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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

1 Introduction
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 3

Nonlinear diffusion equation with a transport term

%—Aﬁ*(@)JrV-K(@) >f InQ=(0,T)x1,

0(t,z) =60y in, (bvp)

(K(0) — VB (0)-v—af(0)> f, onx=(0,T)xT

QO cRY open, bounded, [' = 0€) smooth, v unit normal vector to I, T finite

.....

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008


LAP
Rectangle

LAP
Rectangle


Porous medium



6 =0,
saturated domain

unsatl_Jrated 6 concentration of fluid in pores
domain



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

In this model

£ : R — R is multivalued

forﬁ(f)df, if r < 0,,
B(r) =< [KZ, +o0), ifr =4,
, ifr > 6,,

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008


LAP
Highlight

LAP
Highlight


Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

» [ is the diffusion coefficient

B (—o0,0s) — R,continuous

Nondegenerate case Degenerate case

B(r) >0 B(r) =0
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

» [ is the diffusion coefficient

B (—o0,0s) — R,continuous

Nondegenerate case Degenerate case

B(r) >0 B(r) =0

I —
lim B(r) = +oo

ling /0 B(€)de = K.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

(K(6) = VB(6)) - v — aB(6) 3 fuon S = (0,T) x T,

a: ' — |agy, ayl

is continuous and it is positive at least on a nonzero measure subset of I'.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 9

The nondegenerate case with K a general nonlinear Lipschitz function having a nonzero
component only along Oz3 was treated (G.M., 2005, 20006) in relation with the 3D-
model of water infiltration in soils. =

le_i(t) + A0(t) > f(t), a.e. t € (0,T),
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 10

The nondegenerate case with K a general nonlinear Lipschitz function having a nonzero
component only along Oz3 was treated (G.M., 2005, 20006) in relation with the 3D-
model of water infiltration in soils.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 11

For numerical purposes the method can have no great efficiency due to the fact that

S, blows up as ¢ — 0.
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Purpose of this work:

> Propose time discretization schemes for both
— the nondegenerate case (5(r) > 0)

— the degenerate case (5(r) > 0)
> Study existence and stability of the discretized schemes

> Convergence of the discretized solutions.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Functional framework

V= H'(0) ]l = (fQ V() do + fralz
V' the dual of V 0,0), =(0,A,'0),,,,, V0,0V’
AA V- V/

(Anth, O)yryy = = [V - Vodz + [ af

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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r)podo, Vi, ¢ € V.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 14

The abstract Cauchy problem

2_?(75) L AO() S g(t), ae. t € (0,T), (OP)
6(0) = 6,
where
g=rf+Jr,.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

fr. € L*0,T; V")

Fe ()W) = — / fbdo, forany o € V.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

A:D(A) cV'—= V" multivalued

D(A) = {0 € L*(Q); there exists n € V, n(x) € B*(0(z)) a.e. v € Q},

(49, )y = [ (V- K(0) - Voda+ [ anpdo, v e V.

Q r
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2 Time discretized schemes for the nondegenerate
and degenerate cases

2.1 Hypotheses

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Nondegenerate case Degenerate case

B(r) > B0)=p >0 forr < 0, B(r) > B(0) =0
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Nondegenerate case Degenerate case
B(r) > B0)=p >0 for r < 6, B(r) > B(0) =0
Br)=p forr <0 B(r) > s |

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 20

Nondegenerate case Degenerate case
B(r)>B0)=p>0 for r < 6, B(r) > 5(0) =0 for r < 6,
B(r)=p forr <0 B(r) > czlr|’ forr <0,v >0

Os
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 21

Nondegenerate case Degenerate case
K; nonlinear, Lipschitz with the constant M; Ki(x,r)=a)x)r, i=1,...N
a; € WLOO(Q)
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Nondegenerate case Degenerate case

K; nonlinear, Lipschitz with the constant M; Ki(x,r)=a)x)r, i=1,...N
a; € Whe(Q)
a-v<0onl
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Nondegenerate case Degenerate case

K; nonlinear, Lipschitz with the constant )/, Ki(x,r)=a;(x)r, i=1,...N
a; € Wheo(Q)
a-v<0onl

f € L*0,T; V') f e LX0,T; LX)

fo € L*(0, T LX(T)) Ja=0
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary
Definition (solution in the nondegenerate case). Let

0y € L*(Q), 0y < 0,ae.xcQ, feL*0,T,V.
A solution to (bvp) is a pair (6, ), satisfying

0 c O(0,T); L*()) n W0, T: V') N L*0,T; V),

ne L*0,T;V), n(t,x) € p 0t x)) ae. (t,z) € Q,

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 25
Definition (solution in the nondegenerate case). Let

0y € L*(Q), 0y < 0,ae.xcQ, feL*0,T,V.
A solution to (bvp) is a pair (6, ), satisfying

0 c O([0,T); L*()) n W0, T: V') N L*0,T; V),

ne L*0,T;V), n(t,x) € p 0t x)) ae. (t,z) € Q,
(Gore) o+ [ - K- vods
= (9(t), V) — /om(t)wda, a.e.t€ (0, T), Yy eV,

r

9(0, ZU) = 90 N Q,

0(t,r) <0Osa.e. (t,x) € Q.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary
Definition (solution in the degenerate case). Let
0y € L*(Q), Oy < f,ae. €, fecL*0,T;L*Q)).
A solution to (bvp) is a pair (6, ), satisfying
8 e C([0,T]; V")) n W20, T; V"),

ne L*0,T;V), n(t,x) € p 0t ) ae. (t,z) € Q,
(Goe) o+ [ o) - Ko - Tuas
= (f(t), )y — /an(t)@bda, a.e. te (0,T), Yy eV,

r

9(0, ZE) = 90 N Q,

0(t,r) <0Osa.e. (t,x) € Q.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2.2 Stability of the discretization schemes
Let

In the degenerate case

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Nondegenerate case Degenerate case
(F1+A) 0! > gl + 107, (A1 + AM) 07 > fh+ Lot
A: DA cCV =V A DAY c VI = V!

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008

29



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 30

Nondegenerate case Degenerate case
(F1+A) 0! > gl + 107, (A1 + AM) 07 > fh+ Lot
A: DA cCV =V A DAY c VI = V!

(Vn — K(0)) - Vipdx + /ozmbda, Y eV,

r

(A0, ¢>v',v - /

Q

D(A) = {0 € L*(Q); there exists n € V, n(x) € 8*(A(z)) a.e. z € Q}.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 31

Nondegenerate case Degenerate case
(F1+A) 0! > gl + 107, (A1 + AM) 07 > fh+ Lot
A: DA cCV =V A DAY c VI = V!

(4"9,9),,, = /Q (vn +{hvH- a(a:)@) Vepd + /F a(n+ (m)do, & €V

D(A" = {0 € V; there exists n € V, n(z) € *(0(x)) a.e. x € Q}.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008


LAP
Rectangle

LAP
Oval

LAP
Oval


Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 32

Nondegenerate case Degenerate case

(F1+A) 0! > gl + 107, (A1 + AM) 07 > fh+ Lot
A: DA cCV =V A DAY c VI = V!

(4"9,9),,, = /Q (vn + (hv9- a(x)@) Vepdz + /F o(n +@/W)do, € V

D(A™ = {0 € V; there exists n € V, n(z) € 5*(0(x)) a.e. x € Q}.

M.G. Crandall and T.M. Liggett (1971). Generation of semigroups of nonlinear transformations in general Banach spaces. Amer. J. Math. 93: 265-298.

M.G. Crandall and L.C. Evans (1975). On the relation of the operator 6/88 —|— a/@t to evolution governed by accretive operators. Israel J. Math. 21: 261-278.

Y. Kobayashi (1975). Difference approximation of Cauchy problem for quasi-dissipative operators and generation of nonlinear semigroups. J. Math. Soc. Japan 27: 641-663.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 33

This work

> specifies the precise nature of the convergence
> computes the error

> indicates a numerical algorithm without approximating the multivalued function 5*.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Quasi m—accretiveness

Under the appropriate hypotheses made for each case

Nondegenerate case Degenerate case

A Is quasi m-accretive A" is quasi m-accretive for each h > (

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 35

Quasi m—accretiveness

Under the appropriate hypotheses made for each case

Nondegenerate case Degenerate case
A Is quasi m-accretive A" is quasi m-accretive for each h > (
If
h < 45 h < =
then
+I + A is invertible +I + A" is invertible
N
M=> M, k>1 M=|a|,, k>1
1=1
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Stability of the scheme
Each discretization scheme has a unique solution 8? and it is stable, i.e.,

ol < c.
P B2
WS oty <

o 9? - 6?—1 < C

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Stability of the scheme
Each discretization scheme has a unique solution 9? and it is stable, i.e.,

ol < c.
P B2
WS oty <

r_ || — g
hz { ; 1—1 S C,
1=1

n3 oty < c VAR 1]} < €

foranyp=1,...,n

where C denotes several constants independent on p and h.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2.3 Convergence of the discretization schemes
We define

o"(t,x) = 6Mz), for t € ((i —1)h,ih],
0'(t,x) = 0 (x), for t € ((i —1)h,ih],
g"(t,x) = gi(x), for t e ((i—1)h,ih],

fori=1,...,n.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 39

Theorem (convergence of the discretized schemes)

Under the appropriate hypotheses, the original problem (O P) has at least a solution

9 e C([0, T); L2(Q) N W20, T; V') N L0, T:V)  8e (o, T]; V') n W20, T: V')

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 40

Theorem (convergence of the discretized schemes)

Under the appropriate hypotheses, the original problem (O P) has at least a solution

0 € C([0,T); L*(Q)) n W20, T; VYN L*(0,T; V) 0 e C(0,T];V)nWt30,T; V")

0 = lim 0" strongly in L*(0,T; L*(Q)) 0 = lim 0" weakly in L*(0,T; L*(Q))

as h — 0.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Sketch of the proof.
16"(t)|| < C foranyt e (0,T),

T
[ W0l it < c ot € 576 ta) . () € @,

r

2

o"(t) — 0"(t — h)
h

dt < C,
Vl

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary
Sketch of the proof.
16"(t)|| < C foranyt e (0,T),
T 5 ,
[ @l e < ¢ 60 € 506,00 e (10) € @
0
2
T | ghrpy _ ah(s
/ ') = "= )| o
0 h
V/
2 1 2
Iy 0"l dt < € b [T 0" o)} dt < ©

— 0" is a h-approximate solution to the Cauchy problem (OP).

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

We can select a subsequence of {#"},-, such that

9" — 6 weak-star in L°°(0, T; L*(Q2)) as h — 0,
n" — nweakly in L*(0,T;V)as h — 0, e 5*(6") a.e. in Q,

0"(t) — 0"t —h)  db
() h< )_>dt weakly in L*(0,T; V") as h — 0.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

We can select a subsequence of {#"},-, such that

9" — 6 weak-star in L>(0,T; L*(Q)) as h — 0,
n" — nweakly in L*(0,T;V)as h — 0, n"e 5*(8") a.e. in Q,

0"(t) — 0"t —n) db
() h< )_>dt weakly in L*(0,T; V') as h — 0.

Helly’s theorem

" (t) — 6(t) strongly in V' for t € [0,T] as h — 0.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

We can select a subsequence of {#"},-, such that

9" — 6 weak-star in L>(0,T; L*(Q)) as h — 0,
n" — nweakly in L*(0,T;V)as h — 0, n"e 5*(8") a.e. in Q,

0"(t) — 0"t —n) db
() h< )_>dt weakly in L*(0,T; V') as h — 0.

Helly’s theorem

9" (t) — 6(t) strongly in V' for t € [0,T] as h — 0.

p" — 6 weakly in L*(0,T; V)

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

We can select a subsequence of {#"},-, such that

9" — 6 weak-star in L>(0,T; L*(Q)) as h — 0,
n" — nweakly in L*(0,T;V)as h — 0, n"e 5*(8") a.e. in Q,

o"t)— 0"t —h) dbf
() h< )—>dtweaklyinL2(0,T;V’)aSh_>O7

Helly’s theorem

9" (t) — 6(t) strongly in V' for t € [0,T] as h — 0.

o" — 6 weakly in L*(0,T;V)
Lions’ lemma

9" — @ strongly in L*(0,T; L*(Q))

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 47

We can select a subsequence of {#"},-, such that

9" — 6 weak-star in L>(0,T; L*(Q)) as h — 0,
n" — nweakly in L*(0,T;V)as h — 0, n"e 5*(8") a.e. in Q,

o"t)— 0"t —h) dbf
() h< )—>dtweaklyinL2(0,T;V’)aSh_>O7

Helly’s theorem

9" (t) — 6(t) strongly in V' for t € [0,T] as h — 0.

9" — 6 weakly in L%(0,T;V) hi0" — r weakly in L2(0,T; V)
Lions’ lemma

9" — 6 strongly in L(0,T; L*(Q2))
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 48

We can select a subsequence of {#"},-, such that

9" — 6 weak-star in L>(0,T; L*(Q)) as h — 0,
n" — nweakly in L*(0,T;V)as h — 0, n"e 5*(8") a.e. in Q,

o"t)— 0"t —h) dbf
() h< )—>dtweaklyinL2(0,T;V’)aSh_>O7

Helly’s theorem

9" (t) — 6(t) strongly in V' for t € [0,T] as h — 0.

9" — 6 weakly in L*(0,T; V) hi0" — k weakly in L*(0,T;V)
Lions’ lemma

9" — 6 strongly in (0, T; L*(2)) p" — 6 weakly in L*(0, T; L*(2)).
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

n e p°(0)a.e.onQ

(G.M., 2006)

K;(0") — K;(0) strongly in L2(0,T; L*(Q))

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

ne€p(f)ae onq@ n € f°(0)a.e.on Q
(G.M., 2006) limsup [ ( eh( t)) L2y At
h—0
< Jo (1), 0(8)) 2y dt

K;(0") — K;() strongly in L2(0, T; L*(Q0))|  |a;0" — a0 weakly in L*(0,T; L*(Q))

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

/ T<9h<t>;€:<th>,¢<t>> dt o+ / (V" = K(60")) - Vodadt
0 4R ¢

| T
‘|‘/Oé<33>77h¢d0'dt — / <gh<t),gb<t)>‘//vdt’ \V/(/b c L2<0,T7 V)
> 0 )

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

/ T<9h(t>_ih<t_h),¢<t>> it + / (Vi — K(6) - Vodardt
0 14A% ¢

| T
+/oz(x)77hqbdadt = / <gh(t),gb(t)>v,’v dt, Vo € LQ(O,T; V)
> 0

We pass to the limit as h — 0, and deduce that

/OT <Z—f<t), ¢<t>>w v /Q (Vi — K(0)) - Vodudt

+ [ alamododt = [ (glt). 6O}y dt, Vo € PO.TV)

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 53
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 54

0"t — 0"t — h)
/0 < h v¢<t>>wdt+ /Q (V" — a(x)0") - Vpdadt + /E an’ddodt

pl/A / p/ANO" - N pdadt + b / o)W 40" pdodt
Q 2

We pass to the limit as h — 0, and deduce that

= | (60,000 dt, o € O.TV)

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2.4 Uniqueness

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 56

Under the assumptions of the nondegenerate case the solution to the N-D problem
(OP) is unique.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 57

Under the assumptions of the nondegenerate case the solution to the N-D problem
(OP) is unique.

Under the assumptions of the degenerate case the solution to the N-D problem (O P)
is unique if K = 0.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 58

Under the assumptions of the nondegenerate case the solution to the N-D problem
(OP) is unique.

Under the assumptions of the degenerate case the solution to the N-D problem (O P)
is unique if K = 0.

Under the assumptions of the degenerate case the solution to problem (O P) is unique
if N =1and

a(r)=0onT.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2.5 Error estimate

Nondegenerate case Degenerate case

N=1anda(x)=00onT

|oct;) — 07

= O(h1/4) as h — 0, H9<tl) — Q?HV, = O(h1/4) as h — 0,

JN6@) — 0" )||” dt < O(hY/2) as h — 0,

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Time step estimate

Nondegenerate case Degenerate case
1.r - 1 1
h < 353p fi < min {k2M4’ 1+|lally o

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Remark: another scheme in the degenerate case
If

lafls <1
then, instead of

ol — ph
== = VhAG — Al + V- K(6])

(a(az)é’,}; —VhVo — Vn?) v =

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008

fin Qi=1,...,n

an +vhat! on T,
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Remark: another scheme in the degenerate case
If

lall, <1
we can consider

0, — 0, b Ak ) - .
; — hAO — An'+V - K@) = f' in Q, 1=1,...
(a(:z:)@? — hVO,! — Vnl) v = an! + ha#! on T,
and all result remain valid.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 28

Time discretized systems: agorithms

Nondegenerate case Degenerate case

h

UL At VK@) = £ in @ R Agh - VRAGM £V - (alz)0)) = £

(KO ~ Vi) -v=anf+ fh,on T (a(2)9} — V= VAVE!) v = sl + Vhao]

n'(z) € B0 (x)) a.e. x € Q,

0 =0y in Q.
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LAP
Typewritten Text

LAP
Typewritten Text

LAP
Typewritten Text
: algorithms


Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2.6 Algorithm in the nondegenerate case
Gt e B8 G(¢) = (B¢ Ke(G) = K(G(C}))

where

_ [ (B) ) ifr < KT
Gr) = { 0, if > K7

We are led to solve the following elliptic boundary value problem

ti
G — hAC! + RV - Ka(¢h) :/ g(s)ds+ 6", in Q i=1,...,n,
i1

li
(Ka(c!) = V¢!) v = hac! + [ g(s)ds on T,
i1
and set

g . { (B¢ ¢ < K
B2 if ¢} > K.
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

2.7 Algorithm in the degenerate case

¢t e B8 = g (6%) + Vhe! G =@ Kelch) = alz)G(C]

_ LB ) ifr < KX+ Vo,
Glr) = { 9, if r > K* + /I,

We are led to solve the following elliptic boundary value problem

12
G(C") — hAC! + WV - Kg(¢!) = / f(s)ds+0", in Q, i=1,.,n,
i1
WKe(() = V(i) v = ha¢i on T,

and set

g ) (B)THCH ¢ < K+ Vb,
N if ¢ > K + Vo,
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

3 Numerical results

0, on{(z,y);0< <04, 0<y <04
Ho(a:,y)z{ {(z,y) Y i

0.1 otherwise.
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Nondegenerate case
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Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Nondegenerate case

Nondegenerste case: Contour plots at t=0.1 Max: 0,156

0.:6

Min: 0.0308

Degenerate case

Degenerate case: Contour plots at t=0.02 Max: 0,226

015

005

0
Min: -2,63803
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Max: 0,163
0163

== 0.156

=t 0,140

== 0.082
=={0.075
0.068
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0.055
0.048

0.041

—lo.035
Min: 0.0347
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0222
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0.015
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Nondegenerate case: Contour phts at t=0.05

Degenerate case: Contour plots at t=0.05

Max: 0,192

Min: 0.0609

Max: 0.262

0.25

015

0.05

4
Min: -8.313e4

Max: 0,189
[ 0.18

0.182
0.176
0.169
0.162

0.156

0.143

0.136

(=t 0.149

0.084
0.077

0.071

—l0.084
Min: 0.0642

Max: 0.275
0275

(=1 0.261
{0247
{0233
[=={0.219
[=={0.205
{019
[=={0.176
[=={0.162
—{0.148

{0134

[=={0.106
{0092
0078
0.064
0.05

0.036

0.022

k= 0.008
Min: 7.521e-3

Nondegenerate case: Contour phts at t=0.1

‘Degenerate case: Contour pbts at t=0.1
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Evolution of the saturated domain

Soltuin contour plots at time t=0.5 Solution contour plots &t t=1.05

0.85

0.95

0.9

0.85

0.5

0.75

Solution contour plots at t=1.2 Solution contour plots at t=1.17

0598
0.96
054
052
[IR=]

0.8a

0.86

0.84



LAP
Pencil

LAP
Sticky Note
Marked set by LAP

LAP
Typewritten Text
Evolution of the saturated domain

LAP
Line

LAP
Line

LAP
Line

LAP
Line

LAP
Line

LAP
Line


0s

08

o7

06

=05

04

03

0z

01

Solution contour plots in the plane ®Oy at time t=1.75

1] 02 04 06 0.8 1
"

Evolution
boundary

Solution contour plots in the plane xOy at time t=1.77

L=1 K@) =1e-1
1 r=1.

e -1

, rel0,1)

and u=05

Solution contour plots in the plane xOy at time t=1.79

ns
0.98
n0a
o7
0.96
0e
0.4 =05
04
0.92 03
02f ¢ 1
|
0.9 | |
0.1 =
e
P ————
_=
e —————————————

o
o
i
=]
B

=
o
m

of the free
at x=0.5

=}
m

Tirne evalution of the free boundary at =05

09+

07r

0B -

=05

0.4+

01F

saturated
domain

unsaturated
domain

a
15

L L
1.55 18 165 17

L
175

09

0.8

07

06

05

0.4

03

02

01

Solution contour plots in the plane #Oy at time t=1.8

completely

saturated

0.8

06

0.4

0.2


LAP
Rectangle

LAP
Rectangle

LAP
Typewritten Text
saturated 
    domain

LAP
Typewritten Text
unsaturated
domain

LAP
Typewritten Text
Evolution of the free
boundary at x=0.5

LAP
Line

LAP
Line

LAP
Line

LAP
Line

LAP
Typewritten Text

LAP
Typewritten Text
completely saturated


Solution countour plots in the plane xOy at time t=1.75

0.995

0.99

0.985

0.95

0.975

0.97

0.965

0.96

0.955

Solution contour plots in the plane xOy at time t=1.77

92
L=1 K(@®)=" and u=05

Solution contour plots in the plane xOy at time t=2

0.975

1 1

03
0.9995

08
0.9998

07
0.9997 i

-

0.9956 b

04
0.9995

03
0.9994 -

0.1

Solution contour plots in the plane xOy at time t=1.79

Time evolution of the free boundary at x=0.5

0.998

0.996

0.394

0.992

0 965

0 356

0.954

0.952

saturated domain

unsaturated
domain

I
175 18 1.85 19 196

Solution contour plots in the plane xOy at time t=1.8

ot the free
x=0.5

Evolution
boundary at

0.9933

0.9939

09995

09995

0.9997


LAP
Rectangle

LAP
Rectangle

LAP
Typewritten Text
saturated domain

LAP
Typewritten Text
unsaturated
domain

LAP
Typewritten Text
Evolution of the free
boundary at x=0.5

LAP
Line

LAP
Line

LAP
Line

LAP
Sticky Note
Accepted set by LAP


Well posedness of finite difference schemes for a singular diffusion problem with a free boundary 70

D.G. Aronson (1986). The porous medium equation. In, Some Problems in Nonlinear Diffusion Problems (A. Fasano and M. Primicerio, eds.), Lecture Notes in Mathematics,

1224. Springer, Berlin, pp. 1-46.

V. Barbu (1976). Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden.

V. Barbu (1993). Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York-Boston.

V. Barbu and T. Precupanu (1986). Convexity and Optimization in Banach Spaces. D. Reidel Publishing Company, Dordrecht.

P. Broadbrigde, J.H. Knight and C. Rogers (1988). Constant rate rainfall in a bounded profile: Solutions of a nonlinear model. Soil Sci. Soc. Am. J. 52: 1526-1533.

C. Ciutureanu, G. Marinoschi, Convergence of the finite difference scheme for a fast diffusion equation in porous media, submitted.

COMSOL Multiphysics v3.4 (2007). Floating Network License 1025226. Comsol Sweden.

M.G. Crandall and T.M. Liggett (1971). Generation of semigroups of nonlinear transformations in general Banach spaces. Amer. J. Math. 93: 265-298.

M.G. Crandall and L.C. Evans (1975). On the relation of the operator 8/88 —|— @/at to evolution governed by accretive operators. Israel J. Math. 21: 261-278.

Y. Kobayashi (1975). Difference approximation of Cauchy problem for quasi-dissipative operators and generation of nonlinear semigroups. J. Math. Soc. Japan 27: 641-663.

] J.L. Lions (1969). Quelques Méthodes de Reésolution des Problemes aux Limites non Linéaires. Dunod, Paris.

G. Marinoschi (2006). Functional Approach to Nonlinear Models of Water Flow in Soils. Mathematical Modelling: Theory and Applications, volume 21. Springer, Dordrecht.

Matlab R2008b, Licence 350467.

Direct, Inverse and Control Problems for PDE’s, Cortona, September 22-26, 2008



Well posedness of finite difference schemes for a singular diffusion problem with a free boundary

Thank you for your attention !
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