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The Cahn-Hilliard equation

We deal with the following equation of Cahn-Hilliard type:

ut −∆
(
−∆u + f (u)− h

)
= 0, (CH)

where
I the unknown u represents an order parameter,
I w = −∆u + f (u)− h is the chemical potential, and we

assume ∂nw = 0,
I f is the derivative of a configuration potential F ,
I h is an external source, included in view of possible

applications to conserved phase field systems.
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The boundary condition

I Usually, equation (CH) is coupled with either
homogeneous Neumann or periodic boundary condition.

I Recently, the following class of dynamic boundary
conditions has been proposed:

vt −∆Γv + fΓ(v) = hΓ − ∂nu, where (dynBC)

I v represents the trace of u on Γ = ∂Ω,
I ∆Γ is the Laplace-Beltrami operator,
I hΓ is a boundary source,
I fΓ is the derivative of a boundary configuration potential FΓ.
I ∂n represents the outer normal derivative.
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Motivations for (dynBC)

I It has been recently proposed in a number of physically
oriented papers (cf., e.g., [Fischer-Maass-Dieterich]);

I In a variational derivation, it comes from a boundary
contribution to the free energy;

I It can also come from concentrated capacity models
analyzed, e.g., in [Fasano-Primicerio-Rubinstein, 1980],
[Magenes, ∼1995], [Savaré-Visintin, 1998]

in the
framework of the Stefan problem.
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Singular potentials

I The potentials F , FΓ are assumed to be λ-convex;
I Two situations appear to be physically relevant:

I Regular potentials: when F (or FΓ) is a smooth function
defined on the whole real line (example: F (r) ∼ (r2 − 1)2);

I Singular potentials: when F (or FΓ) has a bounded domain
(e.g., (−1, 1) or [−1, 1]) and it is conventionally set ≡ +∞
outside it (example:
F (r) ∼ (1 + r) log(1 + r) + (1− r) log(1− r)).

I Singular potentials can also be nonsmooth (example:
F (r) ∼ I[−1,1] + Freg(r));

I Usually regular potentials appear as approximations of
singular ones.
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A survey on the literature

I The interest on dynamic b.c. for pattern formation systems
and phase change models is relatively recent, but rapidly
growing;

I Some significant contributions:
I [Racke-Zheng, 2003], [Wu-Zheng, 2004],

[Prüss-Racke-Zheng, 2006]: F regular of controlled growth,
FΓ = 0, well-posedness, regularity, attractors;

I [Chill-Fašangová-Prüss, 2004]: as above, ω-limits;
I [Miranville-Zelik, 2005], [Gal, 2008]: F , FΓ regular

(well-posedness, global and exponential attractors, viscous
problem, dependence on the viscosity).
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Objectives of our work

I Consider the widest admissible class of potentials, both on
the “bulk” Ω and on the boundary Γ;

I Analyze the growth and/or compatibility compatibility
conditions which are required in order to have (at least)
existence of a solution;

I Prove a well-posedness theorem via a rigorous
approximation argument;

I Investigate the long-time behavior of the system, both from
the viewpoint of ω-limits and of attractors.
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Dealing with singular potentials

Main trouble:
A control of f (u), fΓ(v) cannot be deduced from a bound on u
(the latter holds due to the energy inequality coming from the
variational structure of the problem).
But this is true also, e.g., for the Neumann conditions (cf., e.g.,
[Kenmochi-Niezgodka-Pawłow]);

Is this really a new difficulty?
YES! The coupling between singular potentials and dynamic
b.c. creates additional problems.
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The key point

Let us detail the estimate for f (u)

. . .

. . . but it is better to do it on the blackboard!
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Summarizing – 1

Although the free energy is of the form

E(u, v) =

∫
Ω

F (u) +

∫
Γ

FΓ(v) + . . . ,

in order to control f (u) (and fΓ(v)) uniformly in time, we need an
information on ∫

Γ
F (v0)

and not only on FΓ(v0).
Thus, the phase space will be (a bit) smaller than the energy
space.
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Summarizing – 2

We need some condition ensuring that∫
Γ

f (v)
(
fΓ(v)− hΓ

)
can be controlled;

In particular, if F is singular, we need that
I either FΓ is singular “in a similar way”
I or that the green integrand has the right sign for values of

v close to ±1 (boundary of dom f ).
I In particular, we need hΓ ∈ L∞.
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Well-posedness

Theorem. Assume that:
I f , fΓ are “compatible” in the sense specified before;
I The initial datum u0 has finite energy and satisfies

F (v0) ∈ L1(Γ).

I Then, there exists a unique solution to (CH)+(dynBC)
I and the regularity of the initial datum is maintained for

t ≥ 0.

Remark. We can also consider the case when the graph of f
contains vertical segments (this requires some technique of
maximal monotone operators).
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The stationary problem

I Notice that, due to the Neumann condition for
w = −∆u + f (u)− h, the spatial average of u is conserved
in time. Let us call m its (known) value;

I Then, we obtain the steady-state problem

−∆u∞ + f (u∞) = w∞ + h, |Ω|−1
∫

Ω
u∞ = m, (CH∞)

−∆Γv∞ + fΓ(v∞) = hΓ − ∂nu∞. (BC∞)

I Note that w∞ is a constant function.
I We can prove that the ω-limit of our system contains only

solutions of (CH∞)-(BC∞)

, where w∞ is indetermined, but
controlled in a way which depends only on the initial value
u0.

Giulio Schimperna - Pavia



Outline Introduction and motivation Well-posedness Long-time behavior

The stationary problem

I Notice that, due to the Neumann condition for
w = −∆u + f (u)− h, the spatial average of u is conserved
in time. Let us call m its (known) value;

I Then, we obtain the steady-state problem

−∆u∞ + f (u∞) = w∞ + h, |Ω|−1
∫

Ω
u∞ = m, (CH∞)

−∆Γv∞ + fΓ(v∞) = hΓ − ∂nu∞. (BC∞)

I Note that w∞ is a constant function.
I We can prove that the ω-limit of our system contains only

solutions of (CH∞)-(BC∞)

, where w∞ is indetermined, but
controlled in a way which depends only on the initial value
u0.

Giulio Schimperna - Pavia



Outline Introduction and motivation Well-posedness Long-time behavior

The stationary problem

I Notice that, due to the Neumann condition for
w = −∆u + f (u)− h, the spatial average of u is conserved
in time. Let us call m its (known) value;

I Then, we obtain the steady-state problem

−∆u∞ + f (u∞) = w∞ + h, |Ω|−1
∫

Ω
u∞ = m, (CH∞)

−∆Γv∞ + fΓ(v∞) = hΓ − ∂nu∞. (BC∞)

I Note that w∞ is a constant function.
I We can prove that the ω-limit of our system contains only

solutions of (CH∞)-(BC∞)

, where w∞ is indetermined, but
controlled in a way which depends only on the initial value
u0.

Giulio Schimperna - Pavia



Outline Introduction and motivation Well-posedness Long-time behavior

The stationary problem

I Notice that, due to the Neumann condition for
w = −∆u + f (u)− h, the spatial average of u is conserved
in time. Let us call m its (known) value;

I Then, we obtain the steady-state problem

−∆u∞ + f (u∞) = w∞ + h, |Ω|−1
∫

Ω
u∞ = m, (CH∞)

−∆Γv∞ + fΓ(v∞) = hΓ − ∂nu∞. (BC∞)

I Note that w∞ is a constant function.
I We can prove that the ω-limit of our system contains only

solutions of (CH∞)-(BC∞)

, where w∞ is indetermined, but
controlled in a way which depends only on the initial value
u0.

Giulio Schimperna - Pavia



Outline Introduction and motivation Well-posedness Long-time behavior

The stationary problem

I Notice that, due to the Neumann condition for
w = −∆u + f (u)− h, the spatial average of u is conserved
in time. Let us call m its (known) value;

I Then, we obtain the steady-state problem

−∆u∞ + f (u∞) = w∞ + h, |Ω|−1
∫

Ω
u∞ = m, (CH∞)

−∆Γv∞ + fΓ(v∞) = hΓ − ∂nu∞. (BC∞)

I Note that w∞ is a constant function.
I We can prove that the ω-limit of our system contains only

solutions of (CH∞)-(BC∞)

, where w∞ is indetermined, but
controlled in a way which depends only on the initial value
u0.

Giulio Schimperna - Pavia



Outline Introduction and motivation Well-posedness Long-time behavior

The stationary problem

I Notice that, due to the Neumann condition for
w = −∆u + f (u)− h, the spatial average of u is conserved
in time. Let us call m its (known) value;

I Then, we obtain the steady-state problem

−∆u∞ + f (u∞) = w∞ + h, |Ω|−1
∫

Ω
u∞ = m, (CH∞)

−∆Γv∞ + fΓ(v∞) = hΓ − ∂nu∞. (BC∞)

I Note that w∞ is a constant function.
I We can prove that the ω-limit of our system contains only

solutions of (CH∞)-(BC∞), where w∞ is indetermined, but
controlled in a way which depends only on the initial value
u0.

Giulio Schimperna - Pavia



Outline Introduction and motivation Well-posedness Long-time behavior

Łojasiewicz-Simon method

I Can we, for analytic f and fΓ prove, via the
Łojasiewicz-Simon inequality that the ω-limit is a singleton?

I For singular potentials F , we need that at least the
stationary states u∞ are “separated” from the boundary of
dom f . Namely, if dom f = (−1, 1), we need

∃ ε > 0 : −1 + ε ≤ u∞(x) ≤ 1− ε, a.e. in Ω.

I We can prove this for f such that (additionally)

lim
r→∂ dom f

|f (r)| = +∞

Main ingredient: the control of w∞.
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In progress

I We are also studying the problem of determining global
and exponential attractors,

I This does not seem to require additional conditions on the
potential, or to present relevant additional difficulties
w.r.t. the regular potential case.
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