MECCANICA

A CONFERENCE IN HONOR OF SANDRO GRAFFI ON HIS 65TH BIRTHDAY

JOEL LEBOWITZ

(RUTGERS UNIVERSITY, NEW BRUNSWICK, USA)

EXACT RESULTS FOR IONIZATION OF MODEL ATOMIC SYSTEMS

We present rigorous results for the ionization of model quantum systems with reference Hamiltonian $H_0 = -\frac{1}{2}\nabla^2 + V_0(x)$ (with $x \in$ \mathbb{R}^d) having both bound and continuum states subjected to arbitrary strength time-periodic potentials $V_1(x,t) = V_1(x,t+2\pi/\omega)$. Starting from an initially localized state $\psi_0(x)$, we prove, for a large class of $V_0(x)$ and $V_1(x,t)$, that the wavefunction $\psi(x,t)$ will delocalize as $t \to \infty$, i.e. the system will ionize. The only exceptions are cases where there are time-periodic bound states of the Floquet operator associated to H_0+V_1 . These do occur (albeit rarely) when V_1 is not small. Proof of ionization then involves showing that the Floquet operator has only absolutely continuous spectrum. For small V_1 and compact V_0 , we prove convergence of the perturbation expansion for the resonances (defined as poles of an appropriate resolvent) $\sigma_j = E_j - i\Gamma_j/2$ (with E_j the resonance energy and Γ_j the ionization rate), justifying Fermi's golden rule. For very long times $\psi(x,t)$ is given (for compact V_0) by a power series in $t^{-1/2}$ which we prove in some cases to be Borel summable. For the Coulomb potential $V_0(x) = -b |x|^{-1}$ in \mathbb{R}^3 , we prove ionization for $V_1(x,t) = V_1(|x|) \sin(\omega t)$, $V_1(|x|) = 0$ for |x| > R and $V_1(|x|) > 0$ for |x| < R. If ψ_0 is compactly supported both in x and in angular momentum, **L**, we obtain that $\psi(x,t) \sim O(t^{-5/6})$ as $t \to \infty$.

(Joint work with O. Costin, C. Stucchio and S. Tanveer.)