Null controllability properties of some degenerate
parabolic equations in space dimension 2

P. Martinez

Institut de Mathématiques de Toulouse
Université Paul Sabatier, Toulouse IlI

DICOP’08 - Cortona - 22-26 September 2008



Joint work with
- Piermarco Cannarsa, Univ. Tor Vergata, Roma 2,
- Judith Vancostenoble, Univ. Toulouse 3,

- Dario Rocchetti, Univ. Tor Vergata, Roma 2.



Presentation of the problem

Q bounded, smooth domain of R? (R"); w nonempty open subset
of Q.

A:Q — S(R), A(x) >0,
but non uniformly positive :
Vx € 0, det(A(x)) =0.
Null controllability properties of
ur —div (A(x)Vu) = h(x, t)xw,

boundary conditions, 7

initial condition

(First step to exact controllability to trajectories...)
Uniformly positive case : heat equation Lebeau-Robbiano (95),
general case : Fursikov-Imanuvilov (95,96)



Some examples in 1D

> aeronautics : the Crocco type equation (boundary layer
model) :

ur + a(y)ux — (b(y)uy), = localized control,x € (0, L), y(0,1)

with a(1) = 0 = b(1);

» climatology : the Budyko-Sellers model :
RT: — (1 = x®) T)x — QS(1 — a) = —I(T), x € (-1,1);
» economics : the Black-Scholes equation of the type :

Uy — X+ =+, x € (0,L).



An example in N-D

» biology : the Fleming Viot model :
u — Tr (C(x)D%u) - = f,

where
C(x) = (cij(x)ij»  cij(x) = xi(d; — x7),
and

x€{x €01, x <1}

example : N=2 : degenerate along the sides of the triangle.



Main results on the 1D degenerate problems : the simplest
problem

The simplest problem in divergence form (Cannarsa, Martinez,
Vancostenoble (2008)) :

ur — (X% ux)x = h(x, t)X(a,p), X € (0,1),t >0

» a € [0,1] : well-posed with the Dirichlet boundary condition
(u(0,t) =0 = u(t,1), and null controllable;

» o € [1,2[ : well-posed with the Neumann boundary condition
(x“uy)(0,t) = 0 = u(1, t), and null controllable;

Main tools : Carleman estimates associated to the degenerate
problem, and Hardy type inequalities;



» « > 2 : well-posed with the Neumann boundary condition
(x“ux)(0,t) = 0 = u(1,t), and not null controllable;
Main tools : application of a result of Escauriaza, Seregin,
Sverak (2004) related to the backward uniqueness properties
of the heat equation in half space.
Remark : Strong connection between degenerate problems in
bounded domains and nondegenerate problems in unbounded
domains



Main results on the 1D degenerate problems : other
problems

> in divergence form (Martinez, Vancostenoble (2006)) :

ur — (a(x)ux)x = localized control,

with a(0) =0 = a(1);

» with semilinear terms (Alabau Boussouira, Cannarsa, Fragnelli
(2006)) :

ur — (a(x)ux)x + f(u) = localized control,

» in nondivergence form, with drift (Cannarsa, Fragnelli,
Rocchetti (2007))

up — a(x)ux + b(x)uyx = localized control.



The problem in 2D : simplest assumptions on the
degeneracy

A(x) ~ < )q(gX) )\Z(ZX) ) with 0 < Aq(x) < Aa(x).

£1(x) denotes the eigenvector associated to A1(x), and e2(x) the
eigenvector associated to A(x).

Simplest assumptions (Hs(A)) : Q is of class C*, and there exists

some « > 0, and some neighborhood of the boundary I" such that :

> \1(x) = d(x, ) for all x € V(IN),

> c1(x) = v(pr(x)) for all x € V(I'), where pr(x) is the
projection of x on the boundary T,

> 0<m< A(x) < M forall x € Q.



More general assumptions on the degeneracy

(Hg(A)) : there exists some a > 0 such that :
> \i(x) ~d(x,MN)*as x —T,
> c1(x) —v(pr(x)) = 0as x — T,
> 0<m< M(x) <M forall x € Q.

(work in progress)

10/30



The weakly degenerate control problem

We consider

up — div (A(x)Vu) = h(x, t)Xw,
boundary conditions,
initial condition,

under (Hs(A)) (resp. (Hg(A))), with o € [0,1).

Question : given T > 0, ug €77, does there exist h €77 such that
u(T)=07?
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The functional setting for the well-posedness

HA(Q) := {u e L2(Q) N HL (Q),AVu-Vu e L1(Q)},
— {ue 3(Q)NHL (), / d(x, T)* (Vi 1)2-4(V, £2)? < o0},
)

HA(Q) := {u € HA(Q) N H2.(Q), div (AVu) € [2(Q)},
endowed with their natural norms.
Proposition

> Hi(Q) and H2(Q) are Hilbert spaces; C>(Q) is dense in
both ;

> the trace operator v : HY(Q) — L?(T) can be extended into
Ya: HA(Q) — L3(T);

> HLo(9) == D)™ = {u € H}(Q), va(u) = 0}.
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The functional setting : regularity up to the boundary

Difficulty : H?(Q) # H3(Q).
Directional derivative : 0.,u := (Vu,¢;); then

Proposition

For all u € H3(Q), we have :

851<d(x,r)0‘851u>, d(x,1)*202 _u 8522u€L2(Q).

€1,6277

» a more general study (weakened conditions on A1, \2) can be
found in the thesis of D. Rocchetti (2008) ;

» this regularity is essential in the study of the null
controllability problem
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Well-posedness

Under assumptions (Hs(A)) :

Proposition
The unbounded operator (A1, D(A1)) defined by

D(A1) = HA(Q) N Ha (%),

and
Yu € D(Al), Aju = diV(AVU),

is m-dissipative and self-adjoint, with dense domain in L?().

Therefore (Az, D(A;1)) generates a strongly Co-semi-group in
L2(Q) that can be proved to be analytic.
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Well-posedness

Consequently :

Proposition
Let h € L?(Q7) be given. Then for all up € L?(2), the problem

ur — div (A(x)Vu) = h(x,t),x € Q,t >0
u(t,x) =0onT,
u(0,x) = up(x)

has a unique mild solution satisfying
u € CO([0, T]; L2(Q)) N L2(0, T; Ha ().
Moreover, if uy € H3(Q2) N H}LO(Q), then

u € CO([0, TJ; HA() N HAo(Q)) N HY(0, T; Ha o(2))-
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Null controllability result

Theorem

Assume that A satisfies Hypothesis (Hs(A)). Let T > 0 be given
and consider w any non-empty open subset of Q). Then for all
up € L2(R), there exists h € L?(Q1) such that the solution u of

ur — div (A(x)Vu) = h(x, t)xw, x€Q,t>0
u(t,x)=0onT,
U(O,X) = UO(X)

satisfies u(T,-) = 0 in L%(%).
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Associated observability estimate

The null controllability result derives from the following
observability estimate :

Theorem

Under (Hs(A)), there is some C(a, T) such that, given
vr € L%(RQ), the solution v of the adjoint problem

ve +div (A(x)Vv) =0, xe€Q,t>0
v(t,x)=0onT,
v(T,x) = vr(x)

satisfies :

[ 052 dx < cla // (£.%)% di d.

Hence : usual observability estimate, but in the degenerate context.
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Extensions and other results

As in the 1D case :
> extension to the weakened assumptions (H,(A));

» null controllability result in the strongly degenerate case

a € [1,2[ (with the generalized Neumann boundary condition
AVu-v=0onT);

> negative result in the case a > 2.
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Main steps in the proof of the positive controllability result

The observability results derives from a Carleman estimate related
to the degenerate problem :
» awful computations,
» some useful tools : a special geometrical lemma, a special
Hardy type inequality,
» awful computations
What does not help :
> the operator is degenerate,
» the solution is not regular enough up to the boundary,
What helps :

» the degeneracy occurs only on the boundary, in a very
specified way ((Hs(A)) or (Hg(A))),
» the solution has some regularity up to the boundary.
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The useful geometrical lemma
Lemma

Let Q C R" be a bounded domain with boundary of class C*, let
wo C 2 be an open set away from I, and let o € [0, 2).

Then there exists a positive number 1 > 0 and a function

® € C(Q)NCHQ) such that

() VxeCn) 60) = 5o —d(ur)2",

(i) {xeQ| Veo(x) =0} C wo.

In particular, by (i), ¢ also satisfies

Vx € C(M,n) Vo(x) = —d(x, N v(pr(x)) = —d(x, %1 (x).

Remark : In the nondegenerate case, Fursikov-Imanuvilov : (i) was :

#(x) =0 and V¢(x)-v(x) <0 forall xeT.
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|deas of the proof of the geometrical lemma

» sufficient to prove it in the case o = 1;

> x+— d(x,) is C* in some {x € Q,d(x,I) <1}, and can be
extended in a C* function on Q;

» density of the Morse functions and suitable convex
combination : there is some Morse function 6 : Q — R, C?,
such that

O(x) = d(x,I) on a neighborhood of I ;
» construction of some diffeomorphism that moves all the
critical points of 6 on wy.

Remarks : - the construction is much more simple when  is
convex ;
- this function is essential to “balance” the effect of the degeneracy.
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The useful Hardy type inequality

Theorem

There is some ng > 0 such that, given 0 < n < ng and « € [0, 1),
there is a positive constant Cy(«) (independent of n) such that,
for all functions z € H} (),

/ d(x, 1) 22(x)? dx
c(rm)

< CH(a)/ d(x,N*(Vz(x) - 1(x))? dx.
c(Fym)

Remarks : - Cy(a) = =k
- the usual Hardy type inequality (Opic-Kufner) involves all the
derivatives of z :

/Q wn(x)2(x)2 dx < C /Q e TR s

- it is essential for us to use only the "normal” derivative 0., z.
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|deas of the proof of the Hardy type inequality

» normal parametrization of the boundary by arclength :
F=~([0,£(M)]), 7(0) = ~(&T)), ' (t)l = 1;
> this gives a parametrization of the neighborhood C(I',7) of I :

P[0, £(M)] < (0,m) — C(T,m), o(s,t) =(s) — tv(v(s)) :

1 is a Cl-diffeomorphism between (0, ¢(I")) x (0,7) and
C(,m) \ $({0} x (0, 7).
Then

//C(I',n) d(x, )2 2z(x)? dx

4(I")
= [ [ et 02us. ol e s
0 0

< G /0 0 ( /O " =2,y (s, 1)) dt) ds.



Since z € Hy () - a.e. s € (0,4(I)), the function
Zs : Z(t) = z(1(s, t)) is absolutely continuous on (0,7), and
Zs(0) = 0. Hence the 1D Hardy type inequality says :

n n
/ t92Z,(t)> dt < CH(a)/ £ dZS(t)2 dt

0 0 dt

- Culo) | ! 1V 2((s, £)), v(1(5)))? dt.

We integrate with respect to s € (0,4(I)) :

«ry , m
/O ( / ‘ 2z(w(s,t))2dt> ds

0
LTy pm
< i) /0 /O (Y 2(1(s, 1)), v((5)))? dt ds

< CH(a) Gy //C(r )d(x, NY(Vz(x) - e1(x))? dx.
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The standard form of the Carleman estimate

We consider the solution of the adjoint problem

we +div (A(xX)Vw) =f, xeQ,t>0,
w(t,x)=0onT,
w(T,x) = wr(x).

A Carleman estimate will be of the type

// weightow? + weight; |[Vw|? 4 weight,| D?w|* + weightw?
Qr

< C// weight, f? + C// weightsw?,
QT wT

hence a parabolic regularity type result, but without involving
[wrl.
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How to obtain the Carleman estimate : the starting point

Some useful weight functions :

0(t) = (t(Tl_t))4 o(t,x) = 0(t) (519l — 599,

and

z(t,x) = e Row.

Then z satisfies the differential problem
Piz+ Prz= fe=Ro,
and so
1PE2|1* + || PR 2|l + 2(PE 2, Pr 2) = [|fe= "%,
and the Carleman estimates comes from a suitable lower bound of

the scalar product (P} z, Pp z).
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How to obtain the Carleman estimate : description of the
method

» the solution is not enough regular to compute everything
directly : we first compute

// PEZ, Pr z,
Q

[
5
where Q% = {x € Q,d(x,T) > §};
» this brings

//5 Ptz Prz = DTg(z) + DT{(Vz) + BT’(z,Vz);
QT
> welet d —0:

- DT{(z) — DTy(z), to be bound from below (Hardy, ¢,...);

- DT{(Vz) — DT1(Vz), to be bound from below (...);

- BT%(z,Vz) — 0, thanks to the choice of ¢ and the

regularity results up to the boundary. 27/30



Example of the convergence of the boundary terms

In particular :

//V252 dfydt—>0 asd — 0:
e

indeed, if z € C°°(Q), then

6
§ | (Vz,e2(7))?dydt = value at § = 0 +/ derivative /§
0

e
:0+//
C(r,5)
<C// (Vz,22) +C// (d(x, M)/ _ 2)%
c(r,s) C(r,5)

§ | (Vz,e2(7))?dydt -0 asé—0
[é

for all z € C*°(RQ), but also by density for all z € H%(Q), thanks to
the results of regularity up to the boundary of elements of Hf\(Q).

hence
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The Carleman estimate

Consider
p = RS0e>?.

then, for sufficiently large parameters R, S, we obtain :

// LAV W - Vwe=2Re < C// f2e=2Ro 4 C// p>we 2R
QT 9 QT JwWT

which implies the desired observability estimate (using the Hardy

type inequality).
Same bound for

s// (AV ¢, V)2 p3w2e 2Ro,
Qr

J[dbrrepwre s [ dinpvwae 2,
C(rv’rl)T C(rvn)T

and similar estilates for w; and D?w (useful to obtain the first
estimate).
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No null controllability when a@ > 2

Construction of an explicit example :
» Q = disc of radius 1; explicit matrix A(x) whose eigenvalues
are \1(x) = (1 —r)®, Xa(x) =1;
» transformation to write the problem in polar coordinates : the

associated function v(r, ) is solution of a degenerate
parabolic equation in 2D ;

> the means w(r) = f02” v(r,0) db is solution of a degenerate
parabolic equation in 1D, for which we already know that
there is no null controllability ;

» return to the initial problem.
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