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Data Assimilation : Very important problem in

• Weather prediction

• Climatology

• Oceanology

• All environment sciences

Corresponds to an enormous amount of computing time, for example
60% of computing time in meteorology.
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For example : weather prediction.

To compute evolution of air masses, pressure, temperature, etc. on

an annulus around the planet up to an altitude of 51 km.

Model : enriched every day but rather satisfactory at the moment.

Computers : more and more powerful ... reasonable possibilities.

Missing : knowledge of the state variables to-day or yesterday (initial

conditions) on the whole spatial domain !! in order to predict the

evolution.
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For simplicity of presentation, all the presentation will be given on
the heat equation.

Analogous results and proofs for

• Diffusion-convection equations

• Linearized Navier-Stokes equations

• Linearized Boussinesq

• More generally : coupled (linearized) systems of diffusion-convection
and Navier-Stokes
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All operators considered here are linear.

Up to now : linear method.

Hope of extension to some nonlinear systems...
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Mathematical problem : Heat equation

∂y

∂t
−∆y = f on Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(0) = y0 in Ω.

y0 is unknown, but we know measurements of the solution on a sub-

domain ω × (0, T0), T0 < T .

h = yω×(0,T0).

For example

0 = yesterday . T0 = to-day. T = 2T0 = to-morrow.
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A simple translation by ỹ solution (which can be computed) of

∂ỹ

∂t
−∆ỹ = f on Ω× (0, T ),

ỹ = 0 on ∂Ω× (0, T ),

ỹ(0) = 0 in Ω

reduces the problem to the case where f = 0 called (HE).

∂y

∂t
−∆y = 0 on Ω× (0, T ), (1)

y = 0 on ∂Ω× (0, T ), (2)

y(0) = y0 in Ω. (3)
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Question :

How to recover the value of the state variable y(t)

at a time t, 0 ≤ t ≤ T0 in order to compute y

on the time interval (T0, T )?
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Classical method : Variational data assimilation.

In use at the moment in several meteorological centers (European
center Reading, Meteo-France...)

Based on optimal control ideas.

Try to recover y(0) = y0, then run the system from t = 0 to t = T .

y0 : control variable. Solve the equation for y0 given → y(y0).

Define

J0(y0) =
1

2

∫ T0

0

∫
ω
|y(y0)− h|2dxdt

9



To find ȳ0 such that

J0(ȳ0) = min
y0

J0(y0) (OC)

This problem does not have a solution (ill-posed problem).

If we take a minimizing sequence yn0, then we only know that∫ T0

0

∫
ω
|y(yn0)|2dxdt ≤ C.

This gives no estimate on yn0 (in any known functional space)!!
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Remedy :

Tychonov regularization.

For α > 0 (Tychonov regularization parameter) define

Jα(y0) =
1

2

∫ T0

0

∫
ω
|y(y0)− h|2dxdt+

α

2
||y0||2

Now find yα such that

Jα(yα) = min
y0

Jα(y0) (TROC)

This problem has a unique solution yα (classical methods)

This problem is known to be unstable when α → 0 ....but seems to

work in practice !
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In fact :

Global Carleman estimates (difficult) plus energy estimates (standard)
provide a weighted estimate on y.

We have the following (magic !!) estimate:

|y(T0)|2
L2(Ω) +

∫ T0

0

∫
Ω
e−2sη|∇y|2dxdt+

∫ T0

0

∫
Ω
e−2sη|y|2dxdt (4)

≤ C
∫ T0

0

∫
ω
|y|2dxdt

where s > 0 and η is a weight such that

η(x, t) > 0 in Ω× (0, T0), η → +∞ when t→ 0,

∀δ > 0, η(x, t) ≤Mδ on Ω× (δ, T0).
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Remarks :

This estimate does not make any reference to the initial value y0 !!

It gives an estimate in classical Sobolev spaces L2(δ, T0;H1
0(Ω)) for

every δ > 0 and an estimate on |y(T0)|L2(Ω).

It implies the unique continuation property which is classical for this

example, but less classical for more complex systems.

This estimate is the main mathematical difficulty to solve when trying

to apply the method to your favorite evolution system.
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Consider the space

V = {y, y is a (regular) solution of (HE), y0 ∈ L2(Ω)}

and define on this space

||y||2V =
∫ T0

0

∫
ω
|y|2dxdt.

Then ||y||V is a prehilbertian norm on V because of unique continu-

ation property.

Now define V as the completion of V.

Then V is a Hilbert space for the scalar product associated to the

norm ||y||V .
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Because of Carleman estimate we have

∀δ > 0, V ⊂ L2(δ, T0;H1
0(Ω)).

Essentially we have

V = {y ∈ L2
e−2sη(0, T0;H1

0(Ω)), y is a solution of (HE(1)-(2)),∫ T0

0

∫
ω
|y|2dxdt < +∞}.

An element of V may not have any value at time t = 0 !!

But its value at each time t > 0, in particular at time t = T0 makes

perfect sense in L2(Ω) for example.
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We still have the Carleman estimate for elements of V

|y(T0)|2
L2(Ω) +

∫ T0

0

∫
Ω
e−2sη|∇y|2dxdt+

∫ T0

0

∫
Ω
e−2sη|y|2dxdt (5)

≤ C
∫ T0

0

∫
ω
|y|2dxdt

For y ∈ V we define

J(y) =
∫ T0

0

∫
ω
|y − h|2dxdt.

Notice that for y ∈ V, J and J0 have the same value but the argument
is different : J0 depends on the initial value y0 while J depends on
the trajectory y ∈ V .
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We now consider the minimization problem (MP):

To find ŷ ∈ V such that

J(ŷ) = min
y∈V

J(y). (MP )

We immediately obtain the following result.

Theorem 1 There exists a unique solution ŷ ∈ V to the previous
minimization problem.

If we have two datas h1 and h2 the corresponding solutions ŷ1 and ŷ2

satisfy

||ŷ1 − ŷ2||2V ≤
∫ T0

0

∫
ω
|h1 − h2|2dxdt.
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Remark : This result implies in particular the stability (in the V -norm)

of the solution with respect to perturbations in the “measurements”.

A priori we know that for every δ > 0

ŷ ∈ C([δ, T0];L2(Ω)) ∩ L2(δ, T0;H1
0(Ω)).

Without any further hypothesis, we cannot say anything about the

convergence of Tychonov regularization. But if we assume some

additional regularity on the solution ŷ we can obtain a convergence

result.
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Theorem 2 Let us assume that ŷ ∈ C([0, T0];L2(Ω)) with ŷ(0) = ŷ0.

Then we have

J(ŷ) = J0(ŷ0).

Moreover, when α → 0, the solution yα of the Tychonov regularized

problem converges to ŷ0 strongly in L2(Ω). If yα is the solution of

(HE) corresponding to yα we have∫ T0

0

∫
ω
|ŷ − yα|2dxdt ≤ α|ŷ0|L2(Ω).

If in addition ŷ0 is in the range of the controlled adjoint equation we

can obtain a better convergence rate.
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Theorem 3 If there exists w ∈ L2(0, T0;L2(ω)) such that the solution

q of

−
∂q

∂t
−∆q = w.χω in Ω× (0, T0),

q = 0, on Γ× (0, T0),

q(T0) = 0, in Ω,

satisfies

q(0) = ŷ0,

then we have

|ŷ0 − yα|2L2(Ω) ≤ Cα,
∫ T0

0

∫
ω
|ŷ − yα|2dxdt ≤ Cα2.
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Recovery of the final state.
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We have already seen that, due to the fact that ŷ ∈ V ,

|ŷ(T0)|2
L2(Ω) ≤ C

∫ T0

0

∫
ω
|ŷ|2dxdt.

This gives a stability result for the recovery of ŷ(T0) from “measure-

ments” of ŷ on ω × (0, T0).

On the other hand, from the Euler-Lagrange equation associated to

the minimization problem (MP) we have∫ T0

0

∫
ω

(h− ŷ)zdxdt = 0, ∀z ∈ V. (EL)
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Let us now consider the following exact controllability problem (null
controllability) for the adjoint equation.

If ψ ∈ L2(Ω) we know (null controllability results) that there exists
v = v(ψ) ∈ L2(0, T0;L2(ω)) such that the solution ϕ of

−
∂ϕ

∂t
−∆ϕ = v.χω, in Ω× (0, T0),

ϕ = 0, on Γ× (0, T0),

ϕ(T0) = ψ in Ω,

satisfies

ϕ(0) = 0.

Moreover we can take v(ψ) of minimal norm in L2(0, T0;L2(ω)) and
we then have

|v(ψ)|L2(0,T0;L2(ω)) ≤ C|ψ|L2(Ω)

23



We also know (by a duality argument) that v(ψ) is obtained as the

restriction of z on ω × (0, T0) where z is the minimum (in V ) of the

functional

K(z) =
1

2

∫ T0

0

∫
ω
|z|2dxdt+

∫
Ω
z(T0)ψdx.

As z ∈ V we have from (EL)∫ T0

0

∫
ω
hzdxdt =

∫ T0

0

∫
ω
ŷzdxdt

so that ∫ T0

0

∫
ω
hv(ψ)dxdt =

∫ T0

0

∫
ω
ŷv(ψ)dxdt.
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Now multiplying the equation for ϕ by ŷ, because ϕ(0) = 0, we obtain

(this can be shown rigorously)∫
Ω
ψŷ(T0)dx = −

∫ T0

0

∫
ω
v(ψ)ŷdxdt = −

∫ T0

0

∫
ω
v(ψ)hdxdt.

The control v(ψ) can be “computed” for every ψ ∈ L2(Ω). The

measurement h is given. Therefore, at least in theory, this enables us

to recover the coefficient ∫
Ω
ψŷ(T0)dx

for every ψ in a Hilbert basis of L2(Ω), and therefore ŷ(T0), at the

price of solving a null controlability problem for each element of a

Hilbert basis.....
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For β > 0 we can consider an approximation by an optimal control

problem.

Define

Kβ(v) =
1

2β

∫
Ω
|ϕ(0)|2dx+

1

2

∫ T0

0

∫
ω
|v|2dxdt,

Look for vβ ∈ L2(0, T0;L2(ω)) such that

Kβ(vβ) = min
v∈L2(0,T0;L2(ω))

Kβ(v)

For every β > 0 this problem has a unique solution vβ which can be

characterized by an optimality system using an adjoint state (classical

optimal control).
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It is easy to show that when β → 0,

vβ → v(ψ) in L2(0, T0;L2(ω))

−
∫ T0

0

∫
ω
vβhdxdt→ −

∫ T0

0

∫
ω
v(ψ)hdxdt =

∫
Ω
ψŷ(T0)dx

Therefore we can compute an approximation of the desired coefficient

at the price of solving an optimal control problem (for each ψ).

Rate of convergence : requires a regularity hypothesis on the adjoint

state associated to the exact controllability problem.
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As

q ∈ V →
∫

Ω
ψq(T0)dx

is a linear continuous map, from Riesz Theorem there exists p ∈ V
such that

∀q ∈ V,
∫ T0

0

∫
ω
pqdxdt =

∫
Ω
ψq(T0)dx.

If we suppose that in addition

p ∈ C([0, T0];L2(Ω))

then we obtain

|vβ − v(ψ)|L2(0,T0;L2(ω)) ≤ 2β
1
2|p(0)|L2(Ω),

|
∫

Ω
ŷ(T0)ψdx+

∫ T0

0

∫
ω
h.vβdxdt| ≤ Cβ

1
2|p(0)|L2(Ω),
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Computations with a classical basis done in Garcia-Osses-Puel for

a large scale ocean model (reasonable results). New results with a

spectral basis. Better results and much cheaper in terms of computing

time. (Garcia-Osses-Puel to appear).

It would be important to use a reduced basis such as POD... in order

to reduce the number of optimal control problems (or exact control-

lability problems) to solve. Work of P.Hepperger (Diplomarbeit, T.U.

München) which seems very promising in this direction.
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