Stabilization of second order evolution equations with unbounded feedback with delay

S. Nicaise and J. Valein
snicaise, julie.valein@univ-valenciennes.fr

Laboratoire LAMAV, Université de Valenciennes et du Hainaut Cambrésis, France

Outline of the talk

■ The Problem
■ Well-posedness
■ Energy

- Energy decay
- Energy decay to 0

■ Exponential stability
■ Polynomial stability
■ Some examples

The abstract problem

Let H be a real Hilbert space with norm and i. p. $\|$.$\| and$ (.,.); $A: D(A) \rightarrow H$ a self-adjoint positive op. with a compact inverse in $H ; V:=D\left(A^{\frac{1}{2}}\right)$. For $i=1,2$, let U_{i} be a real Hilbert space (identified to its dual space) with norm and i. p. $\|\cdot\|_{U_{i}}$ and (.,. $)_{U_{i}}$ and let $B_{i} \in \mathcal{L}\left(U_{i}, V^{\prime}\right)$.
We consider the closed loop system

$$
\left\{\begin{array}{c}
\ddot{\omega}(t)+A \omega(t)+B_{1} B_{1}^{*} \dot{\omega}(t)+B_{2} B_{2}^{*} \dot{\omega}(t-\tau)=0, t>0 \tag{1}\\
\omega(0)=\omega_{0}, \dot{\omega}(0)=\omega_{1}, B_{2}^{*} \dot{\omega}(t-\tau)=f^{0}(t-\tau), 0<t<\tau .
\end{array}\right.
$$

where τ is a positive constant which represents the delay, $\omega:[0, \infty) \rightarrow H$ is the state of the system.

Example

The wave equation with internal feedbacks

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \omega}{\partial t^{2}}-\frac{\partial^{2} \omega}{\partial x^{2}}+\alpha_{1} \frac{\partial \omega}{\partial t}(\xi, t) \delta_{\xi}+\alpha_{2} \frac{\partial \omega}{\partial t}(\xi, t-\tau) \delta_{\xi}=0,0<x<1 \\
\omega(0, t)=\omega(1, t)=0, t>0 \\
I . C .
\end{array}\right.
$$

where $\xi \in(0,1), \alpha_{1}, \alpha_{2}>0$ and $\tau>0$.

$$
\begin{aligned}
& H=L^{2}(0,1), A: H^{2}(0,1) \cap H_{0}^{1}(0,1) \rightarrow H: \varphi \mapsto-\frac{d^{2}}{d x^{2}} \varphi \\
& V=H_{0}^{1}(0,1) ; U_{1}=U_{2}=\mathbb{R}, \\
& B_{i}: \mathbb{R} \rightarrow V^{\prime}: k \mapsto \sqrt{\alpha_{i}} k \delta_{\xi}, i=1,2 .
\end{aligned}
$$

Some instabilities

If $\alpha_{1}=0$, the previous system is unstable, cfr.
[Datko-Lagnese-Polis 1986].
If $\alpha_{2}>\alpha_{1}$, the previous system may be unstable, cfr.
[N.-Pignotti 2006, N.-Valein 2007].
Hence some conditions between B_{1} and B_{2} have to be imposed to get stability.

Well-posedness (1)

Let us set $z(\rho, t)=B_{2}^{*} \dot{\omega}(t-\tau \rho)$ for $\rho \in(0,1)$ and $t>0$. Then (1) is equivalent to

$$
\left\{\begin{array}{c}
\ddot{\omega}(t)+A \omega(t)+B_{1} B_{1}^{*} \dot{\omega}(t)+B_{2} z(1, t)=0, t>0 \tag{2}\\
\tau \frac{\partial z}{\partial t}+\frac{\partial z}{\partial \rho}=0, t>0,0<\rho<1 \\
\omega(0)=\omega_{0}, \dot{\omega}(0)=\omega_{1}, z(\rho, 0)=f^{0}(-\tau \rho), 0<\rho<1 \\
z(0, t)=B_{2}^{*} \dot{\omega}(t), t>0
\end{array}\right.
$$

Well-posedness (2)

Therefore the problem can be rewritten as

$$
\left\{\begin{array}{c}
U^{\prime}=\mathcal{A} U \tag{3}\\
U(0)=\left(\omega_{0}, \omega_{1}, f^{0}(-\tau .)\right),
\end{array}\right.
$$

where the operator \mathcal{A} is defined by

$$
\begin{aligned}
& \mathcal{A}\left(\begin{array}{l}
\omega \\
u \\
z
\end{array}\right)=\left(\begin{array}{c}
u \\
-A \omega-B_{1} B_{1}^{*} u-B_{2} z(1) \\
-\frac{1}{\tau} \frac{\partial z}{\partial \rho}
\end{array}\right), \\
& D(\mathcal{A}):=\left\{(\omega, u, z) \in V \times V \times H^{1}\left((0,1), U_{2}\right) ; z(0)=B_{2}^{*} u,\right. \\
& \left.A \omega+B_{1} B_{1}^{*} u+B_{2} z(1) \in H\right\} .
\end{aligned}
$$

Well-posedness (3)

Denote by \mathcal{H} the Hilbert space $\mathcal{H}=V \times H \times L^{2}\left((0,1), U_{2}\right)$. Let us now suppose that

$$
\begin{equation*}
\exists 0<\alpha \leq 1, \forall u \in V,\left\|B_{2}^{*} u\right\|_{U_{2}}^{2} \leq \alpha\left\|B_{1}^{*} u\right\|_{U_{1}}^{2} . \tag{4}
\end{equation*}
$$

We fix a positive real number ξ such that

$$
\begin{equation*}
1 \leq \xi \leq \frac{2}{\alpha}-1 \tag{5}
\end{equation*}
$$

We now introduce the following inner product on \mathcal{H} :

$$
\left\langle\left(\begin{array}{c}
\omega \\
u \\
z
\end{array}\right),\left(\begin{array}{c}
\tilde{\omega} \\
\tilde{u} \\
\tilde{z}
\end{array}\right)\right\rangle=\left(A^{\frac{1}{2}} \omega, A^{\frac{1}{2}} \tilde{\omega}\right)+(u, \tilde{u})+\tau \xi \int_{0}^{1}(z(\rho), \tilde{z}(\rho))_{U_{2}} d \rho
$$

Well-posedness (4)

We show that \mathcal{A} generates a C_{0} semigroup on \mathcal{H}, by showing that \mathcal{A} is dissipative in \mathcal{H} for the above inner product and that $\lambda I-\mathcal{A}$ is surjective for any $\lambda>0$. By Lumer-Phillips Theorem \Rightarrow
Thm 1. Under the assumption (4), for an initial datum $U_{0} \in \mathcal{H}$, there exists a unique solution $U \in C([0,+\infty), \mathcal{H})$ to system (3). Moreover, if $U_{0} \in D(\mathcal{A})$, then

$$
U \in C([0,+\infty), D(\mathcal{A})) \cap C^{1}([0,+\infty), \mathcal{H})
$$

Ex. (4) $\Leftrightarrow \alpha_{2} \leq \alpha_{1}$.

Energy decay

We restrict the ass. (4) to obtain the decay of the energy:

$$
\begin{equation*}
\exists 0<\alpha<1, \forall u \in V,\left\|B_{2}^{*} u\right\|_{U_{2}}^{2} \leq \alpha\left\|B_{1}^{*} u\right\|_{U_{1}}^{2} \tag{6}
\end{equation*}
$$

We define the energy as

$$
E(t):=\frac{1}{2}\left(\left\|A^{\frac{1}{2}} \omega\right\|_{H}^{2}+\|\dot{\omega}\|_{H}^{2}+\tau \xi \int_{0}^{1}\left\|B_{2}^{*} \dot{\omega}(t-\tau \rho)\right\|_{U_{2}}^{2} d \rho\right),
$$

where ξ is a positive constant satisfying $1<\xi<\frac{2}{\alpha}-1$.
Prop 1. For any regular sol. of (1), the energy is non increasing and

$$
\begin{equation*}
E^{\prime}(t) \sim-\left(\left\|B_{1}^{*} \dot{\omega}(t)\right\|_{U_{1}}^{2}+\left\|B_{2}^{*} \dot{\omega}(t-\tau)\right\|_{U_{2}}^{2}\right) . \tag{7}
\end{equation*}
$$

Ex. (6) $\Leftrightarrow \alpha_{2}<\alpha_{1}$.

Energy decay to 0

Prop 2. Assume that (6) holds. Then, for all initial data in \mathcal{H}, $\lim _{t \rightarrow \infty} E(t)=0$ iff

$$
\begin{equation*}
\forall \text { (non zero) eigenvector } \varphi \in D(A): B_{1}^{*} \varphi \neq 0 \tag{8}
\end{equation*}
$$

Pf. \Leftarrow We closely follow [Tucsnak-Weiss 03].
\Rightarrow We use a contradiction argument. ■
Rk This NSC is the same than without delay; therefore, (1) with delay is st. stable (i.e. the energy tends to zero) iff the system without delay (i.e. for $B_{2}=0$) is st. stable.
Ex. $\varphi_{k}=\sin (k \pi \cdot) \forall k \in \mathbb{N}^{*}:$
(8) $\Leftrightarrow \sin (k \pi \xi) \neq 0 \forall k \in \mathbb{N}^{*} \Leftrightarrow \xi \notin \mathbb{Q}$.

Cons. syst. (1)

The stability of (1) is based on some observability estimates for the associated conservative system: We split up ω sol of (1) in the form

$$
\omega=\phi+\psi,
$$

where ϕ is solution of the problem without damping

$$
\left\{\begin{array}{c}
\ddot{\phi}(t)+A \phi(t)=0 \tag{9}\\
\phi(0)=\omega_{0}, \dot{\phi}(0)=\omega_{1} .
\end{array}\right.
$$

and ψ satisfies

$$
\left\{\begin{array}{c}
\ddot{\psi}(t)+A \psi(t)=-B_{1} B_{1}^{*} \dot{\omega}(t)-B_{2} B_{2}^{*} \dot{\omega}(t-\tau) \tag{10}\\
\psi(0)=0, \dot{\psi}(0)=0
\end{array}\right.
$$

Cons. syst. (2)

By setting $B=\left(B_{1} B_{2}\right) \in \mathcal{L}\left(U, V^{\prime}\right)$ where $U=U_{1} \times U_{2}, \psi$ is solution of

$$
\left\{\begin{array}{c}
\ddot{\psi}(t)+A \psi(t)=B v(t) \tag{11}\\
\psi(0)=0, \dot{\psi}(0)=0,
\end{array} \quad v(t)=\left(-B_{1}^{*} \dot{\omega}(t),-B_{2}^{*} \dot{\omega}(t-\tau)\right)^{\top} .\right.
$$

[Ammari-Tucsnak 01] \Rightarrow if B satisfies: $\exists \beta>0$:

$$
\begin{equation*}
\lambda \in\{\mu \in \mathbb{C} \mid \Re \mu=\beta\} \rightarrow H(\lambda)=\lambda B^{*}\left(\lambda^{2} I+A\right)^{-1} B \in \mathcal{L}(U) \text { is bd, } \tag{12}
\end{equation*}
$$

then ψ satisfies
$\int_{0}^{T} \sum_{i=1,2}\left\|\left(B_{i}^{*} \psi\right)^{\prime}\right\|_{U_{i}}^{2} d t \leq C e^{2 \beta T} \int_{0}^{T}\left(\left\|B_{1}^{*} \dot{\omega}(t)\right\|_{U_{1}}^{2}+\left\|B_{2}^{*} \dot{\omega}(t-\tau)\right\|_{U_{2}}^{2}\right) d t$.
Le 1. Suppose that the assumption (12) is satisfied. Then the solutions ω of (1) and ϕ of (9) satisty
$\int_{0}^{T} \sum_{i=1,2}\left\|\left(B_{i}^{*} \phi\right)^{\prime}\right\|_{U_{i}}^{2} d t \leq C e^{2 \beta T} \int_{0}^{T}\left(\left\|B_{1}^{*} \dot{\omega}(t)\right\|_{U_{1}}^{2}+\left\|B_{2}^{*} \dot{\omega}(t-\tau)\right\|_{U_{2}}^{2}\right) d t$, with $C>0$ independent of T.

Exp. stab. (1)

Thm 2. Assume that (6) and (12) are satisfied. If $\exists T>\tau>0$ and a constant $C>0$ ind. of τ s. t. the observability estimate

$$
\begin{equation*}
\left\|A^{\frac{1}{2}} \omega_{0}\right\|_{H}^{2}+\left\|\omega_{1}\right\|_{H}^{2} \leq C \int_{0}^{T}\left\|B_{1}^{*} \dot{\phi}(t)\right\|_{U_{1}}^{2} d t \tag{13}
\end{equation*}
$$

holds, where ϕ is solution of (9), then the system (1) is exp. stable. in energy space.
Pf. Le $1 \Rightarrow E(0)-E(T) \geq C E(T) \geq C E(0)+$ inv. by translation \Rightarrow exp. stab.
Rk. Notice that the SC (13) is the same than the case without delay [Ammari-Tucsnak 01]. Therefore, if (12) holds, then (1) is exp. stable if the dissipative system without delay (i.e. with $\left.B_{2}=0\right)$ is exp. stable.

Exp. stab. (2)

Ingham's $\leq \Rightarrow$
Prop 3. Assume that the eigenvalues $\lambda_{k}, k \in \mathbb{N}^{*}$ are simple and that the standard gap condition

$$
\exists \gamma_{0}>0, \forall k \geq 1, \lambda_{k+1}-\lambda_{k} \geq \gamma_{0}
$$

holds. Then (13) holds iff

$$
\exists \alpha>0, \forall k \geq 1,\left\|B_{1}^{*} \varphi_{k}\right\|_{U_{1}} \geq \alpha
$$

Ex. Not exp. stable for any $\xi \in(0,1)$ because $\nexists \alpha>0:|\sin (k \pi \xi)| \geq \alpha \quad \forall k$.

Pol. stab. (1)

$\left(\omega_{0}, \omega_{1}, f^{0}(-\tau).\right) \in D(\mathcal{A}) \nRightarrow \omega_{0} \in D(A)$, we can not use standard interpolation inequalities. Therefore we need to make the following hypo.: $\exists m, C>0 \forall\left(\omega_{0}, \omega_{1}, z\right) \in D(\mathcal{A}):$

$$
\begin{equation*}
\left\|\omega_{0}\right\|_{V}^{m+1} \leq C\left\|\left(\omega_{0}, \omega_{1}, z\right)\right\|_{D(\mathcal{A})}^{m}\left\|\omega_{0}\right\|_{D\left(A^{\frac{1-m}{2}}\right)} . \tag{14}
\end{equation*}
$$

Pol. stab. (2)

Thm 3. Let ω sol. of (1) with $\left(\omega_{0}, \omega_{1}, f^{0}(-\tau \cdot)\right) \in D(\mathcal{A})$. Assume that (6), (12) and (14) are verified. If $\exists m>0$, a time $T>0$ and $C>0$ ind. of τ s. t.
$\int_{0}^{T}\left\|\left(B_{1}^{*} \phi\right)^{\prime}(t)\right\|_{U_{1}}^{2} d t \geq C\left(\left\|\omega_{0}\right\|_{D\left(A^{\frac{1-m}{2}}\right)}^{2}+\left\|\omega_{1}\right\|_{D\left(A^{-\frac{m}{2}}\right)}^{2}\right)$
holds where ϕ is sol. of (9), then the energy decays polynomially, i.e., $\exists C>0$ depending on m and τ s. t.

$$
E(t) \leq \frac{C}{(1+t)^{\frac{1}{m}}}\left\|\left(\omega_{0}, \omega_{1}, f^{0}(-\tau \cdot)\right)\right\|_{D(\mathcal{A})}^{2}, \forall t>0
$$

Pol. stab. (3)

Ingham's $\leq \Rightarrow$

Prop 4. Assume that the eigenvalues $\lambda_{k}, k \in \mathbb{N}^{*}$ are simple and that the standard gap condition

$$
\exists \gamma_{0}>0, \forall k \geq 1, \lambda_{k+1}-\lambda_{k} \geq \gamma_{0}
$$

holds. Then (15) holds iff

$$
\exists \alpha>0, \forall k \geq 1,\left\|B_{1}^{*} \varphi_{k}\right\|_{U_{1}} \geq \frac{\alpha}{\lambda_{k}^{m}}
$$

Ex. If $\xi \in S$ (containing the quadratic irrational numbers), then energy decays as t^{-1}, because $\exists \alpha>0:|\sin (k \pi \xi)| \geq \frac{\alpha}{k} \quad \forall k$.

Ex 1: Distributed dampings

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \omega}{\partial t^{2}}-\frac{\partial^{2} \omega}{\partial x^{2}}+\alpha_{1} \frac{\partial \omega}{\partial t}(x, t) \chi_{\mid I_{1}} \\
+\alpha_{2} \frac{\partial \omega}{\partial t}(x, t-\tau) \chi_{\mid I_{2}}=0 \quad \text { in }(0,1) \times(0, \infty) \\
\omega(0, t)=\omega(1, t)=0 \quad t>0 \\
\omega(x, 0)=\omega_{0}(x), \frac{\partial \omega}{\partial t}(x, 0)=\omega_{1}(x) \quad \text { in }(0,1) \\
\frac{\partial \omega}{\partial t}(x, t-\tau)=f^{0}(x, t-\tau) \quad \text { in } I_{2} \times(0, \tau)
\end{array}\right.
$$

where $\chi_{\mid I}=$ characteristic fct of I.
We assume that $0<\alpha_{2}<\alpha_{1}, \tau>0$ and
$I_{2} \subset I_{1} \subset[0,1], \quad \exists \delta \in[0,1], \epsilon>0:[\delta, \delta+\epsilon] \subset I_{1}$.

Ex 1 continued

$$
\begin{aligned}
& H=L^{2}(0,1), V=H_{0}^{1}(0,1), D(A)= \\
& H_{0}^{1}(0,1) \cap H^{2}(0,1), A: D(A) \rightarrow H: \varphi \mapsto-\frac{d^{2}}{d x^{2}} \varphi \\
& U_{i}=L^{2}\left(I_{i}\right), B_{i}: U_{i} \rightarrow H \subset V^{\prime}: k \mapsto \sqrt{\alpha_{i}} \tilde{k} \chi_{\mid I_{i}} . \\
& B_{i}^{*}(\varphi)=\sqrt{\alpha_{i}} \varphi_{\mid I_{i}} \Rightarrow B_{i} B_{i}^{*}(\varphi)=\alpha_{i} \varphi \chi_{\mid I_{i}} \forall \varphi \in V .
\end{aligned}
$$

The problem is exponentially stable since $\left\|B_{1}^{*} \sin (k \pi \cdot)\right\|_{U_{1}} \geq \alpha_{1} \frac{\epsilon}{2}$, for $k \ggg$.

Ex 2: Distributed damping

Let $\Omega \subset \mathbb{R}^{n}, n \geq 1$, with a C^{2} dy Γ. We assume that $\Gamma=\Gamma_{D} \cup \Gamma_{N}$, with $\bar{\Gamma}_{D} \cap \bar{\Gamma}_{N}=\emptyset$ and $\Gamma_{D} \neq \emptyset$. $\exists x_{0} \in \mathbb{R}^{n}$ is s. t. $\left(x-x_{0}\right) \cdot \nu(x) \leq 0, \forall x \in \Gamma_{D}$. Let $O_{2} \subset O_{1} \subset \Omega \mathrm{~s} . \mathrm{t} . \Gamma_{N} \subset \partial O_{1}$.

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \omega}{\partial t^{2}}-\Delta \omega+\alpha_{1} \frac{\partial \omega}{\partial t}(x, t) \chi_{\mid O_{1}} \\
+\alpha_{2} \frac{\partial \omega}{\partial t}(x, t-\tau) \chi_{\mid O_{2}}=0 \text { in } \Omega \times(0, \infty), \\
\omega(x, t)=0 \text { on } \Gamma_{D} \times(0, \infty), \\
\frac{\partial \omega}{\partial \nu}(x, t)=0 \text { on } \Gamma_{N} \times(0, \infty), \\
I . C .,
\end{array}\right.
$$

$$
0<\alpha_{2}<\alpha_{1}, \tau>0
$$

Ex 2 continued

$H=L^{2}(\Omega), V=H_{\Gamma_{D}}^{1}(\Omega)$,
$A: D(A) \rightarrow H: \varphi \mapsto-\Delta \varphi$
$U_{i}=L^{2}\left(O_{i}\right), B_{i}: U_{i} \rightarrow H \subset V^{\prime}: k \mapsto \sqrt{\alpha_{i}} \tilde{k} \chi_{\mid 0_{i}}$. $B_{i}^{*}(\varphi)=\sqrt{\alpha_{i}} \varphi_{O_{i}}$.

The obs. est. (13) was proved in [Lasiecka-Triggiani-Yao 99] \Rightarrow the pb is exponentially stable. Rk. Generalization of [N.-Pignotti 2006] where $O_{2}=O_{1}$.

