedness of identification problem (instability) \rightarrow regularization methods Stability for the inverse problem in weaker norms still possible.

Uniqueness

PDE:
boundary conditions:
initial conditions:

$$
\begin{aligned}
& u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=0 \quad \text { in }(0, T) \times(0,1) \\
& u(\cdot, 0)=0 \\
& c\left(u_{x}(\cdot, 1)\right)=g \\
& u(0, \cdot)=u_{0} \\
& m=u(\cdot, 1)
\end{aligned}
$$

measurements:
searched for parameter curve: $\quad \lambda \rightarrow c(\lambda)$

If for two curves \widetilde{c}, c the measurements of the corresponding PDE solutions \widetilde{u}, u on the boundary $\widetilde{m}=\widetilde{u}(1, \cdot), m=u(1, \cdot)$ coincide, then \widetilde{c} and c must be identical

Uniqueness ?

$$
\begin{array}{ll}
\text { PDE: } & u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=0 \quad \text { in }(0, T) \times(0,1) \\
\text { boundary conditions: } & u(\cdot, 0)=0 \quad c\left(u_{x}(\cdot, 1)\right)=g \\
\text { initial conditions: } & u(0, \cdot)=u_{0} \quad u_{t}(0, \cdots)=u_{1} \\
\text { measurements: } & m=u(\cdot, 1) \\
\text { searched for parameter curve: } & \lambda \rightarrow c(\lambda)
\end{array}
$$

If for two curves \widetilde{c}, c the measurements of the corresponding PDE solutions \widetilde{u}, u on the boundary $\widetilde{m}=\widetilde{u}(1, \cdot), m=u(1, \cdot)$ coincide, must \widetilde{c} and c be identical?

Identifiability by reformulation as a Volterra integral equation (I)
$v:=\widetilde{u}-u$ solves $\quad \begin{array}{rl}v_{t t}-\left(a v_{x}+(\widetilde{c}-c)\left(u_{x}\right)\right)_{x}=0 \text { in }(0, T) \times(0,1) \\ v(\cdot, 0)=0 & a(\cdot, 1) v_{x}(\cdot, 1)+(\widetilde{c}-c)\left(u_{x}(\cdot, 1)\right)=0 \\ v(0, \cdot)=0 & v_{t}(0, \cdot)=0\end{array}$
where $a(t, x)=\int_{0}^{1} \tilde{c}^{\prime}\left(\widetilde{u}_{x}(t, x)+\theta\left(u_{x}(t, x)-\widetilde{u}_{x}(t, x)\right)\right) d \theta$
Proposition [BK '04] $a(t, x) \equiv \bar{a}$,
$g(0)=0, g^{\prime}>0, T$ and $|\widetilde{c}-c|_{C^{3}}$ sufficiently small.

$$
\left| \pm \sqrt{\bar{a}} u_{x x}(t, x)+u_{x t}(t, x)\right| \geq \kappa>0 \quad \text { in }(0, T) \times(0,1)
$$

Then, with $\left.\bar{\lambda}:=c^{-1}(g(T))\right)>0$,

$$
\|\widetilde{c}-c\|_{L^{2}(0, \bar{\lambda})} \leq C\|v(\cdot, 1)\|_{H^{1}(0, T)}
$$

Identifiability by reformulation as a Volterra integral equation (II)

$v:=\widetilde{u}-u$ solves \quad| $v_{t t}-\left(a v_{x}+(\widetilde{c}-c)\left(u_{x}\right)\right)_{x}=0$ in $(0, T) \times(0,1)$ |
| :---: |
| $v(\cdot, 0)=0$ |
| $v(0, \cdot)=0$ |
| $v(\cdot, 1) v_{x}(\cdot, 1)+(\widetilde{c}-c)\left(u_{x}(\cdot, 1)\right)=0$ |

where $a(t, x)=\int_{0}^{1} \tilde{c}^{\prime}\left(\widetilde{u}_{x}(t, x)+\theta\left(u_{x}(t, x)-\widetilde{u}_{x}(t, x)\right)\right) d \theta$
Conjecture [BK '04] $g(0)=0, g^{\prime}>0, T$ and $|\widetilde{c}-c|_{C^{3}}$ sufficiently small.

$$
\left|\frac{d}{d t} u_{x}(t, x(t))\right| \geq \kappa>0 \quad \text { in }(0, T) \times(0,1)
$$

Then with $\left.\bar{\lambda}:=c^{-1}(g(T))\right)>0$,

$$
\|c-\widetilde{c}\|_{L^{2}(0, \bar{\lambda})} \leq C\|m-\widetilde{m}\|_{H^{1}(0, T)}
$$

Idea of Proof: integrate along characteristics $x(t) \rightarrow$ Volterra integral equation of the first kind. (cf. [lsakov, 1998] for space dependent coefficients)

Identifiability by closeness to an identifiable problem (I)

$$
\begin{array}{ll}
\text { PDE: } & u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=f \quad \text { in }(0, T) \times(0,1) \\
\text { boundary conditions: } & u(\cdot, 0)=m_{0} \quad u(\cdot, 1)=m_{1} \\
\text { initial conditions: } & u(0, \cdot)=u_{0} \quad u_{t}(0, \cdots)=u_{1} \\
\text { measurements: } & c\left(u_{x}(t, 1)\right)=g \\
\text { searched for parameter curve: } & \lambda \rightarrow c(\lambda)
\end{array}
$$

If we would know $u_{x}(t, 1)$ and if $t \mapsto u_{x}(1, t)$ strictly monotone, we could identify c on $\left\{u_{x}(1, t): t \in(0, T)\right\}$ directly from the measurements.

Identifiability by closeness to an identifiable problem (II)

$$
\begin{array}{ll}
\text { PDE: } & u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=f \quad \text { in }(0, T) \times(0,1) \\
\text { boundary conditions: } & u(\cdot, 0)=m_{0} \quad u(\cdot, 1)=m_{1} \\
\text { initial conditions: } & u(0, \cdot)=u_{0} \quad u_{t}(0, \cdots)=u_{1} \\
\text { measurements: } & c\left(u_{x}(t, 1)\right)=g \\
\text { searched for parameter curve: } & \lambda \rightarrow c(\lambda)
\end{array}
$$

Auxiliary problem: \begin{tabular}{l}

$s_{t t}-\left(\bar{c} s_{x}\right)_{x}=f_{x}$ in $(0, T) \times(0,1)$
$\left(\bar{c} s_{x}\right)(\cdot, j)=m_{j}^{\prime \prime}(t)-f(\cdot, j) \quad, j=0,1$,
$s(0, \cdot)=u_{0}^{\prime} \quad s_{t}(0, \cdot)=u_{1}^{\prime}$

\hline
\end{tabular}

where $\bar{c}(x)=c_{0}^{\prime}\left(u_{0}^{\prime}(x)\right), \quad c_{0}$ close to \tilde{c}

$$
\Rightarrow \quad s(1, t) \approx u_{x}(1, t) \text { for } t \text { small }
$$

Identifiability by closeness to an identifiable problem (III)

$$
\mathcal{D} \subseteq C^{3}(\mathbf{R}) \text { such that } \forall \widetilde{c}, c \in \mathcal{D}:\|\widetilde{c}-c\|_{W^{2, \infty}} \leq K\|\widetilde{c}-c\|_{L^{\infty}}
$$

e.g., c, \tilde{c} bandlimited with bound on bandwitdth.

Theorem([B.K.\&Lorenzi'07])
Let $t \mapsto s(t, 1)$ be continuous and strictly monotone and $\quad u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=f$ assume that T and $\left|c^{\prime}-c_{0}^{\prime}\right|_{L^{\infty}}$ are sufficiently small. $+\mathrm{BC}+\mathrm{IC}$
Then under some a priori regularity assumptions on u
$\left.\left(u \in W^{1,1}\left(0, T ; W^{2,4}(\Omega)\right)\right) \cap W^{1, \infty}\left(0, T ; W^{1,4}(\Omega)\right)\right)$
$c\left(u_{x}(\cdot, 1)\right)=g$
$s(\cdot, 1) \approx u_{x}(\cdot, 1)$
$\|c-\widetilde{c}\|_{L^{\infty}} \leq C\left\{\left\|d_{0}-\widetilde{d}_{0}\right\|_{H^{2}}+\left\|d_{1}-\widetilde{d}_{1}\right\|_{H^{1}}+\|f-\widetilde{f}\|_{W^{1,1}\left(0, T ; L^{2}\right)}+\|g-\widetilde{g}\|_{L^{\infty}}\right\}$.
holds for all $\widetilde{c}, c \in \mathcal{D}$.
Idea: identifiability criterion on initial data, closeness for short times.
Extendable to 3-d anisotropic PDE for finite dimensional c, [BK\&Lorenzi'07]

Identifiability by closeness to an identifiable problem (IV)

3-d anisotropic PDE, finite dimensional $c: \quad \underline{c}(y)=\sum_{k=1}^{n} \alpha_{k} \nabla_{y} c_{k}(y)$

$$
\begin{array}{ll}
\text { PDE: } & u_{t t}-\operatorname{div}_{x}\left[\underline{c}\left(\nabla_{x} u\right)\right]=f, \quad \text { in }(0, T) \times \Omega \\
\text { boundary conditions: } & u=0 \text { on } \partial \Omega \\
\text { initial conditions: } & u(0, \cdot)=u_{0} \quad u_{t}(0, \cdots)=u_{1} \\
\text { measurements: } & \int_{\partial \Omega} \varphi_{j} \nu \cdot \underline{c}\left(\nabla_{x} u\left(T_{j}, \cdot\right)\right) d \Gamma=\delta_{j}, \quad j=1, \ldots n \\
\text { searched for coefficients: } & \alpha_{1}, \ldots, \alpha_{n}
\end{array}
$$

Theorem $\varphi_{j} \in\left(L^{p}(\partial \Omega)\right)^{*}, T$ sufficiently small, $\Omega \subseteq \mathbb{R}^{d}$ a C^{2} domain

$$
\operatorname{det} W \neq 0 \quad \text { where } W_{j k}=\int_{\partial \Omega} \varphi_{j} \nu \cdot \nabla_{y} c_{k}\left(\nabla_{x} u_{0}\right) d \Gamma
$$

Then under some a priori regularity assumptions on $u\left(u \in W^{1, \infty}\left(0, T ; W^{2, \infty}(\Omega)\right)\right)$
$\|\alpha-\widetilde{\alpha}\|_{l^{\infty}} \leq C\left\{\left\|u_{0}-\widetilde{u}_{0}\right\|_{H^{2}}+\left\|u_{1}-\widetilde{u}_{1}\right\|_{H^{1}}+\|f-\widetilde{f}\|_{W^{1,1}\left(0, T ; L^{2}\right)}+\|\delta-\widetilde{\delta}\|_{l^{\infty}}\right\}$.

Identifiability by ε-expansion (I)

$$
\begin{array}{ll}
\text { PDE: } & u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=0 \quad \text { in }(0, T) \times(0,1) \\
\text { boundary conditions: } & u(\cdot, 0)=\varepsilon f \quad u(\cdot, 1)=0 \\
\text { initial conditions: } & u(0, \cdot)=0 \quad u_{t}(0, \cdots)=0 \\
\text { measurements: } & c\left(u_{x}(\cdot, 1)\right)=g \\
\text { searched for parameter curve: } & \lambda \rightarrow c(\lambda)
\end{array}
$$

Polynomial $c \Rightarrow \varepsilon$ - expansion of u
Do the same excitation f at different intensities $\varepsilon f, \quad \varepsilon=\varepsilon_{1}, \ldots, \varepsilon_{J}$ \leadsto identify polynomial coefficients of c.

Identifiability by ε-expansion (II)

Theorem ([Nakamura\&Watanabe'07, B.K.\&Nakamura\&Watanabe'08])

$$
c(\lambda)=\sum_{i=1}^{J} \gamma_{i} \lambda^{i}+R \quad\left|R^{(p)}(\lambda)\right| \leq C|\lambda|^{J+1-p}
$$

$f \in C^{J+1}(0, T)$, supp $f \subset(0, T)$.
Then for $\varepsilon \leq \varepsilon_{0}$ suff. small there exists a solution $u \in \bigcap_{j=0}^{J+1} C^{j}\left(0, T ; H^{J+1-j}(\Omega)\right)$ and

$$
u=\sum_{j=1}^{J} \varepsilon^{j} u_{j}(t, x)+O\left(\varepsilon^{J+1}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

$$
\begin{aligned}
& \begin{array}{l}
u_{1 t t}-\left(\gamma_{1} u_{1 x}\right)_{x}=0 \\
u_{1}(\cdot, 0)=f, u_{1}(\cdot, 1)=0 \\
u_{1}(0, \cdot)=0, u_{1 t}(0, \cdots)=0
\end{array} \\
& P_{j}\left(\lambda_{1}, \ldots, \lambda_{j-1}\right)=\sum_{i=1}^{j} \gamma_{i} \sum_{\mathbf{i} \in \mathcal{I}(j-1, i, j)}
\end{aligned} \begin{gathered}
u_{j_{t t}}-\left(\gamma_{1} u_{j_{x}}\right)_{x}=\left(P_{j}\left(u_{1 x}, \ldots, u_{j-1}\right)_{x}\right. \\
u_{j}(\cdot, 0)=0, u_{j}(\cdot, 1)=0 \\
u_{j}(0, \cdot)=0, u_{j_{t}}(0, \cdots)=0
\end{gathered}
$$

Identifiability by ε-expansion (II)

Theorem ([Nakamura\&Watanabe'07, B.K.\&Nakamura\&Watanabe'08])

$$
c(\lambda)=\sum_{i=1}^{J} \gamma_{j} \lambda^{j}+R \quad\left|R^{(p)}(\lambda)\right| \leq C|\lambda|^{J+1-p}
$$

$f \in C^{J+1}(0, T), \operatorname{supp} f \subset(0, T)$.
Then for $\varepsilon \leq \varepsilon_{0}$ suff. small there exists a solution $u \in \bigcap_{j=0}^{J+1} C^{j}\left(0, T ; H^{J+1-j}(\Omega)\right)$ and

$$
u=\sum_{j=1}^{J} \varepsilon^{j} u_{j}(t, x)+O\left(\varepsilon^{J+1}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

$$
\begin{array}{l||l}
u_{1 t t}-\left(\gamma_{1} u_{1 x}\right)_{x}=0 & u_{j_{t t}}-\left(\gamma_{1} u_{j_{x}}\right)_{x}=\left(P_{j}\left(u_{1 x}, \ldots, u_{j-1_{x}}\right)_{x}\right. \\
u_{1}(\cdot, 0)=f, u_{1}(\cdot, 1)=0 & u_{j}(\cdot, 0)=0, u_{j}(\cdot, 1)=0 \\
u_{1}(0, \cdot)=0, u_{1 t}(0, \cdots)=0 & u_{j}(0, \cdot)=0, u_{j_{t}}(0, \cdots)=0 \\
\hline
\end{array}
$$

extendable to space-dependent coefficients $c=c(x, \lambda)$

Identifiability by ε-expansion (III)

$$
\begin{aligned}
& u_{t t}-\left(c\left(u_{x}\right)\right)_{x}=0 \quad \text { in }(0, T) \times(0,1) \\
& u(\cdot, 0)=\varepsilon f \quad u(\cdot, 1)=0 \\
& u(0, \cdot)=0 \quad u_{t}(0, \cdots)=0
\end{aligned}
$$

excitations $\varepsilon_{k} f, k=1, \ldots J$
\leadsto solutions $u^{\varepsilon_{k}}, k=1, \ldots J$
\leadsto measurements $c\left(u_{x}^{\varepsilon_{k}}(\cdot, 1)\right)=g^{\varepsilon_{k}}$

Theorem ([B.K.\&Nakamura\&Watanabe'08])

$$
c(\lambda)=\sum_{i=1}^{J} \gamma_{j} \lambda^{j}+R \quad\left|R^{(p)}(\lambda)\right| \leq C|\lambda|^{J+1-p}
$$

$f \in C^{J+1}(0, T), \operatorname{supp} f \subset(0, T), \varepsilon_{k}=2^{k-1} \varepsilon$
Then γ_{j} can be reconstructed up to an error $O\left(\varepsilon^{J+1-j}\right), \quad j=1, \ldots J$ from measurements $g^{\varepsilon_{k}} \quad k=1, \ldots J$.

Idea of proof: Multinomial Theorem $\Rightarrow g^{\varepsilon_{k}}(t)=\sum_{j=1}^{J} \Gamma_{j}\left(\gamma_{1}, \ldots, \gamma_{j} ; t\right) \varepsilon_{k}^{j}+O\left(\varepsilon^{J+1}\right)$ identify Γ_{j} by solving Vandermonde system; identify sucessively γ_{j} from $\Gamma_{j}, j=1, \ldots J$

Hysteresis in Piezoelectricity

Measured polarization and strain at large electric field excitation $(E \sim 2 M V / m)$:

Hysteresis

input:

output:

Hysteresis

input:
$\downarrow / \rightarrow_{\mathrm{t}}$
output:

Hysteresis

input:

- magnetics
- piezoelectricity
- plasticity
- . . .
* memory
* Volterra property
* rate independence

Krasnoselksii-Pokrovskii '83, Mayergoyz '91, Visintin '94, Krejčí '96, Brokate-Sprekels '96

A Simple Example: The Relay

$$
\begin{aligned}
\mathcal{R}_{\beta, \alpha}[v](t) & =w(t) \\
& =\left\{\begin{array}{ll}
+1 & \text { if } v(t)>\alpha \text { or }\left(w\left(t_{i}\right)=+1 \wedge v(t)>\beta\right) \\
-1 & \text { if } v(t)<\beta \text { or }\left(w\left(t_{i}\right)=-1 \wedge v(t)<\alpha\right)
\end{array} \quad t \in\left[t_{i}, t_{i+1}\right]\right.
\end{aligned}
$$

A General Hysteresis Model: The Preisach Operator

weighted superposition of relays with
Preisach weight function \wp defined on the
Preisach plane $S=S^{+} \cup S^{-}$:

$$
\begin{aligned}
& \mathcal{P}[v](t)=\iint_{\alpha, \beta \in S} \wp(\beta, \alpha) \mathcal{R}_{\beta, \alpha}[v](t) d(\alpha, \beta) \\
& \quad=\iint_{\alpha, \beta \in S^{+}(t)} \wp(\beta, \alpha) d(\alpha, \beta)-\iint_{\alpha, \beta \in S^{-}(t)} \wp(\beta, \alpha) d(\alpha, \beta)
\end{aligned}
$$

Hysteresis Identification from Input-Output model

Given input $(v(t))_{t \in[0, T]}$ measure output $(w(t))_{t \in[0, T]}=(\mathcal{P}[v](t))_{t \in[0, T]}$.
Identify \mathcal{P} (i.e., \wp) from $\mathcal{P}[v](t)=\iint_{\alpha, \beta \in S} \wp(\beta, \alpha) \mathcal{R}_{\beta, \alpha}[v](t) d(\alpha, \beta)=w(t)$ \leadsto linear integral equation.
Nonuniqueness, since $v: \underbrace{[0, T]}_{\subset \mathbb{R}^{1}} \rightarrow \mathbb{R}$ but $\wp: \underbrace{S}_{\subset \mathbb{R}^{2}} \rightarrow \mathbb{R}$!

yields \mathcal{E}
(with $\wp=\partial_{1} \partial_{2} \mathcal{E}$)
on the lines \mid and in S :

\sim identifiability from $\Lambda^{\mathcal{P}}:\left\{v^{n}\right\}_{n \in \mathbb{N}} \mapsto\left\{\mathcal{P}\left[v^{n}\right]\right\}_{n \in \mathbb{N}}$ with
$v^{n}=v^{\overrightarrow{\alpha^{n}} \overrightarrow{\beta^{n}}}$ and $\overrightarrow{\alpha^{n}}=\overrightarrow{\beta^{n}}=\left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right)$ [Hoffmann\&Meyer '89]

Hysteresis in the Piezoelectric PDEs

1-d Piezoelectric PDEs:

$$
\begin{gathered}
\rho d_{t t}-\left(c^{E} d_{x}+e(P) \phi_{x}+S(P)\right)_{x}=0 \\
\left(e(P) d_{x}-\varepsilon_{0}^{S} \phi_{x}-P\right)_{x}=0 \\
P=\tilde{\mathcal{P}}\left[-\phi_{x}\right]
\end{gathered}
$$

d. . . mech. displacement
ϕ. . . electric potential
S. . . irreversible strain
P... irreversible polarization
ρ. . . mass density
c^{E}. . . elastic coefficient
$\varepsilon^{S} \ldots$ dielectric coeff.
e. . coupling coeff.
elimination of ϕ :

$$
\rho d_{t t}-\mathcal{P}\left[d_{x}\right]_{x}=0 \quad+\text { inhom. BC }
$$

\leadsto hyperbolic PDE with hysteresis; well-posedness: [Krejčí'93]
switching of electric dipoles \rightarrow Preisach model

Conclusions and Outlook

- Motivation: Piezoelectricity
\leadsto parameter identification in nonlinear hyperbolic PDE
- identifiability: three different approaches
\rightarrow identifiability of hysteresis operators in hyperbolic PDEs

