The Topology of Tiling Spaces

Jean BELLISSARD ${ }^{12}$

Georgia Institute of Technology, Atlanta,
http://www.math.gatech.edu/~jeanbel/

Collaborations:

R. BENEDETTI (U. Pisa, Italy)
J.-M. GAMBAUDO (U. Nice, France)
D.J.L. HERRMANN (U. Tübingen, Germany)
J. KELLENDONK (U. Lyon I, Lyon, France)
J. SAVINIEN (Gatech, Atlanta, GA \& U. Bielefeld, Germany)
M. ZARROUATI (U. Toulouse III, Toulouse, France)

[^0]
Main References

J. Bellissard, The Gap Labeling Theorems for Schrödinger's Operators, in From Number Theory to Physics, pp. 538-630, Les Houches March 89, Springer, J.M. Luck, P. Moussa \& M. Waldschmidt Eds., (1993).
J. Kellendonk,

The local structure of tilings and their integer group of coinvariants, Comm. Math. Phys., 187, (1997), 1823-1842.
J. E. Anderson, I. Putnam,

Topological invariants for substitution tilings and their associated C^{*}-algebras, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
A. H. Forrest, J. Hunton,

The cohomology and K-theory of commuting homeomorphisms of the Cantor set, Ergodic Theory Dynam. Systems, 19, (1999), 611-625.
J. C. Lagarias,

Geometric models for quasicrystals I \& II,
Discrete Comput. Geom., 21, (1999), 161-191 \& 345-372.
J. Bellissard, D. Herrmann, M. Zarrouati,

Hull of Aperiodic Solids and Gap Labeling Theorems,
In Directions in Mathematical Quasicrystals, CRM Monograph Series,
Volume 13, (2000), 207-259, M.B. Baake \& R.V. Moody Eds., AMS Providence.
L. Sadun, R. F. Williams,

Tiling spaces are Cantor set fiber bundles,
Ergodic Theory Dynam. Systems, 23, (2003), 307-316.
J. Bellissard, R. Benedetti, J. M. Gambaudo,

Spaces of Tilings, Finite Telescopic Approximations, Comm. Math. Phys., 261, (2006), 1-41.
J. Bellissard, J. Savinien,

A Spectral Sequence for the K-theory of Tiling Spaces, arXiv:0705.2483, submitted to Ergod. Th. Dyn. Syst., 2007.

Content

1. Tilings, Tilings...
2. The Hull as a Dynamical System
3. Branched Oriented Flat Riemannian Manifolds
4. Cohomology and K-Theory
5. Conclusion

I - Tilings, Tilings,...

- A triangle tiling -

- Dominos on a triangular lattice -

- Building the chair tiling -

- The chair tiling -

- The Penrose tiling -

- Kites and Darts -

- Rhombi in Penrose's tiling -

- The Penrose tiling -

- The octagonal tiling -

- Octagonal tiling: inflation rules -

- Another octagonal tiling -

- Another octagonal tiling -

- Building the Pinwheel Tiling -

- The Pinwheel Tiling -

Aperiodic Materials

1. Periodic Crystals in d-dimensions: translation and crystal symmetries. Translation group $\mathcal{T} \simeq \mathbb{Z}^{d}$.
2. Periodic Crystals in a Uniform Magnetic Field; magnetic oscillations, Shubnikov-de Haas, de Haas-van Alfen. The magnetic field breaks the translation invariance to give some quasiperiodicity.
3. Quasicrystals: no translation symmetry, but icosahedral symmetry. Ex.:
(a) $\mathrm{Al}_{\mathbf{6 2 . 5}} \mathrm{Cu}_{25} \mathrm{Fe}_{12.5}$;
(b) $\mathrm{Al}_{70} \mathrm{Pd}_{22} \mathrm{Mn}_{8}$;
(c) $\mathrm{Al}_{70} \mathrm{Pd}_{22} \mathrm{Re}_{8}$;
4. Disordered Media: random atomic positions
(a) Normal metals (with defects or impurities);
(b) Alloys
(c) Doped semiconductors ($\mathbf{S i}, \mathbf{A s G a}, \ldots$);

- The icosahedral quasicrystal $A l P d M n$ -

- The icosahedral quasicrystal HoMgZn -

II - The Hull as a Dynamical System

Point Sets

A subset $\mathcal{L} \subset \mathbb{R}^{d}$ may be:

1. Discrete.
2. Uniformly discrete: $\exists r>0$ s.t. each ball of radius r contains at most one point of \mathcal{L}.
3. Relatively dense: $\exists R>0$ s.t. each ball of radius R contains at least one points of \mathcal{L}.
4. A Delone set: \mathcal{L} is uniformly discrete and relatively dense.
5. Finite Local Complexity (FLC): $\mathcal{L}-\mathcal{L}$ is discrete and closed.
6. Meyer set: \mathcal{L} and $\mathcal{L}-\mathcal{L}$ are Delone.

Point Sets and Point Measures

$\mathfrak{M}\left(\mathbb{R}^{d}\right)$ is the set of Radon measures on \mathbb{R}^{d} namely the dual space to $C_{c}\left(\mathbb{R}^{d}\right)$ (continuous functions with compact support), endowed with the weak* topology.

For \mathcal{L} a uniformly discrete point set in \mathbb{R}^{d} :

$$
v:=v^{\mathcal{L}}=\sum_{y \in \mathcal{L}} \delta(x-y) \quad \in \mathfrak{M}\left(\mathbb{R}^{d}\right) .
$$

Point Sets and Tilings

Given a tiling with finitely many tiles (modulo translations), a Delone set is obtained by defining a point in the interior of each (translation equivalence class of) tile.

Conversely, given a Delone set, a tiling is built through the Voronoi cells

$$
V(x)=\left\{a \in \mathbb{R}^{d} ;|a-x|<|a-y|, \forall y \mathcal{L} \backslash\{x\}\right\}
$$

1. $V(x)$ is an open convex polyhedron containing $B(x ; r)$ and contained into $\overline{B(x ; R)}$.
2. Two Voronoi cells touch face-to-face.
3. If \mathcal{L} is $F L C$, then the Voronoi tiling has finitely many tiles modulo translations.

- A Delone set and its Voronoi Tiling-

The Hull

A point measure is $\mu \in \mathfrak{M}\left(\mathbb{R}^{d}\right)$ such that $\mu(B) \in \mathbb{N}$ for any ball $B \subset \mathbb{R}^{d}$. Its support is

1. Discrete.
2. r-Uniformly discrete: iff $\forall B$ ball of radius $r, \mu(B) \leq 1$.
3. R-Relatively dense: iff for each ball B of radius $R, \mu(B) \geq 1$.
\mathbb{R}^{d} acts on $\mathfrak{M}\left(\mathbb{R}^{d}\right)$ by translation.

Theorem 1 The set of r-uniformly discrete point measures is compact and \mathbb{R}^{d}-invariant. Its subset of R-relatively dense measures is compact and \mathbb{R}^{d}-invariant.

Definition 1 Given \mathcal{L} a uniformly discrete subset of \mathbb{R}^{d}, the Hull of \mathcal{L} is the closure in $\mathfrak{M}\left(\mathbb{R}^{d}\right)$ of the \mathbb{R}^{d}-orbit of $v^{\mathcal{L}}$.

Hence the Hull is a compact metrizable space on which \mathbb{R}^{d} acts by homeomorphisms.

Properties of the Hull

If $\mathcal{L} \subset \mathbb{R}^{d}$ is r-uniformly discrete with Hull Ω then using compactness

1. each point $\omega \in \Omega$ is an r-uniformly discrete point measure with support \mathcal{L}_{ω}.
2. if \mathcal{L} is (r, R)-Delone, so are all \mathcal{L}_{ω} 's.
3. if, in addition, \mathcal{L} is $F L C$, so are all the \mathcal{L}_{ω} 's. Moreover then $\mathcal{L}-\mathcal{L}=\mathcal{L}_{\omega}-\mathcal{L}_{\omega} \forall \omega \in \Omega$.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set is the set of $\omega \in \Omega$ such that $0 \in \mathcal{L}_{\omega}$.

Theorem 2 If \mathcal{L} is $F L C$, then its transversal is completely discontinuous.

Local Isomorphism Classes and Tiling Space

A patch is a finite subset of \mathcal{L} of the form

$$
p=(\mathcal{L}-x) \cap \overline{B\left(0, r_{1}\right)} \quad x \in \mathcal{L}, r_{1} \geq 0
$$

Given \mathcal{L} a repetitive, FLC, Delone set let \mathcal{W} be its set of finite patches: it is called the the \mathcal{L}-dictionary.

A Delone set (or a Tiling) \mathcal{L}^{\prime} is locally isomorphic to \mathcal{L} if it has the same dictionary. The Tiling Space of \mathcal{L} is the set of Local Isomorphism Classes of \mathcal{L}.

Theorem 3 The Tiling Space of \mathcal{L} coincides with its Hull.

Minimality

\mathcal{L} is repetitive if for any finite patch p there is $R>0$ such that each ball of radius R contains an ϵ-approximant of a translated of p.

Theorem $4 \mathbb{R}^{d}$ acts minimaly on Ω if and only if \mathcal{L} is repetitive.

Examples

1. Crystals : $\Omega=\mathbb{R}^{d} / \mathcal{T} \simeq \mathbb{T}^{d}$ with the quotient action of \mathbb{R}^{d} on itself. (Here \mathcal{T} is the translation group leaving the lattice invariant. \mathcal{T} is isomorphic to \mathbb{Z}^{D}.)
The transversal is a finite set (number of point per unit cell).
2. Impurities in Si : let \mathcal{L} be the lattices sites for Si atoms (it is a Bravais lattice). Let \mathfrak{A} be a finite set (alphabet) indexing the types of impurities.
The transversal is $X=\mathfrak{A}^{Z^{d}}$ with \mathbb{Z}^{d}-action given by shifts.
The Hull Ω is the mapping torus of X.

- The Hull of a Periodic Lattice -

Quasicrystals

Use the cut-and-project construction:

$$
\begin{gathered}
\mathbb{R}^{d} \simeq \mathcal{E}_{\|} \stackrel{\pi_{\|}}{\longleftrightarrow} \mathbb{R}^{n} \xrightarrow{\pi_{\perp}} \mathcal{E}_{\perp} \simeq \mathbb{R}^{n-d} \\
\mathcal{L} \stackrel{\pi_{\|}}{\longleftrightarrow} \tilde{\mathcal{L}} \xrightarrow{\pi_{\perp}} W,
\end{gathered}
$$

Here

1. $\tilde{\mathcal{L}}$ is a lattice in \mathbb{R}^{n},
2. the window W is a compact polytope.
3. \mathcal{L} is the quasilattice in $\mathcal{E}_{\|}$defined as

$$
\mathcal{L}=\left\{\pi_{\|}(m) \in \mathcal{E}_{\|} ; m \in \tilde{\mathcal{L}}, \pi_{\perp}(m) \in W\right\}
$$

- The cut-and-project construction -

- The transversal of the Octagonal Tiling is completely disconnected -

III - Branched Oriented Flat Riemannian Manifolds

Laminations and Boxes

A lamination is a foliated manifold with C^{∞}-structure along the leaves but only finite C^{0}-structure transversally. The Hull of a Delone set is a lamination with \mathbb{R}^{d}-orbits as leaves.

If \mathcal{L} is a FLC, repetitive, Delone set, with $\operatorname{Hull} \Omega$ a box is the homeomorphic image of

$$
\phi:(\omega, x) \in F \times U \mapsto \mathrm{~T}^{-x} \omega \in \Omega
$$

if F is a clopen subset of the transversal, $U \subset \mathbb{R}^{d}$ is open and T denotes the \mathbb{R}^{d}-action on Ω.

A quasi-partition is a family $\left(B_{i}\right)_{i=1}^{n}$ of boxes such that $\bigcup_{i} \overline{B_{i}}=\Omega$ and $B_{i} \cap B_{j}=\emptyset$.

Theorem 5 The Hull of a FLC, repetitive, Delone set admits a finite quasi-partition. It is always possible to choose these boxes as $\phi(F \times U)$ with U a d-rectangle.

Branched Oriented Flat Manifolds

Flattening a box decomposition along the transverse direction leads to a Branched Oriented Flat manifold. Such manifolds can be built from the tiling itself as follows

Step 1:

1. X is the disjoint union of all prototiles;
2. glue prototiles T_{1} and T_{2} along a face $F_{1} \subset T_{1}$ and $F_{2} \subset T_{2}$ if F_{2} is a translated of F_{1} and if there are $x_{1}, x_{2} \in \mathbb{R}^{d}$ such that $x_{i}+T_{i}$ are tiles of \mathcal{T} with $\left(x_{1}+T_{1}\right) \cap\left(x_{2}+T_{2}\right)=x_{1}+F_{1}=x_{2}+F_{2}$;
3. after identification of faces, X becomes a branched oriented flat manifold (BOF) B_{0}.

- Branching -

- Vertex branching for the octagonal tiling -

Step 2:

1. Having defined the patch p_{n} for $n \geq 0$, let \mathcal{L}_{n} be the subset of \mathcal{L} of points centered at a translated of p_{n}. By repetitivity this is a FLC repetitive Delone set too. Its prototiles are tiled by tiles of \mathcal{L} and define a finite family \mathfrak{P}_{n} of patches.
2. Each patch in $\mathcal{T} \in \mathfrak{P}_{n}$ will be collared by the patches of \mathfrak{P}_{n-1} touching it from outside along its frontier. Call such a patch modulo translation a a collared patch and \mathfrak{P}_{n}^{c} their set.
3. Proceed then as in Step 1 by replacing prototiles by collared patches to get the BOF-manifold B_{n}.
4. Then choose p_{n+1} to be the collared patch in $\mathfrak{P}_{n}^{\mathcal{C}}$ containing p_{n}.

- A collared patch -

Step 3:

1. Define a BOF-submersion $f_{n}: B_{n+1} \mapsto B_{n}$ by identifying patches of order n in B_{n+1} with the prototiles of B_{n}. Note that $D f_{n}=\mathbf{1}$.
2. Call Ω the projective limit of the sequence

$$
\cdots \xrightarrow{f_{n+1}} B_{n+1} \xrightarrow{f_{n}} B_{n} \xrightarrow{f_{n-1}} \cdots
$$

3. $X_{1}, \cdots X_{d}$ are the commuting constant vector fields on B_{n} generating local translations and giving rise to a \mathbb{R}^{d} action T on Ω.

Theorem 6 The dynamical system

$$
\left(\Omega, \mathbb{R}^{d}, \mathrm{~T}\right)=\lim _{\leftarrow}\left(B_{n}, f_{n}\right)
$$

obtained as inverse limit of branched oriented flat manifolds, is conjugate to the Hull of the Delone set of the tiling \mathcal{T} by an homemorphism.

IV - Cohomology and K-Theory

Čech Cohomology of the Hull

Let \mathcal{U} be an open covering of the Hull. If $U \in \mathcal{U}, \mathcal{F}(U)$ is the space of integer valued locally constant function on U.

For $n \in \mathbb{N}$, the n-chains are the element of $C^{n}(\mathcal{U})$, namely the free abelian group generated by the elements of $\mathcal{F}\left(U_{0} \cap \cdots \cap U_{n}\right)$ when the U_{i} varies in \mathcal{U}. A differential is defined by

$$
\begin{gathered}
d: C^{n}(\mathcal{U}) \mapsto C^{n+1}(\mathcal{U}) \\
d f\left(\bigcap_{i=0}^{n+1} U_{i}\right)=\sum_{j=0}^{n}(-1)^{j} f\left(\bigcap_{i: i \neq j} U_{i}\right)
\end{gathered}
$$

This defines a complex with cohomology $\check{H}^{n}(\mathcal{U}, \mathbb{Z})$. The Čech cohomology group of the Hull Ω is defined as

$$
\check{H}^{n}(\Omega, \mathbb{Z})=\lim _{\rightarrow \mathcal{U}} \check{H}^{n}(\mathcal{U}, \mathbb{Z})
$$

with ordering given by refinement on the set of open covers.

Longitudinal (co)-Homology

J. Bellissard, R. Benedettit, J.-. Gambaudo, Commun. Math. Phys., 261, (2006), 1-41.
J. Kaminker, I. Putnam, Michigan Math. J., 51, (2003), 537-546.
M. Benameur, H. Oyono-Oyono, C. R. Math. Acad. Sci. Paris, 334, (2002), 667-670.

The Homology groups are defined by the inverse limit

$$
H_{*}\left(\Omega, \mathbb{R}^{d}\right)=\lim _{\leftarrow}\left(H_{*}\left(B_{n}, \mathbb{R}\right), f_{n}^{*}\right)
$$

Theorem 7 (јв, Benedetti, Gambaudo) The homology group $H_{d}\left(\Omega, \mathbb{R}^{d}\right)$ admits a canonical positive cone induced by the orientation of \mathbb{R}^{d}, isomorphic to the affine set of positive \mathbb{R}^{d}-invariant measures on Ω.

The cohomology groups are defined by the direct limit

$$
H^{*}\left(\Omega, \mathbb{R}^{d}\right)=\lim _{\rightarrow}\left(H^{*}\left(B_{n}, \mathbb{R}\right), f_{n}^{*}\right)
$$

The following result is known as the Gap labeling Theorem and was proved simultaneously by Кaminker-Putnam, Benambur \& Oyono-Oyono, jb-Bendetti-Gambaudo. It is an extension of the Connes index theorem for foliations

Theorem 8 If \mathbb{P} is an \mathbb{R}^{d}-invariant probability on Ω, then the pairing with $H^{d}\left(\Omega, \mathbb{R}^{d}\right)$ satisfies

$$
\left\langle\mathbb{P} \mid H^{d}\left(\Omega, \mathbb{R}^{d}\right)\right\rangle=\int_{\Xi} d \mathbb{P}_{\operatorname{tr}} C(\Xi, \mathbb{Z})
$$

where Ξ is the transversal, $\mathbb{P}_{\text {tr }}$ is the probability on Ξ induced by \mathbb{P} and $C(\Xi, \mathbb{Z})$ is the space of integer valued continuous functions on Ξ.

Pattern-Equivariant Cohomology

J. Kellendonk, J. Phys. A36, (2003), 5765-5772.
J. Kellendonk, I. Putnam, Math. Ann. 334, (2006), 693-711.
L. Sadun, Pattern-Equivariant Cohomology with Integer Cafficients (2007)

Let \mathcal{L} be an FLC, repetitive Delone set in \mathbb{R}^{d}. A function $f: \mathbb{R}^{d} \mapsto$ X is \mathcal{L}-pattern-equivariant if there is $r>0$ such that $f(x)=f(y)$ whenever $B(0 ; r) \cap(\mathcal{L}-x)=B(0 ; r) \cap(\mathcal{L}-y)$.

The Voronoi tiling of \mathcal{L} can be seen as a chain complex, with tiles being the d-cells, and their k-faces being the k-cells.

A k-cochain with integer cœfficients is then a linear map α defined on the free abelian group of k-chains with values in \mathbb{Z}.

Let $C_{\mathcal{P}}^{k}(\mathcal{L})$ be the abelian group of \mathcal{L}-pattern equivariant k-cochains. The usual coboundary operator (de Rham differential)

$$
d_{n}: C_{\mathcal{P}}^{n}(\mathcal{L}) \mapsto C_{\mathcal{P}}^{n+1}(\mathcal{L})
$$

defines the \mathcal{L}-pattern equivariant cohomology denoted by

$$
H_{\mathcal{P}}^{k}(\mathcal{L}, \mathbb{Z})=\operatorname{Ker} d_{n} / \operatorname{Im} d_{n-1}
$$

The PV.Cohomology

J. Bellissard, J.Savinien, arXiv: 0705.2483, (2007).

Each cell of the Voronoi complex is punctured. The set \mathcal{L}_{S} of such punctures defines the simplicial transversal Ξ_{S}. An equivalent class, modulo translation, of n-cell σ defines a compact subset $\Xi_{S}(\sigma)$. χ_{σ} denotes the characteristic function of $\Xi_{S}(\sigma)$.

If σ is such a cell and τ belongs to its boundary, then there is a unique vector $x_{\sigma \tau}$ joining the puncture of τ to the one of σ. Correspondingly the translation $\mathrm{T}^{x_{\sigma} \tau}$ in the Hull sends $\Xi_{S}(\tau)$ into a part of $\Xi_{S}(\tau)$, defining the translation operator

$$
\theta_{\sigma \tau}=\chi_{\sigma} \mathrm{T}^{x_{\sigma} \tau} \chi_{\tau}
$$

where χ_{σ} denotes the characterictic function of $\Xi_{S}(\sigma)$.

A $P V-n$-cochain will be a group homomorphism from the group of (oriented) n-chains on the BOF manifold B_{0} into the group $C\left(\Xi_{S}, \mathbb{Z}\right)$. The Pimsner differential is defined by

$$
d f(\sigma)=\sum_{\tau \in \partial \sigma}[\sigma: \tau] f(\tau) \circ \theta_{\sigma \tau}
$$

Here $[\sigma: \tau$] denoted the incidence number of τ relative to σ. The associate cohomology is $H_{P}^{n}\left(B_{0}, C\left(\Xi_{S}, \mathbb{Z}\right)\right)$.

Cohomomogy and K-theory

The main topological property of the Hull (or tiling psace) is summarized in the following

Theorem 9 (i) The various cohomologies, Čech, longitudinal, patternequivariant and $P V$, are isomorphic.
(ii) There is a spectral sequence converging to the K-group of the Hull with page 2 given by the cohomology of the Hull.
(iii) In dimension $d \leq 3$ the K-group coincides with the cohomology.

Conclusion

1. Tilings can be equivalently be represented by Delone sets or point measures.
2. The Hull allows to give tilings the structure of a dynamical system with a transversal.
3. This dynamical system can be seen as a lamination or, equivalently, as the inverse limit of Branched Oriented Flat Riemannian Manifolds.
4. The Čech cohomology is equivalent to the longitudinal one, obtained by inverse limit, to the pattern-equivariant one or to the Pimsner cohomology are equivalent Cohomology of the Hull. The K-group of the Hull can be computed through a spectral sequence with the cohomology in page 2.
5. In maximum degree, the Homology gives the family of invariant measures and the Gap Labelling Theorem.

[^0]: ${ }^{1}$ Georgia Institute of Technology, School of Mathematics, Atlanta, GA 30332-0160 ${ }^{2}$ e-mail: jeanbel@math.gatech.edu

