
Direct, Inverse and Control Problems for PDE's, Cortona, September 22-26, 2008

Well posedness of �nite difference
schemes for a singular diffusion
problem with a free boundary

Gabriela Marinoschi

Institute of Mathematical Statistics
and Applied Mathematics,
Bucharest, Romania



Well posedness of �nite difference schemes for a singular diffusion problem with a free boundary 2

1 Introduction
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Nonlinear diffusion equation with a transport term

@�

@t
����(�) +r �K(�) 3 f in Q = (0; T )� 
;

�(t; x) = �0 in 
; (bvp)

(K(�)�r��(�)) � � � ���(�) 3 f� on � = (0; T )� �;


 � RN open, bounded, � = @
 smooth, � unit normal vector to �; T �nite

K = (Ki)i=1;:::;N :
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In this model

�� : R! R is multivalued

��(r) =

8<:
R r
0 �(�)d�; if r < �s;
[K�

s ;+1); if r = �s;
?; if r > �s;

s

Ks

Direct, Inverse and Control Problems for PDE's, Cortona, September 22-26, 2008

LAP
Highlight

LAP
Highlight



Well posedness of �nite difference schemes for a singular diffusion problem with a free boundary 5

I � is the diffusion coef�cient

� : (�1; �s)! R continuous

Nondegenerate case Degenerate case

�(r) > 0 �(r) � 0
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I � is the diffusion coef�cient

� : (�1; �s)! R continuous

Nondegenerate case Degenerate case

�(r) > 0 �(r) � 0

lim
r%�s

�(r) = +1

lim
r%�s

Z r

0

�(�)d� = K�
s :
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(K(�)�r��(�)) � � � ���(�) 3 f� on � = (0; T )� �;

� : �! [�m; �M ]

is continuous and it is positive at least on a nonzero measure subset of �:
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The nondegenerate case withK a general nonlinear Lipschitz function having a nonzero
component only along Ox3 was treated (G.M., 2005, 2006) in relation with the 3D-
model of water in�ltration in soils.

d�

dt
(t) + A�(t) 3 f (t); a.e. t 2 (0; T );

�(0) = �0:

G. Marinoschi (2006). Functional Approach to Nonlinear Models of Water Flow in Soils. Mathematical Modelling: Theory and Applications, volume 21, Springer.
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The nondegenerate case withK a general nonlinear Lipschitz function having a nonzero
component only along Ox3 was treated (G.M., 2005, 2006) in relation with the 3D-
model of water in�ltration in soils.

d�"
dt
(t) + A"�(t) 3 f (t); a.e. t 2 (0; T );

�"(0) = �0:
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For numerical purposes the method can have no great ef�ciency due to the fact that

�" blows up as "! 0:

Direct, Inverse and Control Problems for PDE's, Cortona, September 22-26, 2008



Well posedness of �nite difference schemes for a singular diffusion problem with a free boundary 12

Purpose of this work:

� Propose time discretization schemes for both
� the nondegenerate case (�(r) > 0)
� the degenerate case (�(r) � 0)

� Study existence and stability of the discretized schemes

� Convergence of the discretized solutions.
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Functional framework

V = H1(
) k kV =
�R


 jr (x)j
2 dx +

R
� �(x) j (x)j

2 d�
�1=2

; 8 2 V

V 0 the dual of V (�; �)V 0 =


�; A�1� �

�
V 0;V

; 8 �; � 2 V 0

A� : V ! V 0

hA� ; �iV 0;V =
R

r � r�dx +

R
� �(x) �d�; 8 ; � 2 V:
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The abstract Cauchy problem

d�

dt
(t) + A�(t) 3 g(t); a.e. t 2 (0; T ); (OP )

�(0) = �0:

where

g = f + f��:
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f�� 2 L2(0; T ;V 0)

f��(t)( ) = �
Z
�

f� d�; for any  2 V:
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A : D(A) � V 0 ! V 0 multivalued

D(A) = f� 2 L2(
); there exists � 2 V; �(x) 2 ��(�(x)) a.e. x 2 
g;

hA�;  iV 0;V =
Z



(r� �K(�)) � r dx +
Z
�

�� d�;  2 V:
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2 Time discretized schemes for the nondegenerate
and degenerate cases

2.1 Hypotheses
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Nondegenerate case Degenerate case

�(r) � �(0) = � > 0 for r < �s �(r) � �(0) = 0 for r < �s
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Nondegenerate case Degenerate case

�(r) � �(0) = � > 0 for r < �s �(r) � �(0) = 0 for r < �s

�(r) = � for r � 0 �(r) � c� jrj for r < 0;  > 0
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Nondegenerate case Degenerate case

�(r) � �(0) = � > 0 for r < �s �(r) � �(0) = 0 for r < �s

�(r) = � for r � 0 �(r) � c� jrj for r < 0;  > 0

s
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Nondegenerate case Degenerate case

Ki nonlinear, Lipschitz with the constantMi Ki(x; r) = ai(x)r; i = 1; :::; N

ai 2 W 1;1(
)
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Nondegenerate case Degenerate case

Ki nonlinear, Lipschitz with the constantMi Ki(x; r) = ai(x)r; i = 1; :::; N

ai 2 W 1;1(
)

a � � � 0 on �
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Nondegenerate case Degenerate case

Ki nonlinear, Lipschitz with the constantMi Ki(x; r) = ai(x)r; i = 1; :::; N

ai 2 W 1;1(
)

a � � � 0 on �

f 2 L2(0; T ;V 0) f 2 L2(0; T ;L2(
))

f� 2 L2(0; T ;L2(�)) f� = 0
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De�nition (solution in the nondegenerate case). Let

�0 2 L2(
); �0 � �s a.e. x 2 
; f 2 L2(0; T ;V 0):

A solution to (bvp) is a pair (�; �), satisfying

� 2 C([0; T ];L2(
)) \W 1;2(0; T ;V 0) \ L2(0; T ;V );

� 2 L2(0; T ;V ); �(t; x) 2 ��(�(t; x)) a.e. (t; x) 2 Q;
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De�nition (solution in the nondegenerate case). Let

�0 2 L2(
); �0 � �s a.e. x 2 
; f 2 L2(0; T ;V 0):

A solution to (bvp) is a pair (�; �), satisfying

� 2 C([0; T ];L2(
)) \W 1;2(0; T ;V 0) \ L2(0; T ;V );

� 2 L2(0; T ;V ); �(t; x) 2 ��(�(t; x)) a.e. (t; x) 2 Q;�
d�

dt
(t);  

�
V 0;V

+

Z



(r�(t)�K(�(t))) � r dx

= hg(t);  iV 0;V �
Z
�

��(t) d�; a.e. t 2 (0; T ); 8 2 V;

�(0; x) = �0 in 
;

�(t; x) � �s a.e. (t; x) 2 Q:
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De�nition (solution in the degenerate case). Let

�0 2 L2(
); �0 � �s a.e. x 2 
; f 2 L2(0; T ;L2(
)):

A solution to (bvp) is a pair (�; �), satisfying

� 2 C([0; T ];V 0)) \W 1;2(0; T ;V 0);

� 2 L2(0; T ;V ); �(t; x) 2 ��(�(t; x)) a.e. (t; x) 2 Q;�
d�

dt
(t);  

�
V 0;V

+

Z



(r�(t)�K(�(t))) � r dx

= hf (t);  iV 0;V �
Z
�

��(t) d�; a.e. t 2 (0; T ); 8 2 V;

�(0; x) = �0 in 
;

�(t; x) � �s a.e. (t; x) 2 Q:
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2.2 Stability of the discretization schemes
Let

Dh
A(0 = t0 � t1 � t2 � ::: � tn; g

h
1 ; :::; g

h
n); h =

T

n
;

ghi =
1

h

Z ih

(i�1)h
g(s)ds:

In the degenerate case

g = f:
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Nondegenerate case Degenerate case�
1
hI + A

�
�hi 3 ghi + 1

h�
h
i�1

�
1
hI + A

h
�
�hi 3 fhi + 1

h�
h
i�1

A : D(A) � V 0 ! V 0 Ah : D(Ah) � V 0 ! V 0
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Nondegenerate case Degenerate case�
1
hI + A

�
�hi 3 ghi + 1

h�
h
i�1

�
1
hI + A

h
�
�hi 3 fhi + 1

h�
h
i�1

A : D(A) � V 0 ! V 0 Ah : D(Ah) � V 0 ! V 0

hA�;  iV 0;V =
Z



(r� �K(�)) � r dx +
Z
�

�� d�;  2 V;

D(A) = f� 2 L2(
); there exists � 2 V; �(x) 2 ��(�(x)) a.e. x 2 
g:
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Nondegenerate case Degenerate case�
1
hI + A

�
�hi 3 ghi + 1

h�
h
i�1

�
1
hI + A

h
�
�hi 3 fhi + 1

h�
h
i�1

A : D(A) � V 0 ! V 0 Ah : D(Ah) � V 0 ! V 0



Ah�;  

�
V 0;V

=

Z



�
r� +

p
hr� � a(x)�

�
� r dx +

Z
�

�(� +
p
h�) d�;  2 V

D(Ah) = f� 2 V ; there exists � 2 V; �(x) 2 ��(�(x)) a.e. x 2 
g:
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Nondegenerate case Degenerate case�
1
hI + A

�
�hi 3 ghi + 1

h�
h
i�1

�
1
hI + A

h
�
�hi 3 fhi + 1

h�
h
i�1

A : D(A) � V 0 ! V 0 Ah : D(Ah) � V 0 ! V 0



Ah�;  

�
V 0;V

=

Z



�
r� +

p
hr� � a(x)�

�
� r dx +

Z
�

�(� +
p
h�) d�;  2 V

D(Ah) = f� 2 V ; there exists � 2 V; �(x) 2 ��(�(x)) a.e. x 2 
g:

M.G. Crandall and T.M. Liggett (1971). Generation of semigroups of nonlinear transformations in general Banach spaces. Amer. J. Math. 93: 265-298.

M.G. Crandall and L.C. Evans (1975). On the relation of the operator@=@s + @=@t to evolution governed by accretive operators. Israel J. Math. 21: 261-278.
Y. Kobayashi (1975). Difference approximation of Cauchy problem for quasi-dissipative operators and generation of nonlinear semigroups. J. Math. Soc. Japan 27: 641-663.
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This work

� speci�es the precise nature of the convergence

� computes the error

� indicates a numerical algorithm without approximating the multivalued function ��:
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Quasi m�accretiveness

Under the appropriate hypotheses made for each case

Nondegenerate case Degenerate case

A is quasi m-accretive Ah is quasi m-accretive for each h > 0
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Quasi m�accretiveness

Under the appropriate hypotheses made for each case

Nondegenerate case Degenerate case

A is quasi m-accretive Ah is quasi m-accretive for each h > 0

If

h < �
kM 2 h < 1

k2M 4

then
1
hI + A is invertible

1
hI + A

h is invertible

M =
NP
i=1

Mi; k > 1 M = kak1 ; k > 1:
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Stability of the scheme
Each discretization scheme has a unique solution �hi and it is stable, i.e.,

�hp2 � C;

h
pP
i=1

�hi 2V � C;

h
pP
i=1

�hi � �hi�1
h


2

V 0

� C;
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Stability of the scheme
Each discretization scheme has a unique solution �hi and it is stable, i.e.,

�hp2 � C;

h
pP
i=1

�hi 2V � C;

h
pP
i=1

�hi � �hi�1
h


2

V 0

� C;

h
pP
i=1

�hi 2V � C
p
hh

pP
i=1

�hi 2V � C

for any p = 1; :::; n

where C denotes several constants independent on p and h:
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2.3 Convergence of the discretization schemes
We de�ne

�h(t; x) = �hi (x); for t 2 ((i� 1)h; ih];
�h(t; x) = �hi (x); for t 2 ((i� 1)h; ih];
gh(t; x) = ghi (x); for t 2 ((i� 1)h; ih];

for i = 1; :::; n.
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Theorem (convergence of the discretized schemes)

Under the appropriate hypotheses, the original problem (OP ) has at least a solution

� 2 C([0; T ];L2(
)) \W 1;2(0; T ;V 0) \ L2(0; T ;V ) � 2 C([0; T ];V 0) \W 1;2(0; T ;V 0)
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Theorem (convergence of the discretized schemes)

Under the appropriate hypotheses, the original problem (OP ) has at least a solution

� 2 C([0; T ];L2(
)) \W 1;2(0; T ;V 0) \ L2(0; T ;V ) � 2 C([0; T ];V 0) \W 1;2(0; T ;V 0)

� = lim
h!0

�h strongly in L2(0; T ;L2(
)) � = lim
h!0

�h weakly in L2(0; T ;L2(
))

as h! 0:
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Sketch of the proof. �h(t) � C for any t 2 (0; T );

Z T

0

�h(t)2
V
dt � C; �h(t; x) 2 ��(�h(t; x)) a.e. (t; x) 2 Q;

Z T

0

�h(t)� �h(t� h)

h


2

V 0

dt � C;
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Sketch of the proof. �h(t) � C for any t 2 (0; T );

Z T

0

�h(t)2
V
dt � C; �h(t; x) 2 ��(�h(t; x)) a.e. (t; x) 2 Q;

Z T

0

�h(t)� �h(t� h)

h


2

V 0

dt � C;

R T
0

�h(t)2
V
dt � C h

1
2

R T
0

�h(t)2
V
dt � C

=) �h is a h-approximate solution to the Cauchy problem (OP ).
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We can select a subsequence of f�hgh>0 such that

�h ! � weak-star in L1(0; T ;L2(
)) as h! 0;

�h ! � weakly in L2(0; T ;V ) as h! 0; � 2 ��(�h) a.e. in Q;

�h(t)� �h(t� h)

h
! d�

dt
weakly in L2(0; T ;V 0) as h! 0:
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We can select a subsequence of f�hgh>0 such that

�h ! � weak-star in L1(0; T ;L2(
)) as h! 0;

�h ! � weakly in L2(0; T ;V ) as h! 0; � 2 ��(�h) a.e. in Q;

�h(t)� �h(t� h)

h
! d�

dt
weakly in L2(0; T ;V 0) as h! 0:

Helly's theorem

�h(t)! �(t) strongly in V 0 for t 2 [0; T ] as h! 0:
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We can select a subsequence of f�hgh>0 such that

�h ! � weak-star in L1(0; T ;L2(
)) as h! 0;

�h ! � weakly in L2(0; T ;V ) as h! 0; � 2 ��(�h) a.e. in Q;

�h(t)� �h(t� h)

h
! d�

dt
weakly in L2(0; T ;V 0) as h! 0:

Helly's theorem

�h(t)! �(t) strongly in V 0 for t 2 [0; T ] as h! 0:

�h ! � weakly in L2(0; T ;V )
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We can select a subsequence of f�hgh>0 such that

�h ! � weak-star in L1(0; T ;L2(
)) as h! 0;

�h ! � weakly in L2(0; T ;V ) as h! 0; � 2 ��(�h) a.e. in Q;

�h(t)� �h(t� h)

h
! d�

dt
weakly in L2(0; T ;V 0) as h! 0;

Helly's theorem

�h(t)! �(t) strongly in V 0 for t 2 [0; T ] as h! 0:

�h ! � weakly in L2(0; T ;V )

Lions' lemma

�h ! � strongly in L2(0; T ;L2(
))
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We can select a subsequence of f�hgh>0 such that

�h ! � weak-star in L1(0; T ;L2(
)) as h! 0;

�h ! � weakly in L2(0; T ;V ) as h! 0; � 2 ��(�h) a.e. in Q;

�h(t)� �h(t� h)

h
! d�

dt
weakly in L2(0; T ;V 0) as h! 0;

Helly's theorem

�h(t)! �(t) strongly in V 0 for t 2 [0; T ] as h! 0:

�h ! � weakly in L2(0; T ;V ) h
1
4�h ! � weakly in L2(0; T ;V )

Lions' lemma

�h ! � strongly in L2(0; T ;L2(
))
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We can select a subsequence of f�hgh>0 such that

�h ! � weak-star in L1(0; T ;L2(
)) as h! 0;

�h ! � weakly in L2(0; T ;V ) as h! 0; � 2 ��(�h) a.e. in Q;

�h(t)� �h(t� h)

h
! d�

dt
weakly in L2(0; T ;V 0) as h! 0;

Helly's theorem

�h(t)! �(t) strongly in V 0 for t 2 [0; T ] as h! 0:

�h ! � weakly in L2(0; T ;V ) h
1
4�h ! � weakly in L2(0; T ;V )

Lions' lemma

�h ! � strongly in L2(0; T ;L2(
)) �h ! � weakly in L2(0; T ;L2(
)):
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� 2 ��(�) a.e. on Q

(G.M., 2006)

Ki(�
h)! Ki(�) strongly in L2(0; T ;L2(
))
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� 2 ��(�) a.e. on Q � 2 ��(�) a.e. on Q

(G.M., 2006) lim sup
h!0

R T
0

�
�h(t); �h(t)

�
L2(
)

dt

�
R T
0 (�(t); �(t))L2(
) dt

Ki(�
h)! Ki(�) strongly in L2(0; T ;L2(
)) ai�

h ! ai� weakly in L2(0; T ;L2(
))
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Z T

0

*
�h(t)� �h(t� h)

h
; �(t)

+
V 0;V

dt +

Z
Q

(r�h �K(�h)) � r�dxdt

+

Z
�

�(x)�h�d�dt =

Z T

0



gh(t); �(t)

�
V 0;V

dt; 8� 2 L2(0; T ;V )
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Z T

0

*
�h(t)� �h(t� h)

h
; �(t)

+
V 0;V

dt +

Z
Q

(r�h �K(�h)) � r�dxdt

+

Z
�

�(x)�h�d�dt =

Z T

0



gh(t); �(t)

�
V 0;V

dt; 8� 2 L2(0; T ;V )

We pass to the limit as h! 0; and deduce that

Z T

0

�
d�

dt
(t); �(t)

�
V 0;V

dt +

Z
Q

(r� �K(�)) � r�dxdt

+

Z
�

�(x)��d�dt =

Z T

0

hg(t); �(t)iV 0;V dt; 8� 2 L2(0; T ;V ):
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Z T

0

*
�h(t)� �h(t� h)

h
; �(t)

+
V 0;V

dt +

Z
Q

(r�h � a(x)�h) � r�dxdt +
Z
�

��h�d�dt

h1=4
Z
Q

h1=4r�h � r�dxdt + h1=4
Z
�

�(x)h1=4�h�d�dt

=

Z T

0



gh(t); �(t)

�
V 0;V

dt; 8� 2 L2(0; T ;V )
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Z T

0

*
�h(t)� �h(t� h)

h
; �(t)

+
V 0;V

dt +

Z
Q

(r�h � a(x)�h) � r�dxdt +
Z
�

��h�d�dt

h1=4
Z
Q

h1=4r�h � r�dxdt + h1=4
Z
�

�(x)h1=4�h�d�dt

=

Z T

0



gh(t); �(t)

�
V 0;V

dt; 8� 2 L2(0; T ;V )

We pass to the limit as h! 0; and deduce that

Z T

0

�
d�

dt
(t); �(t)

�
V 0;V

dt +

Z
Q

(r� � a(x)�) � r�dxdt +
Z
�

�(x)��d�dt

=

Z T

0

hg(t); �(t)iV 0;V dt; 8� 2 L2(0; T ;V ):
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2.4 Uniqueness
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Under the assumptions of the nondegenerate case the solution to the N -D problem
(OP ) is unique.
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Under the assumptions of the nondegenerate case the solution to the N -D problem
(OP ) is unique.

Under the assumptions of the degenerate case the solution to the N -D problem (OP )
is unique if K = 0:
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Under the assumptions of the nondegenerate case the solution to the N -D problem
(OP ) is unique.

Under the assumptions of the degenerate case the solution to the N -D problem (OP )
is unique if K = 0:

Under the assumptions of the degenerate case the solution to problem (OP ) is unique
if N = 1 and

a(x) = 0 on �:
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2.5 Error estimate

Nondegenerate case Degenerate case

N = 1 and a(x) = 0 on �

�(ti)� �hi

V 0
= O(h1=4) as h! 0;

�(ti)� �hi

V 0
= O(h1=4) as h! 0;

R T
0

�(t)� �h(t)
2 dt � O(h1=2) as h! 0;
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Time step estimate

Nondegenerate case Degenerate case

h < 1
2k

�
M 2 h < min

n
1

k2M 4 ;
1

1+kak1;1

o
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Remark: another scheme in the degenerate case
If

kak1 < 1

then, instead of

�hi � �hi�1
h

�
p
h��hi ���hi +r �K(�hi ) = fhi in 
; i = 1; :::; n�

a(x)�hi �
p
hr�hi �r�hi

�
� � = ��hi +

p
h��hi on �;
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Remark: another scheme in the degenerate case
If

kak1 < 1

we can consider
�hi � �hi�1

h
� h��hi ���hi +r �K(�hi ) = fhi in 
; i = 1; :::; n�
a(x)�hi � hr�hi �r�hi

�
� � = ��hi + h��

h
i on �;

and all result remain valid.
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Time discretized systems

Nondegenerate case Degenerate case

�hi��hi�1
h ���hi +r �K(�hi ) = fhi in 
 �hi��hi�1

h ���hi �
p
h��hi +r �

�
a(x)�hi

�
= fhi�

K(�hi )�r�hi
�
� � = ��hi + f

h
�;i on �

�
a(x)�hi �r�hi �

p
hr�hi

�
� � = ��hi +

p
h��hi

�hi (x) 2 ��(�hi (x)) a.e. x 2 
;

�h0 = �0 in 
:
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2.6 Algorithm in the nondegenerate case
�hi 2 ��(�hi ) G(�hi ) := (�

�)�1(�hi ) KG(�
h
i ) := K(G(�hi ))

where

G(r) :=

�
(��)�1(r) if r < K�

s

�s if r � K�
s :

We are led to solve the following elliptic boundary value problem

G(�hi )� h��hi + hr �KG(�
h
i ) =

Z ti

ti�1

g(s)ds + �hi�1 in 
; i = 1; :::; n;

h(KG(�
h
i )�r�hi ) � � = h��hi +

Z ti

ti�1

g(s)ds on �;

and set

�hi :=

�
(��)�1(�hi ) if �

h
i < K�

s

�s if �hi � K�
s :
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2.7 Algorithm in the degenerate case
�hi 2 e��(�hi ) = ��(�hi ) +

p
h�hi G(�hi ) := (

e��)�1(�hi ) KG(�
h
i ) := a(x)G(�hi )

G(r) :=

(
(e��)�1(r) if r < K�

s +
p
h�s

�s if r � K�
s +

p
h�s:

We are led to solve the following elliptic boundary value problem

G(�hi )� h��hi + hr �KG(�
h
i ) =

Z ti

ti�1

f (s)ds + �hi�1 in 
; i = 1; :::; n;

h(KG(�
h
i )�r�hi ) � � = h��hi on �;

and set

�hi :=

(
(e��)�1(�hi ) if �hi < K�

s +
p
h�s

�s if �hi � K�
s +

p
h�s:
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3 Numerical results

�0(x; y) =

�
0; on f(x; y); 0 � x � 0:4; 0 � y � 0:4g
0:1 otherwise.

f = 0:1; � = 1; f� = 0; on �; h = 10�4

�non deg(r) = 2r + 0:1 for r 2 [0; 1) �deg(r) = 2r

K(r) =
n
a(x; y)r; r 2 [0; 1] a(x; y) =

n
1; in �
; 0; otherwise
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Nondegenerate case

Degenerate case
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�(r) =
1

2
p
1� r

for r 2 [0; 1); ��(r) =

�
1�

p
1� r; r 2 [0; 1)

[1;1); r = 1:

�0 = 0:1;

f = 0;

f� = 0; � = 10
�8:
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 We consider for the transport term an exponential function of the solution with values greater than those of case 3 and greater than the 
flux.  In this case, the free boundary evolves more rapidly compared to case 3.  
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In this case the transport term is a function depending on the solution and we notice that saturation begins from the inferior boundary as 
for case 2,  and after t=1.95 the flow becomes stationary. A very interesting aspect can be observed in relation with the evolution of the free 
boundary which advances towards the  surface of the soil untill t=1.8, and withdraws afterwards, due to the fact that K is maximum for 1=θ  
and acts against the advance of the free boundary. 
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Thank you for your attention !
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