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1 Introduction

Thermoelastic systems for the displacement vector v and the the temperature dif-

ference 0, where the classical Fourier law
q+ kVH =0
is replaced by Cattaneo’s law
Tq: +q+ kVO =0

T: relaxation parameter.



(0 + To){a(Vu,0,q)0; — tr[Sy - V] } + div ¢ = b(Vu, 0, q)q:

Cattaneo’s law:

PU — divS = 0
Et — tT{SVUt} + dl\/q =0

T(Vu,0)q + q+ k(Vu,0)VO =0
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"Topics:
e Decay rates of solutions to the one-dimensional Cauchy problem

e Propagation of singularities depending on the curvature of the initial surface of

discontinuities in three space dimensions

e Low frequency asymptotics in three-dimensional exterior domains as first step

towards the time asymptotics in exterior domains



2  One-dimensional non-linear Cauchy problem

(Joint work with Y.-G. Wang)
Nonlinear Cauchy problem in one space dimension
Uy — a1 (P)ug, + as(P)0, + 01(P)g: = 0
0 + as(P)ug, + ay(P)g, + o9(P)0, + as5(P)qg = 0
q + ag(uy, 0)0, + a7(uy, 0)g = 0
u(0,z) = up(x), ur(0,2) =uy(z), 0(0,2) =0y(x), q0,2) = qo(x), z € R
where
P = (ug,0,q)
Transforming (2.1) - (2.4) into a first-order system for
Vo= (g, us, 0, q)
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V(t=0)=Vy:= (ups,ui, 0, q) (2.6)

This is strictly hyperbolic if | P| is small enough, hence:

Theorem 2.1. Let s > 2. Then there is & > 0 such that for data Vo € W**(R)
with ||Vo||s2 < & there is a unique local solution V' to (2.5), (2.6) in some time
interval [0, T) with

Ve C[0, T], W*(R)) n C([0, T], W™ H(R),
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and T = T(||Vol]s.2) > 0.

Gobal existence for small data by Tarabek, solution with bounded norm ||V (¢)|]s 2.

Rewrite the differential equations:
Utt — OUgpy —+ 69I = hl (27)

Togt + ¢ + K0y = h3 (2.9)



where

Q
)
hy
ho
hs
One knows
Defining

1

= Sy, (0,0,0),
— asg <0,0,0),

3= —55(0,0,0), ~:=a4(0,0,0)

k= Toag (0,0,0), 79 :=7(0,0)

1
Lo,
70 T

d1(0,0,0) = 0,

Vo

= (S(ug,0,q) —au, + 69),
= (v — a4)qy + (0 — a3g)usy, — 090, — asq

= n{ (

k k

=),
+(7’0 7') }
52(0,0,0) =0, a5(0,0,0) = 0.

(Vakd ug,u, 0, q)



we obtain
AW, + AW, + BV = F(V,V,), V(0)=V,:=(Vaxd Ug ., U1, 0o, qo)" (2.16)

with a nonlinearity that vanishes quadratically near zero. The linearized system,

ie. for F = 0, is solved by
V(t) = eV
where
R = —(AY"! (A'0,+ B)

generates a Cg-semigroup on D(R) := (W1*(R))* c (L*(R))*. Then the solution
to (2.16) is represented in general by

—etRV—I—/ CIRE(V V) () drr (2.17)
0



where
F = (AY'F
Cattaneo’s law is assumed to be the linear one:
T0qy + q + K0, = 0
This assumption implies that in (2.9)
hs =0

Further assumption:

¢<ux7(97Q) = %(uaz,@) +¢1<ux7(9>q2
e(Uy, 0,q) = ep(uy, 0) + e1(uy, 0)q*
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Theorem 2.2. Let Vy € W**(R) N LYR), and mgy = ||Vol|z2 + ||Vo|l1. For
sufficiently small mqy there is ¢ > 0 such that for t > 0, the solution V to
(2.16) satisfies

=

V()12 < c(14+1)7T-m,

The fact that F' vanishes quadratically in zero is suflicient despite the linear decay
behavior like that of a heat equation, because terms like ” V' - V,.” appear. Therefore,
the proof rewrites the nonlinearities in divergence form in order to be able to exploit

the better decay of derivatives in the later estimates for ||V (¢)]]s.
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3 Propagation of singularities in three dimensions

(Joint work with Y.-G. Wang)

Ul — o*AUPp + V0 = 0, (3.1)

0: + V' + oV'U = 0, (3.2)

Tq, + ¢’ + kVE = 0, (3.3)

Up0<07 ) - Ugov Ufomv ) - Ufov 9<07 ) — ‘907 qp0<07 ) - qg()' (3'4>

The data (VUY, UL, 0", ¢") are assumed to be smooth away from and possibly

having jumps on a given smooth surface

oc={recQcR| ) =0}
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described by a C?*-function @ : Oy C R? — R, with )y open, satisfying
VOU(z)| =1 on o.
U= (U,U,Us,Uy) = (VU U, 6,¢"°)
Then

3
OU + ) 40,0+ AU =0, U(O0,-)=0"
j=1
The characteristic polynomial

T

3 2
det(Aldgs — ) &A;) = X' (xl — N(a” + 66 + ?)\512 + 22 |§I4)
j=1

has real roots A\, 1 < k < 8, and the eigenvalues of
3
B =) 9,04,
j=1
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are

M =0, 1<k <A, (3.9)
1
1 Ky, 1 Ky dkvya? |
Me=pp==x1 (" +B0+—) -1/ (a®+ [0+ —)? — , b<k<S8
2 T 2 T T
(3.10)
taking
g < pe < 0 < pr < us. (3.11)

The characteristic surfaces ¥y = {(t,x) | Pr(t,z) = 0},1 < k < 8, evolving from
the initial surface o = {(0,z) | ®°(x) = 0} are determined by

0@ 4 VO, =0, @4(0,) = @ (3.12)

hence
Sp=A{(t,z) | — et +dx) =0} (3.13)
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The associated right (column) eigenvectors 7y and left (row) eigenvectors [, of B,
can be computed explicitly, as well as expansions of these and the eigenvalues in

powers of 7. Let the matrices L and R be given by

Iy
L= : R = (ry,...,rg).
ls
Then V := LU, with U satisfying (3.6), satisfies
3
OV + ) (LAR)OV + AV =0, V(t=0)=V"=LU" (3.14)
j=1
where
N 3
AO = LAOR + Z LA]@R (315)

J=1
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Let [H]y, denote the jump of H along ;. Then (V1, V3, V3.Vy) are continuous
at U%ZE)Z;C, and V;,j = 95,...,8, does not have any jump on X, k = 1,...,8 for
k # j. Moreover, [Vi]y,, = 0 for 1 < k < 4. Evolutional equations for [V}]s;, for
h<k<8&:

8 3 8
OVi+ > Y (LAR)m0Vin = — Y (Ao)imVin + Fi (3.16)
m=1 j=1 m=1
for b < k < 8. Since
3 ~
(Aeldps — Y~ LO;O°AjR) = (Aeldgs — A = 0 (3.17)
j=1

with A = diag(\1, ..., As), we obtain that for each 5 < k < 8, [Vi|s, satisfies the
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following transport equation:

~

(0 + D (LA R, + (Ao ) Wiy, = (s, (3.18)

with initial conditions

[Vils, (t = 0) = Vil (3.19)

In order to determine the behavior of [V;]y, from (3.18), (3.19), it is essential to
study (Ag)gr, where, by (3.15), Ay is given by

3
Ay=LAR+) LAOR (3.20)
j=1
- L1 /AP + O(1), k=5,6,
(Ao)kr =3 7% 2;/7 ; (3.21)
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Notice: The mean curvature H of the initial surface o equals

APY
H=——
2

and will play an essential role in the behavior of the jumps as t — oo or as 7 — 0.
Vil = V], e uistoss
e~ F VT A (0 N0V 0 = 5 6,

3.22
e — G Jy (A (a(s; O,wo))+0(7))ds[vko] (3:22)

k=1,8.
For 7 — 0 the dominating term for £k = 5,6 is 6_%, i.e., we have exponential
decay of the jumps of Vi on X as7 — O ort — o0 for a fixed small 7 > 0. If
k = 7,8 the dominating term, for 7 — 0, is exp(— fo 2m + SADY(x(s;0,27)))ds),

whether the jumps of V;. on ;. decay exponentially depends on the size of the mean
curvature (= A®Y/2).
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Example: Let o be the sphere of radius 7:
c={zeR||jz|=r}={z| @) =r—|z| =0}
Then, we have

Y= A02) [t =7 — |y = {(t,2) | o] =r — put}.

Spreading surfaces, as t — oo, are g, >g, and
2 2
ACD()(CC()) =—=->0.
lzo| 7
Thus, as t — 400, |Vs]y, is decaying exponentially, while |V5]y, decays (grows
resp.) exponentially if
0 2 0 2
P > APV == (ﬁ— < APY == resp.) , (3.23)
QLK"Y r QUK r
that is depending on the size of the mean curvature H = %
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Theorem 3.1. Suppose that the initial data V'UP, 0,U"°, 0 and ¢*° may have
qumps on o = {®°(z) = 0} with |[V®'(x)| = 1, then the propagation of strong
singularities of solutions to the linearized problem (3.1)—(3.4) obeys

(1) The jumps of V'UP°, 0,UP° 0, ¢ on X5 and g decay exponentially both
when T — 0 for a fized t > 0 and when t — 400 for a fived 7 > 0.

(2) The jumps of V'UP°, 0,UP° qP° on Y7 (X resp.) are propagated, and when
t — 400 they will decay exponentially as soon as f—jJrozACDO (f—fi — aADY resp.)
being positive, more rapidly for smaller heat conductive coefficient ky, while
the jump of the temperature 6 on Y7 and g vanishes of order O(T) when
T — 0, which shows a smoothing effect in the system (3.1)—(3.3) when the
thermoelastic model with second sound converges to the hyperbolic-parabolic

type of classical thermoelasticity.
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4 Low frequency expansion in exterior domains

(Joint work with Y. Naito, Y. Shibata)

Let © be an exterior domain in R? with C'! boundary T

Uy — pAu — (p+ A)Vdivu + VO = 0
0; + vdivg + odivu, = 0
Toqt +q+ VO =0 (4.1)

in {2 x (0, 00) subject to the initial conditions
u(x,0) = ug(x), ulz,0)=mwui(x), 0(x,0)=060)(zx), q(x,0)=qo(x) in
and boundary conditions

u=0, =0 onl x (0,00)
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Aim: Low frequency expansion of the corresponding resolvent problem(s) — impor-
tant to investigate the decay property of solutions to (4.1) as time goes to infinity
(essentially: via Laplace transform).

Moreover: Limit as 1y tends to zero.

Resolvent problem:
Eu — pAu — (p+ \Vdivu + V0 = f in Q
kO + ~vdiv q 4+ 0kdivu = g in )
Tokq+ q+ kVO =h in )
u=0, 6=0 on I (4.2)
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First Q = R3: Use Fourier transform. Eliminate ¢ and consider

Fu — puAu— (u+ NVdivu 4+ VO = f in Q
kO — vr(tok + 1) AQ + fkdivu = g in
u=0=0 onl (4.3)

Theorem 4.1. Let 1 < ¢ < o0 and 0 < 179 < 1. Then, for any small
e > 0 there exist a constant oy > 0 depending on € and an operator S; €
Anal (Ug.e, B(Ly(R?)? x Ly(R?), W2 (R?)? x W7 (R?))) such that for any (f, g) €
Ly(R3)3x L,(R?) , (u,0) = Sk(f,g) solves equation (4.3). Here, for two Banach
spaces X and Y, B(X,Y) denotes the set of all bounded linear operators from
X into Y, Uy, denotes an open set in C defined by the formula:

Usye = 1k € C\{0} | Jargk| < (7/2) —€, |k < 00}
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and Anal (U, ¢, X) denotes the set of all holomorphic functions defined on U,, .
with theiwr values in X.
Theorem 4.2. Let 1 < ¢ < o0, 0 < e < 7w/2, 0 < 19 <1 and R > 0.
Let oy and S;. be the same number and solution operator as in Theorem 4.1,
respectively. Set
L,a(RY) = {(f. ) € Ly(R¥ x L(RY) | (f,g) vanishes for |2 > R}

Witoe R?) = W1 (R x Wi (RY)
Then, there ezist ao (0 < o < o) and G;(k) € Anal (Uy, B(L, r(R?), W, 1,.(R?)))
(j = 0,1) such that when (f,g) € L, r(R?), Gr(f, g) = (K'2Go(k)+G1(k))(f, )
solves equation (4.3) for k € U, and Gi(f,g) = Si(f,g) for k € Us,.

Now let €2 be an exterior domain.
Let 0, Sk, Go(k) and G1(k) be the same constant and operators as in Theorem 4.2
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and set
Gr. = kY2Go(k) + Gy (k) (4.4)
Locally we get

Theorem 4.3. Let 1 < g < oo and 0 < 1y < 1. Let R be a large fizred number
such that R*\ Q0 C Bp. Then, there exists a small number o' (0 < o' < o)
and an operator Hy € B(L,r, W?..(Q)) for each k € Uy ={k € C | |k| < o'}

q,

such that Hi(f, g) satisfies equation (4.3) for any (f,q) € L, r(§2) and k € Uy
and H; has the expansion formula:

H, = kY2 Hy(k) + Hi(k)  for k € U,
where Hy), H;. € Anal(Uyr, B(Ly r, W71,.(2))).

Combining this with the result for 2 = R? by cut-off techniques yields

25



Theorem 4.4. Let 1 < g <00, 0 <e<7m/2and 0 <1 < 1. Let ' > 0
be the same constant as in Theorem 4.3. Then, there exists an operator T} €
Anal (U, ., B(L,(Q)*, W(JQ(Q)‘l) such that Ty.(f, g) satisfies equation (4.3) for any
(f,g) € Ly()* and k € U,

Employing the same argument, we can show the theorems corresponding to The-

orems 4.3 and 4.4 in the classical thermoelastic case (7p = 0). Moreover, we have

Theorem 4.5. The solution operators Hy constructed in Theorem 4.3 and T},
in Theorem 4.4 depend on my € (0,1] continuously. The limit of Hy and T} as
7o — 0 are the corresponding operators of the classical thermoelastic equations,
where the limit is given in the in the operator norm of B(Lyr(Q2), W;,.())
when k € Uy and B(Ly(Q)*, W7 (Q)*) when Rek > 0 and k| < o', respectively.
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Thank you for your attention!
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