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The system

t
Qt:/ N(t —s)Af ds. (1)
0

Here, 6 = 6(t, x) with z € (0,7) and ¢ > 0. Initial and
boundary conditions are

0(0) = 0(0,2) =0 =z (0,7), O(t,1)=0, t>0.

and
0(t,0) = u(t).

Here w Is locally square integrable.

-
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The control problem

- .

o control problem: find « which drives the initial condition
to a prescribed target n € L?(0,7), in time 7.

# Fact: This problem is solvable
provided that 7' > «. Barbu, Yong and Zhang (also P.
who does not identify T' = 7)

® |tis easily seen that the reachable n are dense In
L#(0,7) if T = .

o -

Riesz basis for heat equation with memory — p.3/3



Moment problem-1

-

The controllability problem is equivalent to a moment
problem. This is seen as follows:
Let h(t) solve

h'(t) = —)\/T N(r —t)h(r) dr, h(T)=1 2)

Let ¢(x) solve

A¢p = —n?¢ with ¢(0) = ¢(m) = 0

l.e.

¢(x) = ¢p(x) = sinnzx.

o -
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Moment problem-2

-

# Multiply both the sides of

t
9,5:/ N(t —s)Af ds
0

with /()0 ().
o Partial integration on [0, 7] x [0, 7] gives the equality

0 T
[ oo ar=o0) [ o) ar,
0 0
v(r) = /0 N(r — s)u(s) ds. (3)
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Moment problem-3
B

We can go the other way around and we get the following

L et n € L?(0,7) be the prescribed target. A square
Integrable control « which transfer 6(0) = 0 to n in time T
exists if and only if for every n we can solve the

moment problem

[ e ar= 2t (o e
; n(r)ulr T_gb;l(O) ; nlx)n(x) dx (4)
and then we can solve

U — N(r — .

v(r) /0 (r — s)u(s) ds (5)

o -
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We recapitulate

- .

From the known results on the controllability problem we
Know:

# The moment problem is solvable in time 7" > .

#» |f "= the moment problem is solvable provided that
the right hand side belong to a dense subspace of .

From Avdonin-lvanov book:

# the set {h,} Is a minimal basis In its span (as a
subspace of L?(0,7));

® ltisw-minimal if T = 7. This means that If

Zoz,% < 400 and Z@khk =0

. thenq; = 0 for every . o
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Thegoal

| .

Fact:

# computation with minimal or w-independent basis
practically impossible.

#® Feasible computations are possible with Riesz basis.

A basis is Riesz when it is the image of an orthogonal basis
under a linear continuous invertible transformation.

So, the goal
To prove that {4, } is a Riesz basis.

| -
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A transfor mation

- .

It is more natural if we transform z,,(¢t) = h, (T —t). The
function z,(t) solves

() = —n? /O N(t— s)en(s) ds,  z(0)=1  (8)

#® The moment problem is ( Note the factor 1/n )

(2n, V) = %cn, cn = (1, On)

#® The control steering to » Is given by

/0 N(t — s)u(s) ds = v(t)

o -

Riesz basis for heat equation with memory — p.9/3



A WARNING

Assumptions on N(¢): itis of class C? with N(0) = 1.

WARNING!
We shall present computations using
the condition N/(0) = 0. This assump-
tion is used SOLELY to present simpler

formulas. It 1s not at all needed for the
results.

-
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A Volterra equation for z,(t)

-

o We have
——n/Nt—szn , 2n(0) =1
so that z,(0) =1, 2, (0) = 0 and
t
2Nt = —nfz,(t) — n2/ N'(t — s)zp(s) ds,
0
# and
t S
2n(t) = cosnt — n/ sinn(t — s)/ N'(s —1r)z,(r) dr ds.
0 0
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Comparison and Bari Theorem

- .

Is comparison of any use?

Answer YES, thanks to Bari Theorem whose (loose)
statement is

o -
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The comparison

-

o Write

en(t) = (zn(t) — cosnt) =
—n/o sinn(t — s)/o N'(s —r)(en(r) + cosnr) dr ds.

® use nsinn(t—s) = % cosn(t — s). Integrate by parts.

en(t) :—/OtN’(t—r)en(r) dr+/0tcosn(t—fr) /OTN”(T—S)en(S)
—/OtN/(t—s)cosnS dS—F/Otcosn(t—r)/OrN”(r—S)Cosns ds dr

LNote that the last integrals are of the order 1/n. J
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Conclusion

-

Gronwall inequality implies
o

sup |en(t)] <
t€(0,7T]

M
=,  M=M(TT).
n

# |n particular:

the sequence {z,} is bounded on L?(0,T) for every T
and it is a Riesz basis (in its span) if T' = &, thanks
to

o -
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Further properties

- .

Similar methods, bases on differentiation/partial integration,
can be used to prove that

® {2 (t)}is L*-close to {—sint}.

® {n [ zu(s) ds} is L?-close to {sinnt}.

the sequence of the functions

t
n/ Zn(s) ds
0
IS a Riesz basis.

o -

Riesz basis for heat equation with memory — p.15/3:




Conseguences on controllability

- .

The control steering to n is obtained from

/O N(t — s)u(s) ds = v(t)

where v(t) solves the moment problem. If we can prove that
v' exists, then it can be practically computed.

# Fact: v(t) has a representation in terms of the
biorthogonal basis of {z,} (this means(z,,, (x) = 6, k)

v(t) = Zvngn.
# Due to the form of the moment problem, v, = v,,/n,

L {0,} € 12, J
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Differentiability of v

Using

n/Ot 2 (s) ds

Riesz basis, let {w;.} be its biorthogonal sequence.

b :n/Oij(t) /Otzn(T) dr, dt:/OTzn(T)

so that we can choose (,(t) = nftT wy(s) ds.

T
n/ w;(s) ds| dr
T

So: {z,(t)} has a differentiable biorthogonal sequence.

-
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Deter mination of the control

- .

Now,
Z o Cn Z Cn / wn

shows that v/(t) € L*(0, w) so that the Volterra equation of
the first kind for « is equivalent to the solvable Volterra
equation of the second kind

+/0 N'(t — s)u(s) ds = v'(1)

and the control problem can be solved Iin time = for every

target n € L?(0, 7). Note the crucial role of the factor 1 /n.

o -
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WE SUM UP
-

® The moment method T

# S0, we can wonder whether this formula can be used to
solve different problems: namely an inverse problem as
In Yamamoto and Grasselli-Yamamoto papers.

o -
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Description of the inverse problem
B t -
6, = /0 N(t — $)AE ds + B(x)o(t) .
Here, ¢ = (¢, z) with x € (0,7) and ¢ > 0 and
E0)=0 ze€((0,m), &,1)=0, £(t,00=0, t>0. (7)

The function #(t) is known with suitable properties.
PROBLEM: To identify the function B(z) from the
observation

y(t) = &:(t,0), t €[0,m]. (8)

\_Properties of o(¢): itis of class C! and ¢(0) = 1. J
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Facts-1

=

It is convenient to recast the arguments of Yamamoto and
Grasselli-Yamamoto in a more abstract form. So we note:

® £(t) solves the heat equation with memory if and only if

t t
E(t) = / Ry (t—s)Bo(s) ds +/ L(t —s)&(s) ds
0 0
where R, (t) = eAt*‘Qe_At, A=i(—A)Y?and L(t) is a
bounded operator valued function, which leaves the
domain of A invariant.

-
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Facts-2

» 5o,
t
E(t) = / M(t — s)Bo(s) ds
0
where M (t) IS given by
t
M(t)B = R4+(t)B + / H(t —71)Ry(7)B dr,
0
H(t) being the resolvent kernel of L(t).
# Regularity of () implies that
£(t) € C(0,T;dom A) . (9)

L In particular: the output y(¢) makes sense. J

Riesz basis for heat equation with memory — p.22/3:



Facts-3

-

A last piece of information we need is that
¢ € domA = £(0) = —D* A€, (10)

where
(Du)(z) = (1 —x)u.

Nothe that ¢g(x) = Du solves

o -
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Key idea for thereconstruction

- .

# We collect the information contained in the output y In
the following integral:

T
/ h(s)y(s) ds.
0

#® We prove that for 7" > « it is possible to compute
h(t) = hi(t) so to have (¢ (x) = sin kx )

T 7r
/0 y(s)hi(s) ds :/0 B(z)¢(z) dx .

so that
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Construction of A.-1

- .

# We note (the crochet denotes the inner product in
L?(0, 7))

T T
| hs)uts) as = | (Dh(s), A¢(s)) as.
0 0
® Below (, -, -)) is the pairing of [dom(A)]" and [dom(A)].

T

T
/ (Dh(s), A(s)) ds = / (ADh(s),£(s)) ds
0

0

T S
= /0 (ADh(s), | M(s—r)Bo(r)dr)) ds
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Construction of A -2

- -

Let now B be “smooth” (at the end a limiting process can be
used to remove this) and

T'—r
u(lT —r) = /0 h(s)o(T —r —s) ds.

Note that « is smooth with «(0) = 0.
o We have

T T
/ h(s)y(s) ds = <</ M(T — r)ADu(r) dr, B)) .
0 0

® [Introduce

| 0(t) = /O M(t — r)ADu(r) dr B
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Construction of hj-3

-

# Recall:
t
= / M(t —r)ADu(r) dr
0
# Using the definition of M(t), 6(t) solves

0(t) = /0 Ry (t — s)ADu(s) ds +/O L(t — s)0(s) ds

# Thanks to the differentiability of «(¢) we have

:—A/ _(t —s)Du/(s) ds



S0, CONTROLLABILITY HERE!
-

® \We repeate

.e.
t [ 0(0,2) =0
_ / N(t— $)0(s)ds,  { O(t,m) =0,
0 | 0(t.0) = /().

Riesz basis for heat equation with memory — p.28/3:



Conclusion-1

- .

o Controllability of the heat equation with memory shows
the existence of u;/(t) such that (T") = ¢;. so that

T T
/ h(s)y(s) ds = / M(T — r)ADu(r) dr, BY) = (6. B)
0 0

# Repalcement of (-, ) with (-, -) can be justified.
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Conclusion-2

-

The previous argument identifies u;.'(t)
We need h(t) = hi(t) and we know that

T'—r
uw(T —r) =up(T —r) = /0 hi(s)o(T —r —s) ds.

Differentiability of u;(¢) shows that h;(¢) can be computed
from

IT'—r
hk(T—T)—l—/O o' (T —r —s)hg(s) ds = up (T — 7).

This we wanted to achieve.

o -
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Conclusion-2

- .

# The previous arguments shows that the reconstruction
iIdeas in Yamamoto and Grasselli-Yamamoto can be
extended to the case of heat equations with memory;

# The previous arguments works equally well in the case
of space variables in suitable regons 2 C IR";

o

o -
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