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Presentation of the problem

Ω bounded, smooth domain of R2 (Rn) ; ω nonempty open subset
of Ω.

A : Ω→ S2(R), A(x) ≥ 0,

but non uniformly positive :

∀x ∈ ∂Ω, det(A(x)) = 0.

Null controllability properties of
ut − div (A(x)∇u) = h(x , t)χω,

boundary conditions,

initial condition

?

(First step to exact controllability to trajectories...)
Uniformly positive case : heat equation Lebeau-Robbiano (95),
general case : Fursikov-Imanuvilov (95,96)
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Some examples in 1D

I aeronautics : the Crocco type equation (boundary layer
model) :

ut + a(y)ux − (b(y)uy )y = localized control, x ∈ (0, L), y(0, 1)

with a(1) = 0 = b(1) ;

I climatology : the Budyko-Sellers model :

RTt − ((1− x2)Tx)x − QS(1− α) = −I (T ), x ∈ (−1, 1);

I economics : the Black-Scholes equation of the type :

ut − x2uxx + · · · = · · · , x ∈ (0, L).
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An example in N-D

I biology : the Fleming Viot model :

ut − Tr (C (x)D2u) · · · = f ,

where
C (x) = (cij(x))i ,j , cij(x) = xi (δij − xj),

and
x ∈ {xi ∈ [0, 1],

∑
i

xi ≤ 1};

example : N=2 : degenerate along the sides of the triangle.
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Main results on the 1D degenerate problems : the simplest
problem

The simplest problem in divergence form (Cannarsa, Martinez,
Vancostenoble (2008)) :

ut − (xαux)x = h(x , t)χ(a,b), x ∈ (0, 1), t > 0 :

I α ∈ [0, 1[ : well-posed with the Dirichlet boundary condition
(u(0, t) = 0 = u(t, 1), and null controllable ;

I α ∈ [1, 2[ : well-posed with the Neumann boundary condition
(xαux)(0, t) = 0 = u(1, t), and null controllable ;

Main tools : Carleman estimates associated to the degenerate
problem, and Hardy type inequalities ;
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I α ≥ 2 : well-posed with the Neumann boundary condition
(xαux)(0, t) = 0 = u(1, t), and not null controllable ;
Main tools : application of a result of Escauriaza, Seregin,
Sverak (2004) related to the backward uniqueness properties
of the heat equation in half space.
Remark : Strong connection between degenerate problems in
bounded domains and nondegenerate problems in unbounded
domains
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Main results on the 1D degenerate problems : other
problems

I in divergence form (Martinez, Vancostenoble (2006)) :

ut − (a(x)ux)x = localized control,

with a(0) = 0 = a(1) ;

I with semilinear terms (Alabau Boussouira, Cannarsa, Fragnelli
(2006)) :

ut − (a(x)ux)x + f (u) = localized control,

I in nondivergence form, with drift (Cannarsa, Fragnelli,
Rocchetti (2007))

ut − a(x)uxx + b(x)ux = localized control.
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The problem in 2D : simplest assumptions on the
degeneracy

A(x) ∼
(
λ1(x) 0

0 λ2(x)

)
with 0 ≤ λ1(x) ≤ λ2(x).

ε1(x) denotes the eigenvector associated to λ1(x), and ε2(x) the
eigenvector associated to λ2(x).

Simplest assumptions (Hs(A)) : Ω is of class C 4, and there exists
some α ≥ 0, and some neighborhood of the boundary Γ such that :

I λ1(x) = d(x , Γ)α for all x ∈ V(Γ),

I ε1(x) = ν(pΓ(x)) for all x ∈ V(Γ), where pΓ(x) is the
projection of x on the boundary Γ,

I 0 < m ≤ λ2(x) ≤ M for all x ∈ Ω.
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More general assumptions on the degeneracy

(Hg (A)) : there exists some α ≥ 0 such that :

I λ1(x) ∼ d(x , Γ)α as x → Γ,

I ε1(x)− ν(pΓ(x))→ 0 as x → Γ,

I 0 < m ≤ λ2(x) ≤ M for all x ∈ Ω.

(work in progress)
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The weakly degenerate control problem

We consider 
ut − div (A(x)∇u) = h(x , t)χω,

boundary conditions,

initial condition,

under (Hs(A)) (resp. (Hg (A))), with α ∈ [0, 1).

Question : given T > 0, u0 ∈??, does there exist h ∈?? such that
u(T ) = 0 ?
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The functional setting for the well-posedness

H1
A(Ω) := {u ∈ L2(Ω) ∩ H1

loc(Ω),A∇u · ∇u ∈ L1(Ω)},

= {u ∈ L2(Ω)∩H1
loc(Ω),

∫
V(Γ)

d(x , Γ)α(∇u, ε1)2+(∇u, ε2)2 <∞},

H2
A(Ω) := {u ∈ H1

A(Ω) ∩ H2
loc(Ω), div (A∇u) ∈ L2(Ω)},

endowed with their natural norms.

Proposition

I H1
A(Ω) and H2

A(Ω) are Hilbert spaces ; C∞(Ω) is dense in
both ;

I the trace operator γ : H1(Ω)→ L2(Γ) can be extended into
γA : H1

A(Ω)→ L2(Γ) ;

I H1
A,0(Ω) := D(Ω)

H1
A = {u ∈ H1

A(Ω), γA(u) = 0}.
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The functional setting : regularity up to the boundary

Difficulty : H2(Ω) 6= H2
A(Ω).

Directional derivative : ∂εi u := (∇u, εi ) ; then

Proposition

For all u ∈ H2
A(Ω), we have :

∂ε1

(
d(x , Γ)α∂ε1u

)
, d(x , Γ)α/2∂2

ε1,ε2
u, ∂2

ε2
u ∈ L2(Ω).

I a more general study (weakened conditions on λ1, λ2) can be
found in the thesis of D. Rocchetti (2008) ;

I this regularity is essential in the study of the null
controllability problem
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Well-posedness

Under assumptions (Hs(A)) :

Proposition

The unbounded operator (A1,D(A1)) defined by

D(A1) := H2
A(Ω) ∩ H1

A,0(Ω),

and
∀u ∈ D(A1), A1u = div(A∇u),

is m-dissipative and self-adjoint, with dense domain in L2(Ω).

Therefore (A1,D(A1)) generates a strongly C0-semi-group in
L2(Ω) that can be proved to be analytic.
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Well-posedness

Consequently :

Proposition

Let h ∈ L2(ΩT ) be given. Then for all u0 ∈ L2(Ω), the problem
ut − div (A(x)∇u) = h(x , t), x ∈ Ω, t > 0

u(t, x) = 0 on Γ,

u(0, x) = u0(x)

has a unique mild solution satisfying

u ∈ C0([0,T ]; L2(Ω)) ∩ L2(0,T ; H1
A,0(Ω)).

Moreover, if u0 ∈ H2
A(Ω) ∩ H1

A,0(Ω), then

u ∈ C0([0,T ]; H2
A(Ω) ∩ H1

A,0(Ω)) ∩ H1(0,T ; H1
A,0(Ω)).
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Null controllability result

Theorem

Assume that A satisfies Hypothesis (Hs(A)). Let T > 0 be given
and consider ω any non-empty open subset of Ω. Then for all
u0 ∈ L2(Ω), there exists h ∈ L2(ΩT ) such that the solution u of

ut − div (A(x)∇u) = h(x , t)χω, x ∈ Ω, t > 0

u(t, x) = 0 on Γ,

u(0, x) = u0(x)

satisfies u(T , ·) = 0 in L2(Ω).
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Associated observability estimate

The null controllability result derives from the following
observability estimate :

Theorem

Under (Hs(A)), there is some C (α,T ) such that, given
vT ∈ L2(Ω), the solution v of the adjoint problem

vt + div (A(x)∇v) = 0, x ∈ Ω, t > 0

v(t, x) = 0 on Γ,

v(T , x) = vT (x)

satisfies : ∫
Ω

v(0, x)2 dx ≤ C (α,T )

∫ T

0

∫
ω

v(t, x)2 dx dt.

Hence : usual observability estimate, but in the degenerate context.
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Extensions and other results

As in the 1D case :

I extension to the weakened assumptions (Hg (A)) ;

I null controllability result in the strongly degenerate case
α ∈ [1, 2[ (with the generalized Neumann boundary condition
A∇u · ν = 0 on Γ) ;

I negative result in the case α ≥ 2.
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Main steps in the proof of the positive controllability result

The observability results derives from a Carleman estimate related
to the degenerate problem :

I awful computations,

I some useful tools : a special geometrical lemma, a special
Hardy type inequality,

I awful computations

What does not help :

I the operator is degenerate,

I the solution is not regular enough up to the boundary,

What helps :

I the degeneracy occurs only on the boundary, in a very
specified way ((Hs(A)) or (Hg (A))),

I the solution has some regularity up to the boundary.
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The useful geometrical lemma

Lemma

Let Ω ⊂ Rn be a bounded domain with boundary of class C4, let
ω0 ⊂ Ω be an open set away from Γ, and let α ∈ [0, 2).
Then there exists a positive number η > 0 and a function
φ ∈ C(Ω) ∩ C4(Ω) such that(i) ∀x ∈ C (Γ, η) φ(x) =

1

2− α
d(x , Γ)2−α,

(ii) {x ∈ Ω | ∇φ(x) = 0} ⊂ ω0.

In particular, by (i), φ also satisfies

∀x ∈ C (Γ, η) ∇φ(x) = −d(x , Γ)1−αν(pΓ(x)) = −d(x , Γ)1−αε1(x).

Remark : In the nondegenerate case, Fursikov-Imanuvilov : (i) was :

φ(x) = 0 and ∇φ(x) · ν(x) < 0 for all x ∈ Γ.
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Ideas of the proof of the geometrical lemma

I sufficient to prove it in the case α = 1 ;

I x 7→ d(x , Γ) is C 4 in some {x ∈ Ω, d(x , Γ) < η1}, and can be
extended in a C 4 function on Ω ;

I density of the Morse functions and suitable convex
combination : there is some Morse function θ̃ : Ω→ R, C 4,
such that

θ̃(x) = d(x , Γ) on a neighborhood of Γ ;

I construction of some diffeomorphism that moves all the
critical points of θ̃ on ω0.

Remarks : - the construction is much more simple when Ω is
convex ;
- this function is essential to “balance” the effect of the degeneracy.
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The useful Hardy type inequality

Theorem

There is some η0 > 0 such that, given 0 < η < η0 and α ∈ [0, 1),
there is a positive constant CH(α) (independent of η) such that,
for all functions z ∈ H1

A,0(Ω),∫
C(Γ,η)

d(x , Γ)α−2z(x)2 dx

≤ CH(α)

∫
C(Γ,η)

d(x , Γ)α(∇z(x) · ε1(x))2 dx .

Remarks : - CH(α) = C
(α−1)2 ;

- the usual Hardy type inequality (Opic-Kufner) involves all the
derivatives of z :∫

Ω
w1(x)z(x)2 dx ≤ C

∫
Ω

w2(x)|∇z |2 dx ;

- it is essential for us to use only the ”normal” derivative ∂ε1z .
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Ideas of the proof of the Hardy type inequality

I normal parametrization of the boundary by arclength :
Γ = γ([0, `(Γ)]), γ(0) = γ(`(Γ)), |γ′(t)| = 1 ;

I this gives a parametrization of the neighborhood C (Γ, η) of Γ :

ψ[0, `(Γ)]× (0, η)→ C (Γ, η), ψ(s, t) = γ(s)− tν(γ(s)) :

ψ is a C 1-diffeomorphism between (0, `(Γ))× (0, η) and
C (Γ, η) \ ψ({0} × (0, η)).

Then∫∫
C(Γ,η)

d(x , Γ)α−2z(x)2 dx

=

∫ `(Γ)

0

∫ η

0
tα−2z(ψ(s, t))2|Jψ(s, t)| dt ds

≤ C0

∫ `(Γ)

0

(∫ η

0
tα−2z(ψ(s, t))2 dt

)
ds.
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Since z ∈ H1
A,0(Ω) : a.e. s ∈ (0, `(Γ)), the function

Zs : Zs(t) = z(ψ(s, t)) is absolutely continuous on (0, η), and
Zs(0) = 0. Hence the 1D Hardy type inequality says :∫ η

0
tα−2Zs(t)2 dt ≤ CH(α)

∫ η

0
tα

dZs

dt
(t)2 dt

= CH(α)

∫ η

0
tα(∇z(ψ(s, t)), ν(γ(s)))2 dt.

We integrate with respect to s ∈ (0, `(Γ)) :

∫ `(Γ)

0

(∫ η

0
tα−2z(ψ(s, t))2 dt

)
ds

≤ CH(α)

∫ `(Γ)

0

∫ η

0
tα(∇z(ψ(s, t)), ν(γ(s)))2 dt ds

≤ CH(α)C0

∫∫
C(Γ,η)

d(x , Γ)α(∇z(x) · ε1(x))2 dx .
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The standard form of the Carleman estimate

We consider the solution of the adjoint problem
wt + div (A(x)∇w) = f , x ∈ Ω, t > 0,

w(t, x) = 0 on Γ,

w(T , x) = wT (x).

A Carleman estimate will be of the type∫∫
ΩT

weight0w 2 + weight1|∇w |2 + weight2|D2w |2 + weight3w 2
t

≤ C

∫∫
ΩT

weight4f 2 + C

∫∫
ωT

weight5w 2,

hence a parabolic regularity type result, but without involving
‖wT‖.



26/30

How to obtain the Carleman estimate : the starting point

Some useful weight functions :

θ(t) =
( 1

t(T − t)

)4
, σ(t, x) = θ(t)

(
e2S‖φ‖∞ − eSφ(x)

)
,

and
z(t, x) := e−Rσw .

Then z satisfies the differential problem

P+
R z + P−R z = fe−Rσ,

and so

‖P+
R z‖2 + ‖P−R z‖2 + 2〈P+

R z ,P−R z〉 = ‖fe−Rσ‖2,

and the Carleman estimates comes from a suitable lower bound of
the scalar product 〈P+

R z ,P−R z〉.
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How to obtain the Carleman estimate : description of the
method

I the solution is not enough regular to compute everything
directly : we first compute∫∫

Ωδ
T

P+
R z ,P−R z ,

where Ωδ
T = {x ∈ Ω, d(x , Γ) > δ} ;

I this brings∫∫
Ωδ

T

P+
R z ,P−R z = DT δ

0 (z) + DT δ
1 (∇z) + BT δ(z ,∇z);

I we let δ → 0 :
- DT δ

0 (z)→ DT0(z), to be bound from below (Hardy, φ,...) ;
- DT δ

1 (∇z)→ DT1(∇z), to be bound from below (...) ;
- BT δ(z ,∇z)→ 0, thanks to the choice of φ and the
regularity results up to the boundary.
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Example of the convergence of the boundary terms
In particular :

δ

∫ T

0

∫
Γδ

(∇z , ε2(γ))2dγ dt → 0 as δ → 0 :

indeed, if z ∈ C∞(Ω), then

δ

∫
Γδ

(∇z , ε2(γ))2dγ dt = value at δ = 0 +

∫ δ

0
derivative /δ

= 0 +

∫∫
C(Γ,δ)

· · ·

≤ C

∫∫
C(Γ,δ)

(∇z , ε2)2 + C

∫∫
C(Γ,δ)

(d(x , Γ)α/2∂2
ε1,ε2

z)2;

hence

δ

∫
Γδ

(∇z , ε2(γ))2dγ dt → 0 as δ → 0

for all z ∈ C∞(Ω), but also by density for all z ∈ H2
A(Ω), thanks to

the results of regularity up to the boundary of elements of H2
A(Ω).
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The Carleman estimate
Consider

ρ = RSθeSφ.

then, for sufficiently large parameters R, S , we obtain :∫∫
ΩT

ρ

θ
A∇w · ∇we−2Rσ ≤ C

∫∫
ΩT

f 2e−2Rσ + C

∫∫
ωT

ρ3w 2e−2Rσ,

which implies the desired observability estimate (using the Hardy
type inequality).
Same bound for

S

∫∫
ΩT

(A∇φ,∇φ)2ρ3w 2e−2Rσ,

∫∫
C(Γ,η)T

d(x , Γ)2−αρ3w 2e−2Rσ,

∫∫
C(Γ,η)T

d(x , Γ)αρ(∇w , ε1)2e−2Rσ,

and similar estilates for wt and D2w (useful to obtain the first
estimate).
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No null controllability when α ≥ 2

Construction of an explicit example :

I Ω = disc of radius 1 ; explicit matrix A(x) whose eigenvalues
are λ1(x) = (1− r)α, λ2(x) = 1 ;

I transformation to write the problem in polar coordinates : the
associated function v(r , θ) is solution of a degenerate
parabolic equation in 2D ;

I the means w(r) =
∫ 2π

0 v(r , θ) dθ is solution of a degenerate
parabolic equation in 1D, for which we already know that
there is no null controllability ;

I return to the initial problem.


