The Caginalp phase-field system with singular potentials and dynamic boundary conditions
 Alain Miranville
 Université de Poitiers

Collaborators: L. Cherfils, S. Gatti

Study of the asymptotic behavior of the system

$$
\eta \frac{\partial w}{\partial t}-\Delta w=-\frac{\partial u}{\partial t}, \eta>0
$$

$$
\delta \frac{\partial u}{\partial t}-\Delta u+f(u)=w, \delta>0
$$

in a bounded regular domain $\Omega \subset R^{3}$

Proposed by G. Caginalp to model meltingsolidification phenomena
w: (relative) temperature
u: order parameter

Other motivations:

- Singular perturbation of the Cahn-Hilliard equation:
$\eta=0$: Cahn-Hilliard equation with viscosity

$$
\frac{\partial u}{\partial t}-\delta \frac{\partial}{\partial t} \Delta u+\Delta^{2} u-\Delta f(u)=0
$$

$\eta=\delta=0$: Cahn-Hilliard equation

$$
\frac{\partial u}{\partial t}+\Delta^{2} u-\Delta f(u)=0
$$

- Nonisothermal Allen-Cahn model

One has satisfactory results for classical boundary conditions (Neumann, Dirichlet, mixed)

- Regular potentials (typically, $f(s)=s^{3}-s$):
- Well-posedness: G. Caginalp; C.-M. Elliott, S. Zheng
- Existence of finite dimensional attractors: P.W. Bates, S. Zheng; D. Brochet, X. Chen, D. Hilhorst; A. Miranville, S. Zelik; ...
-Convergence of solutions to steady states: S. Aizicovici, E. Feireisl, F. Issard-Roch; Z. Zhang; ...
- Generalizations:

Memory effects: S. Aizicovici, E. Feireisl; C. Giorgi, M. Grasselli, V. Pata; ...

Hyperbolic relaxation: M. Grasselli, H. Petzeltovà, G. Schimperna; H. Wu, M. Grasselli, S. Zheng

- Singular potentials:

Thermodynamically relevant singular potential:

$$
\begin{aligned}
& f(s)=-2 \kappa_{0} s+\kappa_{1} \ln \frac{1+s}{1-s}, s \in(-1,1) \\
0 & <\kappa_{0}<\kappa_{1}
\end{aligned}
$$

- Well-posedness: M. Grasselli, A. Miranville, V. Pata, S. Zelik; M. Grasselli, H. Petzeltovà, G. Schimperna
- Existence of finite dimensional attractors: M. Grasselli, A. Miranville, V. Pata, S. Zelik; L. Cherfils, A. Miranville
- Convergence of solutions to steady states: M. Grasselli, H. Petzeltovà, G. Schimperna; L. Cherfils, A. Miranville
- Hyperbolic relaxation: M. Grasselli, A. Miranville, V. Pata, S. Zelik

Dynamic boundary condition:
$\frac{\partial u}{\partial t}-\Delta_{\Gamma} u+\lambda u+g(u)+\frac{\partial u}{\partial \nu}=0$ on $\Gamma, \lambda>0$
$\Gamma=\partial \Omega$
Δ_{Γ} : Laplace-Beltrami operator
ν : unit outer normal to Γ

Proposed in the context of the Cahn-Hilliard equation to account for interactions with the walls for confined systems

Original derivation: $g(s) \equiv c=$ Const.
c : characterizes the preferential attraction of one of the phases by the walls
$c=0$: no preferential attraction

Remark: One expects w and u to be coupled in the dynamic boundary conditions (for regular potentials: C.G. Gal, M. Grasselli, A. Miranville)

Initial and boundary value problem:

$$
\begin{aligned}
& \frac{\partial w}{\partial t}-\Delta w=-\frac{\partial u}{\partial t} \\
& \frac{\partial u}{\partial t}-\Delta u+f(u)=w \\
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \\
& \frac{\partial u}{\partial t}-\Delta\left\ulcorner u+\lambda u+g(u)+\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma\right. \\
& \left.w\right|_{t=0}=w_{0} \\
& \left.u\right|_{t=0}=u_{0}
\end{aligned}
$$

We rewrite the system in the equivalent form

$$
\begin{aligned}
& \frac{\partial w}{\partial t}-\Delta w=-\frac{\partial u}{\partial t} \\
& \frac{\partial u}{\partial t}-\Delta u+f(u)=w \\
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \\
& \frac{\partial \psi}{\partial t}-\Delta \Gamma \psi+\lambda \psi+g(\psi)+\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma, \psi=\left.u\right|_{\Gamma} \\
& \left.w\right|_{t=0}=w_{0} \\
& \left.u\right|_{t=0}=u_{0},\left.\quad \psi\right|_{t=0}=\psi_{0}\left(\psi_{0}=\left.u_{0}\right|_{\Gamma}\right)
\end{aligned}
$$

Regular potentials (f and g):

- Well-posedness: R. Chill, E. Fašangovà, J. Prüss; A. Miranville, S. Gatti; C.G. Gal, M. Grasselli
- Existence of finite dimensional attractors: A. Miranville, S. Gatti; C.G. Gal, M. Grasselli; C.G. Gal, M. Grasselli, A. Miranville
- Convergence of solutions to steady states: R. Chill, E. Fašangovà, J. Prüss; C.G. Gal, M. Grasselli
- Coupled boundary conditions: C.G. Gal, M. Grasselli, A. Miranville

Singular potential f: an essential difficulty is to prove that u remains in $(-1,1)$
\rightarrow We have to prove that u is separated from -1 and 1

Remark: For regular potentials, we cannot prove in general that $u \in[-1,1]$

The case $g \equiv 0$

We can more generally assume that

$$
\lambda>\max (-g(1), g(-1))
$$

Assumptions on f :

$$
\begin{aligned}
& f \in \mathcal{C}^{3}(-1,1), \lim _{s \rightarrow \pm 1} f(s)= \pm \infty \\
& \lim _{s \rightarrow \pm 1} f^{\prime}(s)=+\infty
\end{aligned}
$$

Asumptions on $z_{0}=\left(w_{0}, u_{0}, \psi_{0}\right)$:

$$
\begin{aligned}
& E\left(z_{0}\right)=D\left(u_{0}\right)+\left\|w_{0}\right\|_{H^{2}}^{2}+\left\|u_{0}\right\|_{H^{2}}^{2} \\
&+\left\|\psi_{0}\right\|_{H^{2}(\Gamma)}^{2}<+\infty, D\left(u_{0}\right)>0 \\
&\left\|\psi_{0}\right\|_{L^{\infty}(\Gamma)}<1 \\
&\left.u_{0}\right|_{\Gamma}=\psi_{0} \\
& D(\varphi)=\frac{1}{1-\|\varphi\|_{L^{\infty}}} \\
& \rightarrow\left\|u_{0}\right\|_{L^{\infty}}<1
\end{aligned}
$$

- Uniqueness:

Theorem: For any 2 solutions z_{1} and z_{2} with initial data $z_{1,0}$ and $z_{2,0}$ satisfying the above assumptions,

$$
\begin{aligned}
& \left\|w_{1}-w_{2}\right\|_{L^{2}}^{2}+\left\|u_{1}-u_{2}\right\|_{L^{2}}^{2}+\left\|\psi_{1}-\psi_{2}\right\|_{L^{2}(\Gamma)}^{2} \\
& \leq c_{1} e^{c_{2} t}\left(\left\|w_{1,0}-w_{2,0}\right\|_{L^{2}}^{2}+\left\|u_{1,0}-u_{2,0}\right\|_{L^{2}}^{2}\right. \\
& \left.+\left\|\psi_{1,0}-\psi_{2,0}\right\|_{L^{2}(\Gamma)}^{2}\right)
\end{aligned}
$$

where c_{1} and c_{2} depend on the H^{2}-norms of the initial data and on $D\left(u_{0, i}\right), i=1,2$.

- Existence:

Essential step: prove that

$$
\|u(t)\|_{L^{\infty}}<1, t \geq 0
$$

We a prior assume that

$$
\|u\|_{L^{\infty}\left(\Omega \times R^{+}\right)}<1
$$

a) We have

$$
\begin{aligned}
& \|w(t)\|_{H^{2}}^{2}+\|u(t)\|_{H^{1}}^{2}+\|\psi(t)\|_{H^{1}(\Gamma)}^{2} \\
& +\int_{0}^{t} e^{-\alpha(t-s)}\left(\left\|\frac{\partial u}{\partial t}(s)\right\|_{H^{1}}^{2}+\left\|\frac{\partial \psi}{\partial t}(s)\right\|_{H^{1}(\Gamma)}^{2}\right) d s \\
& \leq Q\left(E\left(z_{0}\right)\right) e^{-\alpha t}+c_{I_{0}}
\end{aligned}
$$

where Q monotone increasing and $\alpha>0$ are independent of z_{0} and $c_{I_{0}}$ only depends on $I_{0}=<w_{0}+u_{0}>$

Remark: The quantity $<w(t)+u(t)>$ is conserved
b) Separation property
$\exists \beta>0$ s.t.

$$
\|w(t)\|_{L^{\infty}} \leq c\|w(t)\|_{H^{2}} \leq \beta, t \geq 0
$$

We fix $\delta \in(0,1)$ s.t.

$$
\begin{aligned}
& \left\|u_{0}\right\|_{L^{\infty}} \leq \delta \\
& f(\delta) \geq \beta
\end{aligned}
$$

We set $v=u-\delta$ and $\phi=\psi-\delta$:

$$
\begin{aligned}
& \frac{\partial v}{\partial t}-\Delta v+f(u)-f(\delta)=w-f(\delta) \\
& \frac{\partial \phi}{\partial t}-\Delta_{\Gamma \phi}+\lambda \phi+\frac{\partial v}{\partial \nu}=-\lambda \delta \text { on } \Gamma
\end{aligned}
$$

Since

$$
\begin{aligned}
& w-f(\delta) \leq 0, t \geq 0 \\
& -\lambda \delta \leq 0 \\
& \left.v\right|_{t=0}=u_{0}-\delta \leq 0
\end{aligned}
$$

We have

$$
\begin{aligned}
& u(t, x) \leq \delta, t \geq 0, \text { a.e. } x \in \Omega \\
& \psi(t, x) \leq \delta, t \geq 0, \text { a.e. } x \in \Omega
\end{aligned}
$$

We proceed similarly for a lower bound

$$
\rightarrow \exists \delta \in(0,1) \text { s.t. }
$$

$$
\begin{aligned}
& \|u(t)\|_{L^{\infty}} \leq \delta, t \geq 0 \\
& \|\psi(t)\|_{L^{\infty}(\Gamma)} \leq \delta, \quad t \geq 0
\end{aligned}
$$

c) We rewrite the equations for u and ψ as an elliptic system:

$$
\begin{aligned}
& -\Delta u=h_{1} \equiv w-\frac{\partial u}{\partial t}-f(u) \\
& -\Delta_{\Gamma \psi+\lambda \psi+\frac{\partial u}{\partial \nu}=h_{2} \equiv-\frac{\partial \psi}{\partial t} \text { on } \Gamma}^{\left.u\right|_{\Gamma}=\psi}
\end{aligned}
$$

$h_{1} \in L^{2}(\Omega), h_{2} \in L^{2}(\Gamma)$
Elliptic regularity theorem (A. Miranville, S. Zelik):

$$
\begin{gathered}
\|u(t)\|_{H^{2}}+\|\psi(t)\|_{H^{2}(\ulcorner)} \leq M, t \geq 0 \\
M=M\left(D\left(u_{0}\right),\left\|w_{0}\right\|_{H^{2}},\left\|u_{0}\right\|_{H^{2}},\left\|\psi_{0}\right\|_{H^{2}(\ulcorner)}\right)
\end{gathered}
$$

d) $\exists t_{1}>0$ s.t.
$\|w(t)\|_{H^{3}}+\|u(t)\|_{H^{3}}+\|\psi(t)\|_{H^{3}(\Gamma)} \leq M_{1}, t \geq t_{1}$
$M_{1}=M_{1}\left(D\left(u_{0}\right),\left\|w_{0}\right\|_{H^{2}},\left\|u_{0}\right\|_{H^{2}},\left\|\psi_{0}\right\|_{H^{2}(\Gamma)}\right)$

If, furthermore,

$$
\left\|w_{0}\right\|_{H^{3}}+\left\|u_{0}\right\|_{H^{3}}+\left\|\psi_{0}\right\|_{H^{3}(\Gamma)}<+\infty
$$

then

$$
\begin{aligned}
& \|w(t)\|_{H^{3}}+\|u(t)\|_{H^{3}}+\|\psi(t)\|_{H^{3}(\Gamma)} \leq M_{2}, t \geq 0 \\
& M_{2}=M_{2}\left(D\left(u_{0}\right),\left\|w_{0}\right\|_{H^{3}},\left\|u_{0}\right\|_{H^{3}},\left\|\psi_{0}\right\|_{H^{3}(\Gamma)}\right)
\end{aligned}
$$

e) Existence of a solution

- We regularize f s.t. the above estimates hold with the same constants
- We prove the existence of a local solution
- This solution is in fact global
- We pass to the limit in the regularized problem

Remark: We can consider initial data which contain the pure states (i.e., u_{0} can take the values -1 and 1): we set

$$
\begin{gathered}
\Phi=\left\{z=(w, u, \psi) \in H^{2}(\Omega) \times H^{2}(\Omega) \times H^{2}(\Gamma),\right. \\
\left.\left.u\right|_{\Gamma}=\psi,\left.\frac{\partial w}{\partial \nu}\right|_{\Gamma}=0,\|u\|_{L^{\infty}}<1,\|\psi\|_{L^{\infty}(\Gamma)}<1\right\}
\end{gathered}
$$

We have the existence and uniqueness of solutions in the closure $L=\left\{z \in L^{2}(\Omega) \times L^{\infty}(\Omega)\right.$ $\left.\times L^{\infty}(\Gamma),\|u\|_{L^{\infty}} \leq 1,\|\psi\|_{L^{\infty}(\Gamma)} \leq 1\right\}$ of Φ in $L^{2}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Gamma)$

Dissipativity

Phase space:

$$
\Phi_{M}=\left\{z \in \Phi,\left|I_{0}\right| \leq M\right\}
$$

$I_{0}=<w+u>$

Dissipative estimate for w : if $D\left(u_{0}\right)+\left\|z_{0}\right\|_{\Phi}^{2} \leq$ R_{0}^{2},

$$
\begin{gathered}
\|w(t)\|_{H^{2}} \leq Q\left(R_{0}\right) e^{-\alpha t}+c_{I_{0}}, t \geq 0, \alpha>0 \\
\rightarrow \exists t_{0}=t_{0}\left(R_{0}, M\right) \text { s.t., if } t \geq t_{0} \\
\|w(t)\|_{L^{\infty}} \leq c_{M}
\end{gathered}
$$

c_{M} independent of R_{0}

We choose $\delta_{M} \in(0,1)$ (δ_{M} is independent of R_{0}) and $t_{1} \geq t_{0}$ s.t.
(i) $f\left(\delta_{M}\right) \geq c_{M}+1$
(ii) $\alpha=\frac{1-\delta_{M}}{t_{1}}$ is small enough (≤ 1) s.t.

$$
f(\mu) \equiv f\left(1-\alpha t_{0}\right) \geq \beta_{M}+1
$$

$\|w(t)\|_{L^{\infty}} \leq \beta_{M}=\beta_{M}\left(R_{0}\right), t \geq 0, c_{M} \leq \beta_{M}$

$$
\alpha \leq \lambda \delta_{M}
$$

We set

$$
\begin{gathered}
y_{+}(t)=1-\alpha t, \quad 0 \leq t \leq t_{1} \\
\delta_{M}, t \geq t_{1}
\end{gathered}
$$

We set $v=u-y_{+}$and $\phi=\psi-y_{+}$:

$$
\begin{gathered}
\frac{\partial v}{\partial t}-\Delta v+f(u)-f\left(y_{+}\right)=H(t) \\
\frac{\partial \phi}{\partial t}-\Delta_{\Gamma} \phi+\frac{\partial v}{\partial t}+\lambda \phi=G(t) \\
H(t)=w(t)-f\left(y_{+}(t)\right)-\frac{\partial y_{+}}{\partial t}(t) \\
G(t)=-\lambda y_{+}(t)-\frac{\partial y_{+}}{\partial t}(t) \leq-\lambda \delta_{M}+\alpha \leq 0
\end{gathered}
$$

Furthermore,

$$
\begin{array}{r}
H(t) \leq \beta_{M}+1-f(\mu) \leq 0,0 \leq t \leq t_{0} \\
c_{M}+1-f\left(\delta_{M}\right) \leq 0, \quad t \geq t_{0}
\end{array}
$$

This yields

$$
u(t) \leq y_{+}(t), t \geq 0
$$

$\rightarrow u(t) \leq \delta_{M}, t \geq t_{1}$

Theorem: The problem possesses the finite dimensional global attractor \mathcal{A}_{M} in Φ_{M}.

Remarks: a) \mathcal{A}_{M} is the smallest compact set which is invariant and attracts all bounded sets of initial data as $t \rightarrow+\infty$
b) Dimension: covering dimensions (Hausdorff or fractal dimension)
c) Even though the initial phase space is infinite dimensional, the limit dynamics is finite dimensional and can be described by a finite number of parameters

The general case

We are not able to consider constants (or solutions to ODEs) as upper- and lower-solutions

We will consider space-dependent upper- and lower-solutions

We set $v=u-y_{+}$and $\phi=\psi-y_{+} \mid г, y_{+}=$ $y_{+}(x)$ regular enough:

$$
\begin{aligned}
& \frac{\partial v}{\partial t}-\Delta v+f(v)-f\left(y_{+}\right)=w-f\left(y_{+}\right)-\Delta y_{+} \\
& \frac{\partial \phi}{\partial t}-\Delta_{\Gamma \phi+g(\psi)-g\left(y_{+} \mid г\right)+\frac{\partial v}{\partial \nu}+\lambda \phi}^{=-g\left(y_{+} \mid г\right)-\Delta_{\Gamma} y_{+}\left|г-\lambda y_{+}\right|\left\ulcorner-\left.\frac{\partial y_{+}}{\partial \nu}\right|_{\Gamma}\right.}
\end{aligned}
$$

No a priori information on the sign of $g\left(y_{+} \mid г\right)$ $+\Delta_{\Gamma} y_{+}\left|г+\lambda y_{+}\right| г$
\rightarrow One solution is to have $\left.\frac{\partial y_{+}}{\partial \nu}\right|_{\Gamma}$ positive and large
\rightarrow We need stronger assumptions on f

Further assumptions on f :
$f(1-s)$ behaves like $\frac{c_{+}}{s^{p}}$ in the neighborhood of $0^{+}, c_{+}>0, p>1$
$f(-1+s)$ behaves like $\frac{c_{-}}{s^{q}}$ in the neighborhood of $0^{+}, c_{-}<0, q>1$

Remark: These assumptions are natural and do not seem to be related with the choice of upper- and lower-solutions: consider the "best" upper-solution

$$
\begin{aligned}
& -\Delta y_{+}+f\left(y_{+}\right)=\beta \\
& y_{+} \mid\ulcorner=1
\end{aligned}
$$

Then, close to the boundary,

$$
y_{+}(x) \leq 1-c d(x)^{\frac{2}{1+p}}, c>0, d(x)=\operatorname{dist}(x,\ulcorner)
$$

\rightarrow We need the condition $p>1$ to have $\frac{\partial y_{+}}{\partial \nu}$ large close to 「

Assumptions on g :
$g \in \mathcal{C}^{2}(R)$
$\liminf _{|s| \rightarrow+\infty} g^{\prime}(s) \geq 0$
either $g \equiv$ Const. or $g(s) s \geq \mu s^{2}-\mu^{\prime}$,
$s \in R, \mu>0, \mu^{\prime} \geq 0$

Construction of a super-solution:

We set, for $\epsilon>0$ small enough, $\Omega_{\epsilon}=\{x \in$ $\Omega, d(x)>\epsilon\}, d(x)=\operatorname{dist}(x, \Gamma)$

We consider the thin domain

$$
\Omega-\bar{\Omega}_{\epsilon}=\{x \in \Omega, \quad 0<d(x)<\epsilon\}
$$

We set, for ϵ small enough,

$$
\begin{aligned}
& \theta_{\epsilon}(s)=\frac{1}{\epsilon^{2-r}} s^{2}-\frac{2}{\epsilon^{1-r}} s+1-\epsilon^{r} \\
& 0<r<1, \quad(p+1) r>2
\end{aligned}
$$

Remark: For p given, $p>1, \exists r$ such that the above are satisfied

We set $\eta_{\epsilon}=\theta_{\epsilon}(d(x)), x \in \Omega-\bar{\Omega}_{\epsilon}$
The function η_{ϵ} satisfies, for ϵ small enough,

$$
\begin{aligned}
& \eta_{\epsilon} \in\left[1-2 \epsilon^{r}, 1-\epsilon^{r}\right] \\
& \eta_{\epsilon}=1-\epsilon^{r} \text { on } \Gamma \\
& \eta_{\epsilon}=1-2 \epsilon^{r} \text { on } \Gamma_{\epsilon}=\partial \Omega_{\epsilon} \\
& \frac{\partial \eta_{\epsilon}}{\partial \nu}=\frac{2}{\epsilon^{1-r}} \text { on } \Gamma \\
& \frac{\partial \eta_{\epsilon}}{\partial \nu}=0 \text { on } \Gamma_{\epsilon}
\end{aligned}
$$

$$
-\Delta \eta_{\epsilon}+f\left(\eta_{\epsilon}\right) \geq \beta \text { a.e. } x \in \Omega-\bar{\Omega}_{\epsilon}
$$

$$
\|w(t)\|_{L^{\infty}} \leq \beta, t \geq 0
$$

We finally set

$$
\begin{aligned}
y_{\epsilon}^{+}= & \eta_{\epsilon} \text { in } \Omega-\bar{\Omega}_{\epsilon} \\
& 1-2 \epsilon^{r} \text { in } \Omega_{\epsilon}
\end{aligned}
$$

The function y_{ϵ}^{+}satisfies

$$
\begin{aligned}
& y_{\epsilon}^{+} \in H^{2}(\Omega) \\
& -\Delta y_{\epsilon}^{+}+f\left(y_{\epsilon}^{+}\right) \geq \beta \text { a.e. } x \in \Omega \\
& y_{\epsilon}^{+} \in\left[1-2 \epsilon^{r}, 1-\epsilon^{r}\right] \text { a.e. } x \in \Omega \\
& \left.y_{\epsilon}^{+}\right|_{\Gamma}=1-\epsilon^{r} \\
& \left.\frac{\partial y_{\epsilon}^{+}}{\partial \nu}\right|_{\Gamma}=\frac{2}{\epsilon^{1-r}} \rightarrow+\infty \text { as } \epsilon \rightarrow 0^{+}
\end{aligned}
$$

$\rightarrow y_{\epsilon}^{+}$is a super-solution if ϵ is small enough:

$$
u(t, x) \leq y_{\epsilon}^{+}(x) \leq 1-\epsilon^{r}, t \geq 0, \text { a.e. } x \in \Omega
$$

We proceed similarly for a lower bound
\rightarrow Existence and uniqueness of solutions

Open questions:
(i) $p=1$ and logarithmic potentials
(ii) Dissipative estimates

