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1. Statement of the problem

In a UMD Banach space E, consider a principally irreg-

ular boundary value problem in [0, 1] for the second order

elliptic differential-operator equation

L(D)u := −u′′(x) + Au(x) + A1(x)u(x) = f(x), (1.1)

L1u : = αu′(0) + βu′(1) + γu(0) + δu(1)

+
N1∑
s=1

T1su(x1s) = f1,

L2u : = αu(0)− βu(1) +
N2∑
s=1

T2su(x2s) = f2,

(1.2)

where α, β, γ, δ are complex numbers; xks ∈ [0, 1]; A,

A1(x), for x ∈ [0, 1], and Tks are, generally speaking, un-

bounded operators in E; D := d
dx .
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Note that boundary conditions for equation (1.1), i.e.,

for

L(D)u := −u′′(x) + Au(x) + A1(x)u(x) = f(x),

with the principal part

Lk0u := αku(mk)(0) + βku(mk)(1), k = 1, 2,

where mk ∈ {0, 1}, are called (Birkhoff)-regular boundary

conditions if the number

θ := (−1)m1α1β2 − (−1)m2α2β1 6= 0.

Originally this definition was given for scalar equations, we

just adapted the definition to abstract settings. So, our

boundary conditions (1.2) are irregular for (1.1).

We find sufficient conditions for problem (1.1)–(1.2) to

have the Fredholm property and we establish a coercive

estimate with a defect with respect to the space variable

for a solution of problem (1.1)–(1.2) in Lp((0, 1); E).
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Furthermore, when instead of problem (1.1)–(1.2) we

consider the problem

L(λ,D)u := λu(x)− u′′(x) + Au(x) + A1(x)u(x) = f(x),

(1.3)
L10u : = αu′(0) + βu′(1) + γu(0) + δu(1) = f1,

L20u : = αu(0)− βu(1) = f2,
(1.4)

where λ is the spectral parameter, the coerciveness with a

defect in λ is also established.

Let us mention that for regular problems we have suc-

ceeded to prove maximal Lp-regularity. For irregular prob-

lems we prove unique solvability theorems, but maximal Lp-

regularity does not follow from the theorems for problem

(1.3)–(1.4). Apparently, this is a phenomenon of irregular

problems. One does not have maximal Lp-regularity for

irregular problems even in the framework of Hilbert spaces.
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2. Coerciveness with a defect on the

space variable and Fredholmness

Consider problem (1.1)-(1.2). It is convenient to formu-

late the theorem in terms of the Fredholmness of some un-

bounded operator, corresponding to the problem and which

acts from one Banach space into another. Let us set the

operator L from W 2
p ((0, 1); E(A), E) into

Lp((0, 1); E(A
1
2 ))+̇(E(A2), E) 1

2+ 1
4p ,p+̇(E(A2), E) 1

4+ 1
4p ,p

by the equalities

D(L) : =
{

u | u ∈ W 2
p ((0, 1); E(A), E),

L(D)u ∈ Lp((0, 1); E(A
1
2 )),

L1u ∈ (E(A2), E) 1
2+ 1

4p ,p,

L2u ∈ (E(A2), E) 1
4+ 1

4p ,p

}
,

Lu : = (L(D)u, L1u, L2u),

where L(D), L1, and L2 have been defined by equalities

(1.1)–(1.2).
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Theorem 1. Let the following conditions be satisfied:

(1) an operator A is closed, densely defined and invert-

ible in a UMD Banach space E;

(2) R{λR(λ,A) : arg λ = π} < ∞;

(3) the embedding E(A) ⊂ E is compact;

(4) αδ + βγ 6= 0;

(5) for any ε > 0 and for almost all x ∈ [0, 1]

‖A1(x)u‖
E(A

1
2 )
≤ ε‖Au‖+ C(ε)‖u‖

E(A
1
2 )

, u ∈ D(A);

for each u ∈ D(A) the function A1(x)u is measur-

able on [0, 1] in E(A
1
2 );

(6) for ε > 0 and u ∈ (E(A), E) 1
2p ,p, where p ∈ (1,∞),

‖Tksu‖(E(A2),E) 3
4−

k
4 + 1

4p
,p
≤ ε‖u‖(E(A),E) 1

2p
,p

+ C(ε)‖u‖.
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Then,

(a) for any function u ∈ D(L) the following noncoercive

estimate holds

‖u′′‖Lp((0,1);E) + ‖Au‖Lp((0,1);E)

≤ C
(
‖L(D)u‖

Lp((0,1);E(A
1
2 ))

+
2∑

k=1

‖Lku‖(E(A2),E) 3
4−

k
4 + 1

4p
,p

+ ‖u‖
Lp((0,1);E(A

1
2 ))

)
;

(b) the operator L: u → Lu :=
(
L(D)u, L1u, L2u

)
from

W 2
p ((0, 1); E(A), E) into

Lp((0, 1); E(A
1
2 ))+̇(E(A2), E) 1

2+ 1
4p ,p+̇(E(A2), E) 1

4+ 1
4p ,p

is Fredholm.
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3. Coerciveness with a defect of the

problem with a linear parameter

Consider now problem (1.3)–(1.4), i.e.,

L(λ,D)u := λu(x)− u′′(x) + Au(x) + A1(x)u(x) = f(x),

(3.1)
L10u : = αu′(0) + βu′(1) + γu(0) + δu(1) = f1,

L20u : = αu(0)− βu(1) = f2,
(3.2)

Theorem 2. Let the following conditions be satisfied:

(1) an operator A is closed, densely defined and invert-

ible in a UMD Banach space E;

(2) R{λR(λ,A) : | arg λ| ≥ π − ϕ} < ∞ for some 0 ≤
ϕ < π;

(3) the embedding E(A) ⊂ E is compact;

(4) αδ + βγ 6= 0;

(5) for any ε > 0 and for almost all x ∈ [0, 1]

‖A1(x)u‖
E(A

1
2 )
≤ ε‖Au‖+ C(ε)‖u‖

E(A
1
2 )

, u ∈ D(A),

‖A1(x)u‖ ≤ ε‖A 1
2 u‖+ C(ε)‖u‖, u ∈ D(A

1
2 );



the function A1(x)u, for u ∈ D(A), is measurable

on [0, 1] in E(A
1
2 ) and, for u ∈ D(A

1
2 ), is measur-

able on [0, 1] in E.

Then, problem (3.1)–(3.2), for f ∈ Lp((0, 1); E(A
1
2 )),

fk ∈ (E(A2), E) 3
4− k

4 + 1
4p ,p, where 1 < p < ∞, and | arg λ| ≤

ϕ, |λ| is sufficiently large, has a unique solution that belongs

to the space W 2
p ((0, 1); E(A), E) and, for these λ, the fol-

lowing noncoercive estimates hold for the solution of prob-

lem (3.1)–(3.2) :

|λ|‖u‖Lp((0,1);E) + ‖u′′‖Lp((0,1);E) + ‖Au‖Lp((0,1);E)

≤ C
[
‖f‖

Lp((0,1);E(A
1
2 ))

+
2∑

k=1

(
‖fk‖(E(A2),E) 3

4−
k
4 + 1

4p
,p

+ |λ| k+1
2 − 1

2p ‖fk‖
)]

and

|λ| 12 ‖u‖Lp((0,1);E) + ‖u′‖Lp((0,1);E) + ‖A 1
2 u‖Lp((0,1);E)

≤ C
[
‖f‖Lp((0,1);E) +

2∑

k=1

(
‖fk‖(E(A),E)1− k

2 + 1
2p

,p

+ |λ| k
2− 1

2p ‖fk‖
)]

.
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4. Principally irregular boundary value problems

for elliptic equations of the second order

Let Ω := (0, 1)×G, where G ⊂ Rr, r ≥ 2 be a bounded

open domain with an (r − 1)-dimensional boundary ∂G

which locally admits rectification. Denote by

Bs
p,q(G) := (W s0

p (G),W s1
p (G))θ,q,

where 0 ≤ s0, s1 are integers, 0 < θ < 1, 1 < p < ∞,

1 < q < ∞ and s = (1− θ)s0 + θs1, and

W l,s
p,q(Ω) := W l

p((0, 1); W s
q (G), Lq(G)),

where 0 ≤ l, s are integers, 1 < p < ∞, 1 < q < ∞. If p = q

and l = s then W l,s
p,q(Ω) = W l

p(Ω). Finally, Lp,q(Ω) :=

W 0,0
p,q (Ω) = Lp((0, 1); Lq(G)).

We consider in Ω a principally irregular boundary value

problem for an elliptic differential-integral equation of the

second order with differential-operator boundary conditions
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L(x, y,Dx, Dy)u := −D2
xu(x, y)−

r∑

s,j=1

asj(y)DsDju(x, y)

+
r∑

j=1

bj(y)Dju(x, y) + b0(x, y)u(x, y)

+
∫

G

c(x, y, z)u(x, z)dz = f(x, y), (x, y) ∈ Ω,
(4.1)





L1u := αDxu(0, y) + βDxu(1, y) + γu(0, y) + δu(1, y)

+
∑N1

s=1 T1su(x1s, ·)|y = f1(y), y ∈ G,

L2u := αu(0, y)− βu(1, y) +
∑N2

s=1 T2su(x2s, ·)|y
= f2(y), y ∈ G,

(4.2)

Lu :=
r∑

j=1

cj(y′)Dju(x, y′) + c0(y′)u(x, y′) = 0,

(x, y′) ∈ (0, 1)× ∂G, (4.3)

where Dx := ∂
∂x , Dj := −i ∂

∂yj
, Dy := (D1, . . . , Dr); α, β,

γ, δ are complex numbers, y := (y1, . . . , yr), xks ∈ [0, 1],

Tks are, generally speaking, unbounded operators in Lq(G),

1 < q < ∞. Let m :=ordL for (4.3).
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Theorem 3. Let the following conditions be satisfied:

(1) (smoothness condition) asj ∈ W 3
q (Ω), |asj(y) −

asj(z)| ≤ C|y − z|γ for some C > 0 and γ ∈ (0, 1),

∀y, z ∈ G; b0,
∂b0
∂y ∈ L∞(Ω); bj ∈ L∞(G); c, ∂c

∂y ∈
L∞(Ω×G); cj , c0 ∈ C2−m(∂G); ∂G ∈ C2;

(2) (ellipticity condition for A) for y ∈ G, σ ∈ Rr,

arg λ = π, |σ|+ |λ| 6= 0,

λ +
r∑

s,j=1

asj(y)σsσj 6= 0;

(3) (Lopatinskii-Shapiro condition for A) y′ is any

point on ∂G, the vector σ′ is tangent and σ is a

normal vector to ∂G at the point y′ ∈ ∂G. Consider

the following ordinary differential problem:

[
λ +

r∑

s,j=1

asj(y′)
(
σ′s − iσs

d

dt

)(
σ′j − iσj

d

dt

)]
u(t) = 0,

t > 0, λ ≤ 0, (4.4)
r∑

j=1

cj(y′)
(
σ′j − iσj

d

dt

)
u(t)

∣∣∣
t=0

= h, for m = 1,
(4.5)

u(0) = h, for m = 0; (4.6)



it is required that for m = 1 problem (4.4), (4.5)

(for m = 0 problem (4.4), (4.6)) has one and only

one solution, including all its derivatives, tending

to zero as t →∞ for any numbers h ∈ C;

(4) αδ + βγ 6= 0;

(5) ∀ε > 0, ∀u ∈ B
2− 1

p
q,p (G;Lu = 0 if m < 2− 1

p − 1
q ),

‖Tksu‖
B

1+k− 1
p

q,p (G)
≤ ε‖u‖

B
2− 1

p
q,p (G)

+ C(ε)‖u‖Lq(G),

where p 6= q
q−1 and p, q ∈ (1,∞), or p = q

q−1 and

m 6= 1.

Then,

(a) ∀u ∈ W 2,2
p,q (Ω;Lu = 0), such that L(x, y, Dx, Dy)u ∈

W 0,1
p,q (Ω; Lu = 0 if m = 0), L1u ∈ B

2− 1
p

q,p (G; Lu = 0

if m < 2 − 1
p − 1

q ), and L2u ∈ B
3− 1

p
q,p (G; Lu = 0;

L(−∑r
s,j=1 asj(y)DsDju + λ0u) = 0 if m < 1 −

1
p − 1

q ), the following noncoercive estimate holds:

‖u‖W 2,2
p,q (Ω) ≤ C

(
‖L(x, y, Dx, Dy)u‖W 0,1

p,q (Ω)

+
2∑

k=1

‖Lku‖
B

1+k− 1
p

q,p (G)
+ ‖u‖W 0,1

p,q (Ω)

)
,

where L(x, y, Dx, Dy), Lk, and L are defined by

(4.1)− (4.3).



(b) there exists λ0 > 0 such that the operator L : u →
Lu := (L(x, y,Dx, Dy)u, L1u, L2u) from W 2,2

p,q (Ω;

Lu = 0) into W 0,1
p,q (Ω; Lu = 0 if m = 0)+̇B

2− 1
p

q,p (G;

Lu = 0 if m < 2 − 1
p − 1

q ) +̇B
3− 1

p
q,p (G;Lu = 0;

L(−∑r
s,j=1 asj(y)DsDju + λ0u) = 0 if m < 1 −

1
p − 1

q ) is Fredholm.
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Let us now consider in the same cylindrical domain Ω :=

(0, 1)×G a principally regular boundary value problem for

an elliptic differential-integral equation of the second order

with differential-operator boundary conditions and with a

linear parameter λ

L(x, y, Dx, Dy)u := λu(x, y)−D2
xu(x, y)

−
r∑

s,j=1

asj(y)DsDju(x, y)

+
r∑

j=1

bj(y)Dju(x, y) + b0(x, y)u(x, y)

+
∫

G

c(x, y, z)u(x, z)dz = f(x, y),
(4.7)





L1u := αDxu(0, y) + βDxu(1, y)
+γu(0, y) + δu(1, y) = f1(y), y ∈ G,

L2u := αu(0, y)− βu(1, y) = f2(y), y ∈ G,

(4.8)

Lu :=
r∑

j=1

cj(y′)Dju(x, y′) + c0(y′)u(x, y′) = 0,

(x, y′) ∈ (0, 1)× ∂G. (4.9)

Let m :=ordL for (4.9).
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Theorem 4. Let conditions (1)–(4) of Theorem 3 be

satisfied; moreover, conditions (2) and (3) hold in the angle

| arg λ| ≥ π − ϕ, where 0 ≤ ϕ < π.

Then, problem (4.7)− (4.9) for

f ∈ W 0,1
p,q (Ω;Lu = 0 if m = 0),

f1 ∈ B
2− 1

p
q,p (G;Lu = 0 if m < 2 − 1

p − 1
q ), and f2 ∈

B
3− 1

p
q,p (G;Lu = 0; L(−∑r

s,j=1 asj(y)DsDju + λ0u) = 0 if

m < 1 − 1
p − 1

q ), where 1 < q, p < ∞ and | arg λ| ≤ ϕ, |λ|
is sufficiently large, has a unique solution that belongs to

the space W 2,2
p,q (Ω;Lu = 0) and, for these λ, the following

noncoercive estimates hold for the solution

|λ|‖u‖Lp,q(Ω) + ‖u‖W 2,2
p,q (Ω) ≤ C

(
‖f‖W 0,1

p,q (Ω)

+
2∑

k=1

(
‖fk‖

B
1+k− 1

p
q,p (G)

+ |λ| k+1
2 − 1

2p ‖fk‖Lq(G)

))

and

|λ| 12 ‖u‖Lp,q(Ω) + ‖u‖W 1,1
p,q (Ω) ≤ C

(
‖f‖Lp,q(Ω)

+
2∑

k=1

(
‖fk‖

B
k− 1

p
q,p (G)

+ |λ| k
2− 1

2p ‖fk‖Lq(G)

))
.
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Examples of Tks (at least for ∂G ∈ C∞) satisfying condi-

tion (6) of Theorem 3:

(Tksu)(y) :=
∫

G

∑

|`|≤1

Tks`(x, y)
∂|`|u(x)

∂x`1
1 · · · ∂x`r

r

dx,

where Tks` ∈ Lt′(G × G), 1
t′ + 1

t = 1, t = min(q, q′), 1
q′ +

1
q = 1; T1s`(x, y) are twice continuously differentiable with

respect to y variable and ∂
∂yj

T1s` ∈ Lt′(G×G), ∂2

∂yi∂yj
T1s` ∈

Lt′(G × G). For T2s`(x, y), we increase the smoothness

by one and claim also that ∂3

∂ym∂yi∂yj
T2s` ∈ Lt′(G × G).

So, we consider, in particular, differential-integral boundary

conditions.


