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Study of the asymptotic behavior of the sys-

tem

η
∂w

∂t
− ∆w = −

∂u

∂t
, η > 0

δ
∂u

∂t
− ∆u+ f(u) = w, δ > 0

in a bounded regular domain Ω ⊂ R3

Proposed by G. Caginalp to model melting-

solidification phenomena

w: (relative) temperature

u: order parameter



Other motivations:

• Singular perturbation of the Cahn-Hilliard

equation:

η = 0: Cahn-Hilliard equation with viscosity

∂u

∂t
− δ

∂

∂t
∆u+ ∆2u− ∆f(u) = 0

η = δ = 0: Cahn-Hilliard equation

∂u

∂t
+ ∆2u− ∆f(u) = 0

• Nonisothermal Allen-Cahn model



One has satisfactory results for classical boun-

dary conditions (Neumann, Dirichlet, mixed)

• Regular potentials (typically, f(s) = s3− s):

- Well-posedness: G. Caginalp; C.-M. Elliott,

S. Zheng

- Existence of finite dimensional attractors:

P.W. Bates, S. Zheng; D. Brochet, X. Chen,

D. Hilhorst; A. Miranville, S. Zelik; ...

-Convergence of solutions to steady states:

S. Aizicovici, E. Feireisl, F. Issard-Roch; Z.

Zhang; ...

- Generalizations:

Memory effects: S. Aizicovici, E. Feireisl; C.

Giorgi, M. Grasselli, V. Pata; ...

Hyperbolic relaxation: M. Grasselli, H. Pet-

zeltovà, G. Schimperna; H. Wu, M. Grasselli,

S. Zheng



• Singular potentials:

Thermodynamically relevant singular poten-

tial:

f(s) = −2κ0s+ κ1 ln
1 + s

1 − s
, s ∈ (−1,1)

0 < κ0 < κ1

• Well-posedness: M. Grasselli, A. Miranville,

V. Pata, S. Zelik; M. Grasselli, H. Petzeltovà,

G. Schimperna

• Existence of finite dimensional attractors:

M. Grasselli, A. Miranville, V. Pata, S. Zelik;

L. Cherfils, A. Miranville

• Convergence of solutions to steady states:

M. Grasselli, H. Petzeltovà, G. Schimperna;

L. Cherfils, A. Miranville

• Hyperbolic relaxation: M. Grasselli, A. Mi-

ranville, V. Pata, S. Zelik



Dynamic boundary condition:

∂u

∂t
− ∆Γu+ λu+ g(u) +

∂u

∂ν
= 0 on Γ, λ > 0

Γ = ∂Ω

∆Γ: Laplace-Beltrami operator

ν: unit outer normal to Γ

Proposed in the context of the Cahn-Hilliard

equation to account for interactions with the

walls for confined systems

Original derivation: g(s) ≡ c = Const.

c: characterizes the preferential attraction of

one of the phases by the walls

c = 0: no preferential attraction



Remark: One expects w and u to be cou-
pled in the dynamic boundary conditions (for
regular potentials: C.G. Gal, M. Grasselli, A.
Miranville)

Initial and boundary value problem:

∂w
∂t

− ∆w = −∂u
∂t

∂u
∂t

− ∆u+ f(u) = w
∂w
∂ν

= 0 on Γ
∂u
∂t

− ∆Γu+ λu+ g(u) + ∂u
∂ν

= 0 on Γ

w|t=0 = w0
u|t=0 = u0

We rewrite the system in the equivalent form

∂w
∂t

− ∆w = −∂u
∂t

∂u
∂t

− ∆u+ f(u) = w
∂w
∂ν

= 0 on Γ
∂ψ
∂t

− ∆Γψ+ λψ+ g(ψ) + ∂u
∂ν

= 0 on Γ, ψ = u|Γ
w|t=0 = w0
u|t=0 = u0, ψ|t=0 = ψ0 (ψ0 = u0|Γ)



Regular potentials (f and g):

• Well-posedness: R. Chill, E. Fašangovà, J.

Prüss; A. Miranville, S. Gatti; C.G. Gal, M.

Grasselli

• Existence of finite dimensional attractors:

A. Miranville, S. Gatti; C.G. Gal, M. Grasselli;

C.G. Gal, M. Grasselli, A. Miranville

• Convergence of solutions to steady states:

R. Chill, E. Fašangovà, J. Prüss; C.G. Gal,

M. Grasselli

• Coupled boundary conditions: C.G. Gal, M.

Grasselli, A. Miranville



Singular potential f: an essential difficulty is

to prove that u remains in (−1,1)

→ We have to prove that u is separated from

−1 and 1

Remark: For regular potentials, we cannot

prove in general that u ∈ [−1,1]



The case g ≡ 0

We can more generally assume that

λ > max(−g(1), g(−1))

Assumptions on f :

f ∈ C3(−1,1), lims→±1 f(s) = ±∞
lims→±1 f

′(s) = +∞

Asumptions on z0 = (w0, u0, ψ0):

E(z0) = D(u0) + ‖w0‖
2
H2 + ‖u0‖

2
H2

+‖ψ0‖
2
H2(Γ)

< +∞, D(u0) > 0

‖ψ0‖L∞(Γ) < 1

u0|Γ = ψ0

D(ϕ) = 1
1−‖ϕ‖L∞

→ ‖u0‖L∞ < 1



• Uniqueness:

Theorem: For any 2 solutions z1 and z2 with

initial data z1,0 and z2,0 satisfying the above

assumptions,

‖w1 − w2‖
2
L2 + ‖u1 − u2‖

2
L2 + ‖ψ1 − ψ2‖

2
L2(Γ)

≤ c1e
c2t(‖w1,0 − w2,0‖

2
L2 + ‖u1,0 − u2,0‖

2
L2

+‖ψ1,0 − ψ2,0‖
2
L2(Γ)

)

where c1 and c2 depend on the H2-norms of

the initial data and on D(u0,i), i = 1,2.



• Existence:

Essential step: prove that

‖u(t)‖L∞ < 1, t ≥ 0

We a priori assume that

‖u‖L∞(Ω×R+) < 1

a) We have

‖w(t)‖2
H2 + ‖u(t)‖2

H1 + ‖ψ(t)‖2
H1(Γ)

+
∫ t
0 e

−α(t−s)(‖∂u
∂t

(s)‖2
H1 + ‖∂ψ

∂t
(s)‖2

H1(Γ)
)ds

≤ Q(E(z0))e
−αt + cI0



where Q monotone increasing and α > 0 are

independent of z0 and cI0 only depends on

I0 =< w0 + u0 >

Remark: The quantity < w(t) + u(t) > is

conserved

b) Separation property

∃β > 0 s.t.

‖w(t)‖L∞ ≤ c‖w(t)‖H2 ≤ β, t ≥ 0

We fix δ ∈ (0,1) s.t.

‖u0‖L∞ ≤ δ

f(δ) ≥ β



We set v = u− δ and φ = ψ − δ:

∂v
∂t

− ∆v+ f(u) − f(δ) = w − f(δ)
∂φ
∂t − ∆Γφ+ λφ+ ∂v

∂ν = −λδ on Γ

Since

w − f(δ) ≤ 0, t ≥ 0
−λδ ≤ 0
v|t=0 = u0 − δ ≤ 0

We have

u(t, x) ≤ δ, t ≥ 0, a.e. x ∈ Ω
ψ(t, x) ≤ δ, t ≥ 0, a.e. x ∈ Ω

We proceed similarly for a lower bound



→ ∃δ ∈ (0,1) s.t.

‖u(t)‖L∞ ≤ δ, t ≥ 0
‖ψ(t)‖L∞(Γ) ≤ δ, t ≥ 0

c) We rewrite the equations for u and ψ as

an elliptic system:

−∆u = h1 ≡ w − ∂u
∂t

− f(u)

−∆Γψ+ λψ+ ∂u
∂ν = h2 ≡ −∂ψ

∂t on Γ

u|Γ = ψ

h1 ∈ L2(Ω), h2 ∈ L2(Γ)

Elliptic regularity theorem (A. Miranville, S.

Zelik):

‖u(t)‖H2 + ‖ψ(t)‖H2(Γ) ≤ M, t ≥ 0

M = M(D(u0), ‖w0‖H2, ‖u0‖H2, ‖ψ0‖H2(Γ))



d) ∃t1 > 0 s.t.

‖w(t)‖H3+‖u(t)‖H3+‖ψ(t)‖H3(Γ) ≤M1, t ≥ t1

M1 = M1(D(u0), ‖w0‖H2, ‖u0‖H2, ‖ψ0‖H2(Γ))

If, furthermore,

‖w0‖H3 + ‖u0‖H3 + ‖ψ0‖H3(Γ) < +∞

then

‖w(t)‖H3+‖u(t)‖H3+‖ψ(t)‖H3(Γ) ≤ M2, t ≥ 0

M2 = M2(D(u0), ‖w0‖H3, ‖u0‖H3, ‖ψ0‖H3(Γ))



e) Existence of a solution

- We regularize f s.t. the above estimates

hold with the same constants

- We prove the existence of a local solution

- This solution is in fact global

- We pass to the limit in the regularized prob-

lem

Remark: We can consider initial data which

contain the pure states (i.e., u0 can take the

values −1 and 1): we set

Φ = {z = (w, u, ψ) ∈ H2(Ω) ×H2(Ω) ×H2(Γ),

u|Γ = ψ, ∂w
∂ν

|Γ = 0, ‖u‖L∞ < 1, ‖ψ‖L∞(Γ) < 1}

We have the existence and uniqueness of so-

lutions in the closure L = {z ∈ L2(Ω)×L∞(Ω)

×L∞(Γ), ‖u‖L∞ ≤ 1, ‖ψ‖L∞(Γ) ≤ 1} of Φ in

L2(Ω) × L2(Ω) × L2(Γ)



Dissipativity

Phase space:

ΦM = {z ∈ Φ, |I0| ≤ M}

I0 =< w+ u >

Dissipative estimate for w: if D(u0)+‖z0‖
2
Φ ≤

R2
0,

‖w(t)‖H2 ≤ Q(R0)e
−αt + cI0, t ≥ 0, α > 0

→ ∃t0 = t0(R0,M) s.t., if t ≥ t0,

‖w(t)‖L∞ ≤ cM

cM independent of R0



We choose δM ∈ (0,1) (δM is independent of

R0) and t1 ≥ t0 s.t.

(i) f(δM) ≥ cM + 1

(ii) α =
1−δM
t1

is small enough (≤ 1) s.t.

f(µ) ≡ f(1 − αt0) ≥ βM + 1

‖w(t)‖L∞ ≤ βM = βM(R0), t ≥ 0, cM ≤ βM

α ≤ λδM

We set

y+(t) = 1 − αt, 0 ≤ t ≤ t1
δM , t ≥ t1



We set v = u− y+ and φ = ψ − y+:

∂v
∂t

− ∆v+ f(u) − f(y+) = H(t)
∂φ
∂t − ∆Γφ+ ∂v

∂t + λφ = G(t)

H(t) = w(t) − f(y+(t)) −
∂y+
∂t

(t)

G(t) = −λy+(t) −
∂y+

∂t
(t) ≤ −λδM + α ≤ 0

Furthermore,

H(t) ≤ βM + 1 − f(µ) ≤ 0, 0 ≤ t ≤ t0
cM + 1 − f(δM) ≤ 0, t ≥ t0



This yields

u(t) ≤ y+(t), t ≥ 0

→ u(t) ≤ δM , t ≥ t1

Theorem: The problem possesses the finite

dimensional global attractor AM in ΦM .

Remarks: a) AM is the smallest compact set

which is invariant and attracts all bounded

sets of initial data as t → +∞

b) Dimension: covering dimensions (Haus-

dorff or fractal dimension)

c) Even though the initial phase space is infi-

nite dimensional, the limit dynamics is finite

dimensional and can be described by a finite

number of parameters



The general case

We are not able to consider constants (or

solutions to ODEs) as upper- and lower-solu-

tions

We will consider space-dependent upper- and

lower-solutions

We set v = u − y+ and φ = ψ − y+|Γ, y+ =

y+(x) regular enough:

∂v
∂t

− ∆v+ f(v) − f(y+) = w − f(y+) − ∆y+
∂φ
∂t

− ∆Γφ+ g(ψ) − g(y+|Γ) + ∂v
∂ν

+ λφ

= −g(y+|Γ) − ∆Γy+|Γ − λy+|Γ −
∂y+
∂ν |Γ

No a priori information on the sign of g(y+|Γ)

+∆Γy+|Γ + λy+|Γ

→ One solution is to have
∂y+
∂ν |Γ positive and

large

→ We need stronger assumptions on f



Further assumptions on f :

f(1 − s) behaves like
c+
sp

in the neighborhood

of 0+, c+ > 0, p > 1

f(−1+s) behaves like
c−
sq

in the neighborhood

of 0+, c− < 0, q > 1

Remark: These assumptions are natural and

do not seem to be related with the choice

of upper- and lower-solutions: consider the

”best” upper-solution

−∆y+ + f(y+) = β

y+|Γ = 1

Then, close to the boundary,

y+(x) ≤ 1− cd(x)
2

1+p, c > 0, d(x) = dist(x,Γ)



→ We need the condition p > 1 to have
∂y+
∂ν

large close to Γ

Assumptions on g:

g ∈ C2(R)
lim inf |s|→+∞ g′(s) ≥ 0

either g ≡ Const. or g(s)s ≥ µs2 − µ′,

s ∈ R, µ > 0, µ′ ≥ 0



Construction of a super-solution:

We set, for ǫ > 0 small enough, Ωǫ = {x ∈

Ω, d(x) > ǫ}, d(x) = dist(x,Γ)

We consider the thin domain

Ω − Ωǫ = {x ∈ Ω, 0 < d(x) < ǫ}



We set, for ǫ small enough,

θǫ(s) = 1
ǫ2−r

s2 − 2
ǫ1−r

s+ 1 − ǫr

0 < r < 1, (p+ 1)r > 2

Remark: For p given, p > 1, ∃r such that the

above are satisfied

We set ηǫ = θǫ(d(x)), x ∈ Ω − Ωǫ

The function ηǫ satisfies, for ǫ small enough,

ηǫ ∈ [1 − 2ǫr,1 − ǫr]
ηǫ = 1 − ǫr on Γ
ηǫ = 1 − 2ǫr on Γǫ = ∂Ωǫ
∂ηǫ
∂ν

= 2
ǫ1−r

on Γ
∂ηǫ
∂ν

= 0 on Γǫ

−∆ηǫ + f(ηǫ) ≥ β a.e. x ∈ Ω − Ωǫ

‖w(t)‖L∞ ≤ β, t ≥ 0



We finally set

y+ǫ = ηǫ in Ω − Ωǫ

1 − 2ǫr in Ωǫ

The function y+ǫ satisfies

y+ǫ ∈ H2(Ω)

−∆y+ǫ + f(y+ǫ ) ≥ β a.e. x ∈ Ω

y+ǫ ∈ [1 − 2ǫr,1 − ǫr] a.e. x ∈ Ω

y+ǫ |Γ = 1 − ǫr

∂y+ǫ
∂ν

|Γ = 2
ǫ1−r

→ +∞ as ǫ→ 0+

→ y+ǫ is a super-solution if ǫ is small enough:

u(t, x) ≤ y+ǫ (x) ≤ 1 − ǫr, t ≥ 0, a.e. x ∈ Ω



We proceed similarly for a lower bound

→ Existence and uniqueness of solutions

Open questions:

(i) p = 1 and logarithmic potentials

(ii) Dissipative estimates


