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The abstract problem

Let H be a real Hilbert space with norm and i. p. ||.|| and
(.,.); A : D(A) — H a self-adjoint positive op. with a
compact inverse in H; V := D(Az). Fori =1, 2, let U; be a
real Hilbert space (identified to its dual space) with norm

- and (.,.)y, and let B, € L(U;, V).

We con5|der the closed loop system

O(t) + Aw(t) + B1Biw(t) + BoBiw(t—71) =0,t >0
w(0) = wg, w(0) =wy, Biwlt—7)=f't—7),0<t <.
(1)
where 7 Is a positive constant which represents the delay,
w : [0, 0) — H is the state of the system.

Stabilizatio



Qo t—71)0e=0,0<z<1

w(0, t) :w(l, t) = O, t>0
I.C.

where £ € (0, 1), aq, ag > 0 and 7 > 0.

d2

H:ﬁmﬂp%H%MMMMQDHszH—%W

V =H,(0,1);U, = Uy = R,
Bi :R—=V": kw Jajkde,i=1,2.
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Some Iinstabilities

If oy = 0, the previous system is unstable, cfr.
[Datko-Lagnese-Polis 1986].

If oy > a1, the previous system may be unstable, cfr.
[N.-Pignotti 2006, N.-Valein 2007].

Hence some conditions between B; and B, have to be
Imposed to get stabllity.
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Well-posedness (1)

Let us set z(p, t) = Bow(t — 7p) for p € (0, 1) and ¢ > 0.
Then (1) is equivalent to

(

W(t) + AW(t) + BlBikw(t) + BQZ(l, t) = 0, t>0
T+ E=0,t>0,0<p<1
W(O) = Wo, CU(O) — Wi, Z(IO7 O) — fo(_TIO)7 0 < p < 1
2(0, t) = Biw(t), t > 0.

(2)
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Well-posedness (2)

Therefore the problem can be rewritten as

U' =AU
(3)
{ U(0) = (wo, w1, fO(~7.))

where the operator A is defined by

w Uu
A u — —Aw —BlBTU—BQZ(l) ;
1 0z

D(A) :={(w, u, 2) € V xV x H((0, 1), U3); 2(0) = Biu,
Aw—l—BlBTU—I—BQZ(l) c H}
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Well-posedness (3)

Denote by H the Hilbert space H =V x H x L*((0, 1), Us).
Let us now suppose that

30<a§1ﬁ@€VﬁB%ﬁb§awﬁwa. (4)

We fix a positive real number £ such that
2
1<§< ——1. (5)
87

We now introduce the following inner product on H:
[w) (o) 1
w s | @ [)= (420, A20)+(u, @)+7¢ | (2(p), 2(0))y, dp

=)\ :

) Stabilization of second order evolution equations with unbounded feedback with delay — p. 8/z

AN



Well-posedness (4)

We show that A generates a C\y semigroup on H,
by showing that A is dissipative in ‘H for the
above inner product and that A/ — A Is surjective
forany A > 0. By Theorem =

| Thm 1. Under the assumption (4), for an initial datum
Uy € H, there exists a unique solution

U € C(|0, +00), H) to system (3). Moreover, if
Uy € D(A), then

U € ([0, +o00), D(A)) N CH0, +00), H).

EX. M) & g < (.
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We restrict the ass. (4) to obtain the decay of the energy:
10 < a<1, Vu €V, HBSUH?]Q < a HBTUH?]1 (6)

We define the energy as

1 1 2 . ! *
Bt) = g ([Jate]], + 16l + 7¢ [ B30 - 7o)l do).
0

where £ Is a positive constant satisfying 1 < £ < % — 1.

Prop 1. For any regular sol. of (1), the energy is non increasing and
% o 2 % . 2
E'(t) ~ — (I1Biw®|ly, + 1B30(t — 7)) - (7)
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Energy decay to O

Prop 2. Assume that (6) holds. Then, for all initial data in 7,
lim; .o, E(t) = 0iff

V(non zero) eigenvector p € D(A) : Bip # 0. (8)

Pf. <] We closely follow

= | We use a contradiction argument. B

Rk This NSC is the same than without delay; therefore, (1)
with delay is st. stable (i.e. the energy tends to zero) iff the
system without delay (i.e. for B, = 0) Is st. stable. B

Ex. o = sin(k7w-)Vk € N*:

(8) & sin(kwf) # OVk € N* < £ £ Q.
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Cons. syst. (1)

The stability of (1) is based on some observability estimates for the
associated conservative system: We split up w sol of (1) in the form

w =+,

where ¢ Is solution of the problem without damping

{ b(t) + Ag(t) = 0

(9)
¢(0) = wo, ¢(0) = wi.
and ¢ satisfies
(t) + AY(t) = —B1Bii(t) — BaByw(t — 1) (10)
$(0) =0, 9(0) = 0.
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cons. syst. (2)

By setting B = (B1 Bs) € L(U, V') where U = Uy x Us, 9 is solution of

Y(t) + Ay (t) = Bo(t) .. .. -
v(t) = (=Bjw(t),—Bsw(t—7)) . (11
$(0) = 0, $(0) =0, 1 2
Ammari-Tucsnak 01] = if B satisfies: 46 > 0 :
Ae{pueCRu=p8y—=HN\) =AB*(NI+A)'BeLU)ishbd, (12)

then ) satisfies

. T . - 2 . - 2
Jo Ticaa I(Br) |17, dt < Ce®T [F(||Bio®)lly, + 1Bsa(t — 1)z, )dt.
Le 1. Suppose that the assumption is satisfied. Then the solutions w of (1) and ¢
of (9 ([) satisfy

" 2 . - 2
Jo Ticra I(BroY I, dt < Ce*T [ (| Biw®)|[, + | Bso(t — 7)1, )dt,
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Exp. stab. (1)

Thm 2. Assume that (6) and (12) are satisfied. If 37" > 7 > 0 and a constant

C' > 0ind. of T s. t. the observability estimate

2
dt (13)
U1

) 2 T :
| aben|” + lanly <€ / [B16(1)
0

holds, where ¢ is solution of (9), then the system (1) is exp. stable. in energy
Space.

Pf.Lel= FE(0) — E(T) > CE(T) > CE(0)+ inv. by translation
= exp. stab.

Rk. Notice that the SC (13) is the same than the case without
delay . Therefore, if (12) holds, then (1) is
exp. stable if the dissipative system without delay (i.e. with

Bs = 0) Is exp. stable. &
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Exp. stab. (2)

Ingham’s <=
Prop 3. Assume that the eigenvalues A\, k € N* are simple and that the

standard gap condition

Jvo > 0, VE > 1, A1 — Ak 2> 70
holds. Then (13) holds iff

Ja >0, Vk > 1, || Bioklly, > a.

Ex. Not exp. stable for any £ € (0, 1) because
Aa > 0: |sin(kné)| > a VEk.
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(wo, w1, fU(—7.)) € D(A) % wy € D(A), we can
not use standard interpolation inequalities.
Therefore we need to make the following hypo.:

dm, C' > 0V (wy, wi, 2) € D(A) :

m—+1 m
Jwollv™ < C ll(wo, wi, 2) I lwoll 415m, - (19)
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Pol. stab. (2)

Thm 3. Let w sol. of (1) with (wg, wy, fY(—7)) € D(A).
Assume that (6), (12) and (14) are verified. If 3m > 0, a
time7" > 0and C' > 0ind. of T s. .

T
[ IBI) Ot = Cllanlly o + el )

(15)
holds where ¢ is sol. of (9), then the energy decays
polynomially, i.e., 3C" > 0 depending on m and T s. t.

C

Blt) < (1+t)m

H(wOa Wi, fo(_T))Hi?(.A) ,\V/t > ().
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Pol. stab. (3)

Ingham’s <=

Prop 4. Assume that the eigenvalues A\, k € N* are simple and that the

standard gap condition
3’70 >0, Vk>1, )\k—|—1 — A > Y0

holds. Then (15) holds iff

«

da >0, Vk 2 L, || Bigklly, = -
k

Ex. If £ € S (containing the quadratic irrational numbers), then
energy decays as ¢ ', because Ja > 0 : |sin(k7&)| > ¢ Vk.
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Ex 1. Distributed
dampings

02w 02w ow
5 — g0 T g (@, U)X

+as(x, t —7)x;, =0 in (0, 1) x (0, oo)
w(0,t) =w(l,t) =0 t>0
w(z, 0) = wo(x), L(z, 0) =wi(x) in (0, 1)

G(@ t=7) = e t=m) inLx (0,7),

where x|; = characteristic fct of /.
We assume that 0 < oy < a7, 7 > 0 and

LchLclo1], 36d€]0,1],e>0:1[0,0+¢€ C 1.
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Ex 1 continued

= 12(0, 1),V = HY(0, 1), D(A) =
< 1) N H2(0,1), A: D(A) = H : o —Lp
= LX(1,),B;: U; = HC V' i k— \Jaiky,-

B( ) = Vi, = BiBj () = cipox Ve € V.

The problem is exponentially stable since
| By sin(km-) ||y, > on 5, for k >>.
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Ex 2. Distributed
dampings

Let O C R", n > 1, with a C? bdy I'. We assume
that D =Tp Uy, wWithTp Ny =0and I'p # 0.
drg e R"iss. t. (z —xp) -v(x) <0,V € I'p.
Let O, C Oy C Qs.t. 'y C 00;.

Fas 5 (T, t—T)Xj0, =0 INQx (0, 00),

w(x, t)—O onI'p x (0, oo),
“(z,t)=0 onTy x (0, c0),

1.C.

O<042<041,’7'>0.
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Ex 2 continued

H=1L(Q),V = H%D(Q),
A:DA)— H : p— —Ayp
U =L*0;),B; : Uy —HCV' : kw— \/ai];X\Oi-

| The obs. est. (13) was proved in
Lasiecka-Triggiani-Yao 99| = the pb Is
exponentially stable.
Rk. Generalization of [N.-Pignotti 2006] where
Oy = Os.
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