The Topology of Tiling Spaces

Jean BELLISSARD¹²

Georgia Institute of Technology, Atlanta, http://www.math.gatech.edu/~jeanbel/

Collaborations:

R. BENEDETTI (U. Pisa, Italy)

J.-M. GAMBAUDO (U. Nice, France)

D.J.L. HERRMANN (U. Tübingen, Germany)

J. KELLENDONK (U. Lyon I, Lyon, France)

J. SAVINIEN (Gatech, Atlanta, GA & U. Bielefeld, Germany)

M. ZARROUATI (U. Toulouse III, Toulouse, France)

¹Georgia Institute of Technology, School of Mathematics, Atlanta, GA 30332-0160 ²e-mail: jeanbel@math.gatech.edu

Main References

J. BELLISSARD, *The Gap Labeling Theorems for Schrödinger's Operators*, in *From Number Theory to Physics*, pp. 538-630, Les Houches March 89, Springer, J.M. Luck, P. Moussa & M. Waldschmidt Eds., (1993).

J. KELLENDONK, *The local structure of tilings and their integer group of coinvariants,* Comm. Math. Phys., **187**, (1997), 1823-1842.

J. E. ANDERSON, I. PUTNAM, *Topological invariants for substitution tilings and their associated C*-algebras*, Ergodic Theory Dynam. Systems, **18**, (1998), 509-537.

A. H. FORREST, J. HUNTON, *The cohomology and K-theory of commuting homeomorphisms of the Cantor set*, Ergodic Theory Dynam. Systems, **19**, (1999), 611-625.

J. C. LAGARIAS, *Geometric models for quasicrystals I & II*, Discrete Comput. Geom., **21**, (1999), 161-191 & 345-372. Bologna August 30th 2008

J. BELLISSARD, D. HERRMANN, M. ZARROUATI, Hull of Aperiodic Solids and Gap Labeling Theorems, In Directions in Mathematical Quasicrystals, CRM Monograph Series, Volume 13, (2000), 207-259, M.B. Baake & R.V. Moody Eds., AMS Providence.

L. SADUN, R. F. WILLIAMS, *Tiling spaces are Cantor set fiber bundles*, Ergodic Theory Dynam. Systems, **23**, (2003), 307-316.

J. BELLISSARD, R. BENEDETTI, J. M. GAMBAUDO, Spaces of Tilings, Finite Telescopic Approximations, Comm. Math. Phys., **261**, (2006), 1-41.

J. BELLISSARD, J. SAVINIEN, A Spectral Sequence for the K-theory of Tiling Spaces, arXiv:0705.2483, submitted to Ergod. Th. Dyn. Syst., 2007.

Content

- 1. Tilings, Tilings...
- 2. The Hull as a Dynamical System
- 3. Branched Oriented Flat Riemannian Manifolds
- 4. Cohomology and *K*-Theory
- 5. Conclusion

I - Tilings, Tilings,...

- A triangle tiling -

- Dominos on a triangular lattice -

- Building the chair tiling -

- The Penrose tiling -

- Rhombi in Penrose's tiling -

- Octagonal tiling: inflation rules -

- Another octagonal tiling -

- The Pinwheel Tiling -

Aperiodic Materials

- 1. *Periodic Crystals* in *d*-dimensions: translation and crystal symmetries. Translation group $\mathcal{T} \simeq \mathbb{Z}^d$.
- Periodic Crystals in a Uniform Magnetic Field; magnetic oscillations, Shubnikov-de Haas, de Haas-van Alfen. The magnetic field breaks the translation invariance to give some quasiperiodicity.

- 3. *Quasicrystals*: no translation symmetry, but icosahedral symmetry. Ex.:
 - (a) Al_{62.5}Cu₂₅Fe_{12.5};
 - (b) Al₇₀Pd₂₂Mn₈;
 - (c) Al₇₀Pd₂₂Re₈;
- 4. Disordered Media: random atomic positions
 - (a) Normal metals (with defects or impurities);(b) Alloys
 - (c) Doped semiconductors (**Si**, **AsGa**, ...);

- The icosahedral quasicrystal *AlPdMn* -

- The icosahedral quasicrystal *HoMgZn*-

II - The Hull as a Dynamical System

Point Sets

A subset $\mathcal{L} \subset \mathbb{R}^d$ may be:

- 1. Discrete.
- 2. *Uniformly discrete*: $\exists r > 0$ s.t. each ball of radius *r* contains at most one point of \mathcal{L} .
- 3. *Relatively dense*: $\exists R > 0$ s.t. each ball of radius *R* contains at least one points of \mathcal{L} .
- 4. A *Delone* set: \mathcal{L} is uniformly discrete and relatively dense.
- 5. *Finite Local Complexity (FLC)*: $\mathcal{L} \mathcal{L}$ is discrete and closed.
- 6. *Meyer* set: \mathcal{L} and $\mathcal{L} \mathcal{L}$ are Delone.

Point Sets and Point Measures

 $\mathfrak{M}(\mathbb{R}^d)$ is the set of Radon measures on \mathbb{R}^d namely the dual space to $C_c(\mathbb{R}^d)$ (continuous functions with compact support), endowed with the weak^{*} topology.

For \mathcal{L} a *uniformly discrete* point set in \mathbb{R}^d :

$$\nu := \nu^{\mathcal{L}} = \sum_{y \in \mathcal{L}} \delta(x - y) \quad \in \mathfrak{M}(\mathbb{R}^d) \; .$$

Point Sets and Tilings

Given a tiling with finitely many tiles (*modulo translations*), a Delone set is obtained by defining a point in the interior of each (*translation equivalence class of*) tile.

Conversely, given a Delone set, a tiling is built through the *Voronoi cells*

$$V(x) = \{a \in \mathbb{R}^d ; |a - x| < |a - y|, \forall y \mathcal{L} \setminus \{x\}\}$$

1. V(x) is an *open convex polyhedron* containing B(x; r) and contained into $\overline{B(x; R)}$.

- 2. Two Voronoi cells touch face-to-face.
- 3. If \mathcal{L} is *FLC*, then the Voronoi tiling has finitely many tiles modulo translations.

- A Delone set and its Voronoi Tiling-

The Hull

A point measure is $\mu \in \mathfrak{M}(\mathbb{R}^d)$ such that $\mu(B) \in \mathbb{N}$ for any ball $B \subset \mathbb{R}^d$. Its support is

1. Discrete.

- 2. *r*-*Uniformly discrete*: iff $\forall B$ ball of radius r, $\mu(B) \leq 1$.
- 3. *R*-*Relatively dense*: iff for each ball *B* of radius *R*, $\mu(B) \ge 1$.

 \mathbb{R}^d acts on $\mathfrak{M}(\mathbb{R}^d)$ by translation.

Theorem 1 The set of r-uniformly discrete point measures is compact and \mathbb{R}^d -invariant. Its subset of R-relatively dense measures is compact and \mathbb{R}^d -invariant.

Definition 1 Given \mathcal{L} a uniformly discrete subset of \mathbb{R}^d , the Hull of \mathcal{L} is the closure in $\mathfrak{M}(\mathbb{R}^d)$ of the \mathbb{R}^d -orbit of $v^{\mathcal{L}}$.

Hence the Hull is a *compact metrizable space* on which \mathbb{R}^d *acts by homeomorphisms*.

Properties of the Hull

If $\mathcal{L} \subset \mathbb{R}^d$ is *r*-uniformly discrete with Hull Ω then using compactness

- 1. each point $\omega \in \Omega$ *is an r-uniformly discrete* point measure with support \mathcal{L}_{ω} .
- 2. if \mathcal{L} is (r, R)-*Delone*, so are all \mathcal{L}_{ω} 's.
- 3. if, in addition, \mathcal{L} is *FLC*, so are all the \mathcal{L}_{ω} 's. Moreover then $\mathcal{L} - \mathcal{L} = \mathcal{L}_{\omega} - \mathcal{L}_{\omega} \forall \omega \in \Omega$.

Definition 2 *The transversal of the Hull* Ω *of a uniformly discrete set is the set of* $\omega \in \Omega$ *such that* $0 \in \mathcal{L}_{\omega}$.

Theorem 2 If \mathcal{L} is FLC, then its transversal is completely discontinuous.

Local Isomorphism Classes and Tiling Space

A *patch* is a finite subset of \mathcal{L} of the form

$$p = (\mathcal{L} - x) \cap \overline{B(0, r_1)} \qquad x \in \mathcal{L} \,, \, r_1 \ge 0$$

Given \mathcal{L} a repetitive, FLC, Delone set let \mathcal{W} be its set of finite patches: it is called the *the* \mathcal{L} -*dictionary*.

A Delone set (or a Tiling) \mathcal{L}' is *locally isomorphic* to \mathcal{L} if it has the same dictionary. The *Tiling Space* of \mathcal{L} is the set of *Local Isomorphism Classes* of \mathcal{L} .

Theorem 3 *The Tiling Space of* \mathcal{L} *coincides with its Hull.*

Minimality

 \mathcal{L} is *repetitive* if for any finite patch p there is R > 0 such that each ball of radius R contains an ϵ -approximant of a translated of p.

Theorem 4 \mathbb{R}^d acts minimaly on Ω if and only if \mathcal{L} is repetitive.

Examples

- 1. *Crystals* : $\Omega = \mathbb{R}^d / \mathcal{T} \simeq \mathbb{T}^d$ with the quotient action of \mathbb{R}^d on itself. (Here \mathcal{T} is the translation group leaving the lattice invariant. \mathcal{T} is isomorphic to \mathbb{Z}^D .) The transversal is a finite set (number of point per unit cell).
- Impurities in Si : let L be the lattices sites for Si atoms (it is a Bravais lattice). Let A be a finite set (alphabet) indexing the types of impurities.
 The transversal is X = A^{Z^d} with Z^d-action given by shifts.
 The Hull Ω is the mapping torus of X.

- The Hull of a Periodic Lattice -

Quasicrystals

Use the *cut-and-project* construction:

$$\mathbb{R}^d \simeq \mathcal{E}_{\parallel} \xleftarrow{\pi_{\parallel}} \mathbb{R}^n \xrightarrow{\pi_{\perp}} \mathcal{E}_{\perp} \simeq \mathbb{R}^{n-d}$$

 $\mathcal{L} \stackrel{\pi_{\parallel}}{\longleftarrow} \tilde{\mathcal{L}} \stackrel{\pi_{\perp}}{\longrightarrow} W \quad ,$

Here

1. $\tilde{\mathcal{L}}$ is a *lattice* in \mathbb{R}^n ,

2. the *window W* is a compact polytope.

3. \mathcal{L} is the *quasilattice* in \mathcal{E}_{\parallel} defined as

 $\mathcal{L} = \{\pi_{\parallel}(m) \in \mathcal{E}_{\parallel}; m \in \tilde{\mathcal{L}}, \pi_{\perp}(m) \in W\}$

- The cut-and-project construction -

- The transversal of the Octagonal Tiling is completely disconnected -

III - Branched Oriented Flat Riemannian Manifolds

Laminations and Boxes

A *lamination* is a foliated manifold with C^{∞} -structure along the leaves but only finite C^{0} -structure transversally. The *Hull of a Delone set is a lamination* with \mathbb{R}^{d} -orbits as leaves.

If \mathcal{L} is a *FLC, repetitive, Delone* set, with Hull Ω a *box* is the home-omorphic image of

 $\phi:(\omega,x)\in F\times U\mapsto \tau^{-x}\omega\in\Omega$

if *F* is a clopen subset of the transversal, $U \subset \mathbb{R}^d$ is open and τ denotes the \mathbb{R}^d -action on Ω .

A *quasi-partition* is a family $(B_i)_{i=1}^n$ of boxes such that $\bigcup_i \overline{B_i} = \Omega$ and $B_i \cap B_j = \emptyset$.

Theorem 5 *The Hull of a FLC, repetitive, Delone set admits a finite quasi-partition. It is always possible to choose these boxes as* $\phi(F \times U)$ *with U a d-rectangle.*

Branched Oriented Flat Manifolds

Flattening a box decomposition along the transverse direction leads to a *Branched Oriented Flat manifold*. Such manifolds can be built from the tiling itself as follows

Step 1:

- 1. *X* is the disjoint union of all *prototiles*;
- 2. glue prototiles T_1 and T_2 along a face $F_1 \subset T_1$ and $F_2 \subset T_2$ if F_2 is a translated of F_1 and if there are $x_1, x_2 \in \mathbb{R}^d$ such that $x_i + T_i$ are tiles of \mathcal{T} with $(x_1 + T_1) \cap (x_2 + T_2) = x_1 + F_1 = x_2 + F_2$;
- 3. after identification of faces, *X* becomes a *branched oriented flat manifold* (BOF) *B*₀.

- Branching -

Bologna August 30th 2008

Step 2:

- 1. Having defined the patch p_n for $n \ge 0$, let \mathcal{L}_n be the subset of \mathcal{L} of points centered at a translated of p_n . By repetitivity this is a FLC repetitive Delone set too. Its prototiles are tiled by tiles of \mathcal{L} and define a finite family \mathfrak{P}_n of patches.
- 2. Each patch in $\mathcal{T} \in \mathfrak{P}_n$ will be collared by the patches of \mathfrak{P}_{n-1} touching it from outside along its frontier. Call such a patch *modulo translation* a *a collared patch* and \mathfrak{P}_n^c their set.
- 3. Proceed then as in Step 1 by replacing prototiles by collared patches to get the BOF-manifold B_n .
- 4. Then choose p_{n+1} to be the collared patch in \mathfrak{P}_n^c containing p_n .

Step 3:

- 1. Define a *BOF-submersion* $f_n : B_{n+1} \mapsto B_n$ by identifying patches of order *n* in B_{n+1} with the prototiles of B_n . Note that $Df_n = 1$.
- 2. Call Ω the *projective limit* of the sequence

$$\cdots \stackrel{f_{n+1}}{\to} B_{n+1} \stackrel{f_n}{\to} B_n \stackrel{f_{n-1}}{\to} \cdots$$

3. $X_1, \dots X_d$ are the commuting constant vector fields on B_n generating local translations and giving rise to a \mathbb{R}^d action τ on Ω .

Theorem 6 *The dynamical system*

$$(\Omega, \mathbb{R}^d, \mathbf{T}) = \lim_{\leftarrow} (B_n, f_n)$$

obtained as inverse limit of branched oriented flat manifolds, is conjugate to the Hull of the Delone set of the tiling T by an homemorphism.

IV - Cohomology and K-Theory

Čech Cohomology of the Hull

Let \mathcal{U} be an *open covering* of the Hull. If $U \in \mathcal{U}, \mathcal{F}(U)$ is the space of integer valued locally constant function on U.

For $n \in \mathbb{N}$, the *n*-chains are the element of $C^n(\mathcal{U})$, namely the *free abelian group* generated by the elements of $\mathcal{F}(U_0 \cap \cdots \cap U_n)$ when the U_i varies in \mathcal{U} . A differential is defined by

$$d: C^{n}(\mathcal{U}) \mapsto C^{n+1}(\mathcal{U})$$
$$df(\bigcap_{i=0}^{n+1} U_{i}) = \sum_{j=0}^{n} (-1)^{j} f(\bigcap_{i:i\neq j} U_{i})$$

Bologna August 30th 2008

This defines a *complex* with cohomology $\check{H}^{n}(\mathcal{U},\mathbb{Z})$. The Čech cohomology group of the Hull Ω is defined as

$$\check{H}^{n}(\Omega,\mathbb{Z}) = \lim_{\to \mathcal{U}} \check{H}^{n}(\mathcal{U},\mathbb{Z})$$

with ordering given by *refinement* on the set of open covers.

Longitudinal (co)-Homology

J. Bellissard, R. Benedetti, J.-. Gambaudo, Commun. Math. Phys., **261**, (2006), 1-41. J. Kaminker, I. Putnam, Michigan Math. J., **51**, (2003), 537-546. M. Benameur, H. Oyono-Oyono, C. R. Math. Acad. Sci. Paris, **334**, (2002), 667-670.

The Homology groups are defined by the inverse limit

$$H_*(\Omega, \mathbb{R}^d) = \lim_{\leftarrow} (H_*(B_n, \mathbb{R}), f_n^*)$$

Theorem 7 (JB, Benedetti, Gambaudo) The homology group $H_d(\Omega, \mathbb{R}^d)$ admits a canonical positive cone induced by the orientation of \mathbb{R}^d , isomorphic to the affine set of positive \mathbb{R}^d -invariant measures on Ω .

The cohomology groups are defined by the direct limit

 $H^*(\Omega, \mathbb{R}^d) = \lim_{\to} (H^*(B_n, \mathbb{R}), f_n^*)$

The following result is known as the *Gap labeling Theorem* and was proved simultaneously by KAMINKER-PUTNAM, BENAMEUR & OYONO-OYONO, JB-BENDETTI-GAMBAUDO. It is an extension of the *Connes index theorem* for foliations

Theorem 8 If \mathbb{P} is an \mathbb{R}^d -invariant probability on Ω , then the pairing with $H^d(\Omega, \mathbb{R}^d)$ satisfies

$$\langle \mathbb{P} | H^d(\Omega, \mathbb{R}^d) \rangle = \int_{\Xi} d\mathbb{P}_{\mathrm{tr}} \ C(\Xi, \mathbb{Z})$$

where Ξ is the transversal, \mathbb{P}_{tr} is the probability on Ξ induced by \mathbb{P} and $C(\Xi, \mathbb{Z})$ is the space of integer valued continuous functions on Ξ .

Pattern-Equivariant Cohomology

J. KELLENDONK, J. Phys. A36, (2003), 5765-5772. J. KELLENDONK, I. PUTNAM, Math. Ann. 334, (2006), 693-711. L. SADUN, Pattern-Equivariant Cohomology with Integer Coefficients (2007)

Let \mathcal{L} be an FLC, repetitive Delone set in \mathbb{R}^d . A function $f : \mathbb{R}^d \mapsto X$ is \mathcal{L} -pattern-equivariant if there is r > 0 such that f(x) = f(y) whenever $B(0;r) \cap (\mathcal{L} - x) = B(0;r) \cap (\mathcal{L} - y)$.

The Voronoi tiling of \mathcal{L} can be seen as a *chain complex*, with tiles being the *d*-cells, and their *k*-faces being the *k*-cells.

A *k-cochain* with integer cœfficients is then a linear map α defined on the free abelian group of *k*-chains with values in \mathbb{Z} .

Let $C_{\mathcal{P}}^k(\mathcal{L})$ be the abelian group of \mathcal{L} -pattern equivariant *k*-cochains. The usual coboundary operator (*de Rham differential*)

 $d_n: C^n_{\mathcal{P}}(\mathcal{L}) \mapsto C^{n+1}_{\mathcal{P}}(\mathcal{L})$

defines the *L*-pattern equivariant cohomology denoted by

 $H^k_{\mathcal{P}}(\mathcal{L},\mathbb{Z}) = \operatorname{Ker} d_n / \operatorname{Im} d_{n-1}$

The PV-Cohomology

J. Bellissard, J.Savinien, *arXiv*: 0705.2483, (2007).

Each cell of the *Voronoi complex* is punctured. The set \mathcal{L}_S of such punctures defines the *simplicial transversal* Ξ_S . An equivalent class, modulo translation, of *n*-cell σ defines a compact subset $\Xi_S(\sigma)$. χ_σ denotes the characteristic function of $\Xi_S(\sigma)$.

If σ is such a cell and τ belongs to its boundary, then there is a unique vector $x_{\sigma\tau}$ joining the puncture of τ to the one of σ . Correspondingly the translation $T^{x_{\sigma\tau}}$ in the Hull sends $\Xi_s(\tau)$ into a part of $\Xi_s(\tau)$, defining the translation operator

$$\theta_{\sigma\tau} = \chi_{\sigma} T^{\chi_{\sigma\tau}} \chi_{\tau}$$

where χ_{σ} denotes the characteric function of $\Xi_s(\sigma)$.

Bologna August 30th 2008

A *PV-n-cochain* will be a group homomorphism from the group of (oriented) *n*-chains on the BOF manifold B_0 into the group $C(\Xi_s, \mathbb{Z})$. The Pimsner differential is defined by

$$df(\sigma) = \sum_{\tau \in \partial \sigma} [\sigma:\tau] f(\tau) \circ \theta_{\sigma\tau}$$

Here $[\sigma : \tau]$ denoted the *incidence number* of τ relative to σ . The associate cohomology is $H^n_p(B_0, C(\Xi_s, \mathbb{Z}))$.

Cohomology and *K*-theory

The main topological property of the Hull (or tiling psace) is summarized in the following

Theorem 9 (*i*) The various cohomologies, Čech, longitudinal, patternequivariant and PV, are isomorphic. (*ii*) There is a spectral sequence converging to the K-group of the Hull with page 2 given by the cohomology of the Hull. (*iii*) In dimension $d \leq 3$ the K-group coincides with the cohomology.

- 1. *Tilings* can be equivalently be represented by *Delone sets* or *point measures*.
- 2. The *Hull* allows to give tilings the structure of a *dynamical system* with a transversal.
- 3. This dynamical system can be seen as a *lamination* or, equivalently, as the *inverse limit* of *Branched Oriented Flat Riemannian Manifolds*.

- 4. The Čech cohomology is equivalent to the longitudinal one, obtained by inverse limit, to the pattern-equivariant one or to the Pimsner cohomology are equivalent *Cohomology* of the Hull. The *K*-group of the Hull can be computed through a spectral sequence with the cohomology in page 2.
- 5. In maximum degree, the *Homology* gives the family of *invariant measures* and the *Gap Labelling Theorem*.