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The system

θt =

∫ t

0
N(t − s)∆θ ds . (1)

Here, θ = θ(t, x) with x ∈ (0, π) and t > 0. Initial and
boundary conditions are

θ(0) = θ(0, x) = 0 x ∈ (0, π) , θ(t, π) = 0 , t > 0 .

and
θ(t, 0) = u(t) .

Here u is locally square integrable.
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The control problem

control problem: find u which drives the initial condition
to a prescribed target η ∈ L2(0, π), in time T .

Fact: This problem is solvable for any η ∈ L2(0, π)
provided that T > π. Barbu, Yong and Zhang (also P.
who does not identify T = π)

It is easily seen that the reachable η are dense in
L2(0, π) if T = π.

Riesz basis for heat equation with memory – p.3/31



Moment problem-1

The controllability problem is equivalent to a moment
problem. This is seen as follows:
Let h(t) solve

h′(t) = −λ

∫ T

t
N(r − t)h(r) dr , h(T ) = 1 (2)

Let φ(x) solve

∆φ = −n2φ with φ(0) = φ(π) = 0

i.e.
φ(x) = φn(x) = sinnx .
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Moment problem-2

Multiply both the sides of

θt =

∫ t

0
N(t − s)∆θ ds

with h(t)φ(x).

Partial integration on [0, T ] × [0, π] gives the equality

∫ π

0
φ(x)θ(T, x) dx = φ′(0)

∫ T

0
h(r)ṽ(r) dr ,

ṽ(r) =

∫ r

0
N(r − s)u(s) ds . (3)
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Moment problem-3

We can go the other way around and we get the following
Theorem:
L et η ∈ L2(0, π) be the prescribed target. A square
integrable control u which transfer θ(0) = 0 to η in time T
exists if and only if for every n we can solve the
moment problem

∫ T

0
hn(r)ṽ(r) dr =

1

φ′
n(0)

∫ π

0
φn(x)η(x) dx (4)

and then we can solve

ṽ(r) =

∫ r

0
N(r − s)u(s) ds . (5)
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We recapitulate

From the known results on the controllability problem we
know:

The moment problem is solvable in time T > π.

If T = π the moment problem is solvable provided that
the right hand side belong to a dense subspace of l2.

From Avdonin-Ivanov book:

the set {hn} is a minimal basis in its span (as a
subspace of L2(0, π));

It is ω-minimal if T = π. This means that if
∑

α2
k < +∞ and

∑

αkhk = 0

then αk = 0 for every k.
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The goal

Fact:

computation with minimal or ω-independent basis
practically impossible.

Feasible computations are possible with Riesz basis.

A basis is Riesz when it is the image of an orthogonal basis
under a linear continuous invertible transformation.

So, the goal
To prove that {hn} is a Riesz basis.
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A transformation

It is more natural if we transform zn(t) = hn(T − t). The
function zn(t) solves

z′n(t) = −n2

∫ t

0
N(t − s)zn(s) ds , zn(0) = 1 (6)

The moment problem is ( Note the factor 1/n )

〈zn, v〉 =
1

n
cn , cn = 〈η, φn〉

The control steering to η is given by

∫ t

0
N(t − s)u(s) ds = v(t) .
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A WARNING

Assumptions on N(t): it is of class C3 with N(0) = 1.

WARNING!
We shall present computations using
the condition N ′(0) = 0. This assump-
tion is used SOLELY to present simpler
formulas. It is not at all needed for the
results.
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A Volterra equation for zn(t)

We have

z′n(t) = −n2

∫ t

0
N(t − s)zn(s) ds , zn(0) = 1

so that zn(0) = 1, z′n(0) = 0 and

z′′n(t) = −n2zn(t) − n2

∫ t

0
N ′(t − s)zn(s) ds ,

and

zn(t) = cos nt − n

∫ t

0
sin n(t − s)

∫ s

0
N ′(s − r)zn(r) dr ds .

This suggest that we compare zn(t) and cos nt.
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Comparison and Bari Theorem

Is comparison of any use?

Answer YES, thanks to Bari Theorem whose (loose)
statement is

If {εn} is orthogonal with constant norm;

if {zn} is ω-independent (WE KNOW THAT IT
IS!) and L2-close to {εn}, i.e.

∑

||zn − εn||
2 < +∞

then {zn} is a Riesz basis.
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The comparison

Write

en(t) = (zn(t) − cos nt) =

−n

∫

t

0

sin n(t − s)

∫

s

0

N
′(s − r)(en(r) + cos nr) dr ds .

use n sin n(t − s) = d
ds

cos n(t − s). Integrate by parts.

en(t) = −

∫

t

0

N
′(t − r)en(r) dr +

∫

t

0

cos n(t − r)

∫

r

0

N
′′(r − s)en(s)

−

∫

t

0

N
′(t − s) cos ns ds +

∫

t

0

cos n(t − r)

∫

r

0

N
′′(r − s) cos ns ds dr

Note that the last integrals are of the order 1/n.
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Conclusion

Gronwall inequality implies

sup
t∈[0,T ]

|en(t)| ≤
M

n
, M = M(T ) .

In particular:

the sequence {zn} is bounded on L2(0, T ) for every T
and it is a Riesz basis (in its span) if T = π, thanks
to Bari theorem.
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Further properties

Similar methods, bases on differentiation/partial integration,
can be used to prove that

{z′n(t)} is L2-close to {− sin t}.

{n
∫ t
0 zn(s) ds} is L2-close to {sin nt}.

the sequence of the functions

n

∫ t

0
zn(s) ds

is a Riesz basis.
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Consequences on controllability

The control steering to η is obtained from

∫ t

0
N(t − s)u(s) ds = v(t)

where v(t) solves the moment problem. If we can prove that
v′ exists, then it can be practically computed.

Fact: v(t) has a representation in terms of the
biorthogonal basis of {zn} (this means〈zn, ζk〉 = δn,k)

v(t) =
∑

vnζn .

Due to the form of the moment problem, vn = v̂n/n ,
{v̂n} ∈ l2.
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Differentiability of v

Using

n

∫ t

0
zn(s) ds

Riesz basis, let {wk} be its biorthogonal sequence.

δnj = n

∫ T

0
wj(t)

∫ t

0
zn(τ) dτ , dt =

∫ T

0
zn(τ)

[

n

∫ T

τ
wj(s) ds

]

dτ

so that we can choose ζn(t) = n
∫ T
t wn(s) ds .

So: {zn(t)} has a differentiable biorthogonal sequence.
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Determination of the control

Now,

v(t) =
∑

n

cn

n
ζn(t) =

∑

n

cn

∫ T

t
wn(s) ds

shows that v′(t) ∈ L2(0, π) so that the Volterra equation of
the first kind for u is equivalent to the solvable Volterra
equation of the second kind

u(t) +

∫ t

0
N ′(t − s)u(s) ds = v′(t)

and the control problem can be solved in time π for every

target η ∈ L2(0, π). Note the crucial role of the factor 1/n.
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WE SUM UP

The moment method gives a formula for the steering
control.

So, we can wonder whether this formula can be used to
solve different problems: namely an inverse problem as
in Yamamoto and Grasselli-Yamamoto papers.
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Description of the inverse problem

ξt =

∫ t

0
N(t − s)∆ξ ds + B(x)σ(t) .

Here, ξ = ξ(t, x) with x ∈ (0, π) and t > 0 and

ξ(0) = 0 x ∈ (0, π) , ξ(t, 1) = 0 , ξ(t, 0) = 0 , t > 0 . (7)

The function σ(t) is known with suitable properties.
PROBLEM: To identify the function B(x) from the
observation

y(t) = ξx(t, 0) , t ∈ [0, π] . (8)

Properties of σ(t): it is of class C1 and σ(0) = 1.
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Facts-1

It is convenient to recast the arguments of Yamamoto and
Grasselli-Yamamoto in a more abstract form. So we note:

ξ(t) solves the heat equation with memory if and only if

ξ(t) =

∫ t

0
R+(t − s)Bσ(s) ds +

∫ t

0
L(t − s)ξ(s) ds

where R+(t) = eAt+e−At

2 , A = i(−A)1/2 and L(t) is a
bounded operator valued function, which leaves the
domain of A invariant.
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Facts-2

So,

ξ(t) =

∫ t

0
M(t − s)Bσ(s) ds

where M(t) is given by

M(t)B = R+(t)B +

∫ t

0
H(t − τ)R+(τ)B dτ ,

H(t) being the resolvent kernel of L(t).

Regularity of σ(t) implies that

ξ(t) ∈ C(0, T ; dom A) . (9)

In particular: the output y(t) makes sense.
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Facts-3

A last piece of information we need is that

ξ ∈ domA =⇒ ξ′(0) = −D∗Aξ , (10)

where
(Du)(x) = (1 − x)u .

Nothe that g(x) = Du solves

∆g = 0 , g(0) = u , g(π) = 0 .
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Key idea for the reconstruction

We collect the information contained in the output y in
the following integral:

∫ T

0
h(s)y(s) ds .

We prove that for T ≥ π it is possible to compute
h(t) = hk(t) so to have (φk(x) = sin kx )

∫ T

0
y(s)hk(s) ds =

∫ π

0
B(x)φk(x) dx .

so that

B(x) =
∑

k

[
∫ π

0
y(s)hk(s) ds

]

φk(x) .
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Construction of hk-1

We note (the crochet denotes the inner product in
L2(0, π))

∫ T

0
h(s)y(s) ds =

∫ T

0
〈Dh(s), Aξ(s)〉 ds .

Below 〈〈, ·, ·〉〉 is the pairing of [dom(A)]′ and [dom(A)].

∫ T

0
〈Dh(s), Aξ(s)〉 ds =

∫ T

0
〈〈ADh(s), ξ(s)〉〉 ds

=

∫ T

0
〈〈ADh(s),

∫ s

0
M(s − r)Bσ(r) dr〉〉 ds

=

∫ T

0
〈〈ADh(s),

∫ s

0
M(r)Bσ(s − r) dr〉〉 ds .
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Construction of hk-2

Let now B be “smooth” (at the end a limiting process can be
used to remove this) and

u(T − r) =

∫ T−r

0
h(s)σ(T − r − s) ds.

Note that u is smooth with u(0) = 0.

We have
∫ T

0
h(s)y(s) ds = 〈〈

∫ T

0
M(T − r)ADu(r) dr,B〉〉 .

Introduce

θ(t) =

∫ t

0
M(t − r)ADu(r) dr .
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Construction of hk-3

Recall:

θ(t) =

∫ t

0
M(t − r)ADu(r) dr .

Using the definition of M(t), θ(t) solves

θ(t) =

∫ t

0
R+(t − s)ADu(s) ds +

∫ t

0
L(t − s)θ(s) ds

Thanks to the differentiability of u(t) we have

θ(t) = −A

∫ t

0
R−(t − s)Du′(s) ds
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So, CONTROLLABILITY HERE!

We repeate

θ(t) = −A

∫ t

0
R−(t − s)Du′(s) ds

i.e.

θ′(t) =

∫ t

0
N(t − s)θxx(s) ds ,











θ(0, x) = 0

θ(t, π) = 0 ,

θ(t, 0) = u′(t) .

A CONTROLLABLE PROBLEM!
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Conclusion-1

Controllability of the heat equation with memory shows
the existence of uk

′(t) such that θ(T ) = φk so that

∫ T

0
h(s)y(s) ds = 〈〈

∫ T

0
M(T − r)ADu(r) dr,B〉〉 = 〈φk, B〉 .

Repalcement of 〈〈·, ·〉〉 with 〈·, ·〉 can be justified.
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Conclusion-2

The previous argument identifies uk
′(t)

We need h(t) = hk(t) and we know that

u(T − r) = uk(T − r) =

∫ T−r

0
hk(s)σ(T − r − s) ds.

Differentiability of uk(t) shows that hk(t) can be computed
from

hk(T − r) +

∫ T−r

0
σ′(T − r − s)hk(s) ds = u′

k(T − r) .

This we wanted to achieve.
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Conclusion-2

The previous arguments shows that the reconstruction
ideas in Yamamoto and Grasselli-Yamamoto can be
extended to the case of heat equations with memory;

The previous arguments works equally well in the case
of space variables in suitable regons Ω ⊆ IRn;

The moment method however provides a practical
formula for the computation of the functionsv hk(t), in
the case n = 1.
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