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I - Tilings, Tilings,...
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- A triangle tiling -
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- Dominos on a triangular lattice -
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- Building the chair tiling -
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- The chair tiling -
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- The Penrose tiling -
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- Kites and Darts -
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- Rhombi in Penrose’s tiling -
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- The Penrose tiling -
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- The octagonal tiling -
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- Octagonal tiling: inflation rules -
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- Another octagonal tiling -
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- Another octagonal tiling -
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- Building the Pinwheel Tiling -
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- The Pinwheel Tiling -
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Aperiodic Materials

1. Periodic Crystals in d-dimensions:
translation and crystal symmetries.
Translation group T ' Zd.

2. Periodic Crystals in a Uniform Magnetic Field;
magnetic oscillations, Shubnikov-de Haas, de Haas-van Alfen.
The magnetic field breaks the translation invariance to give
some quasiperiodicity.
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3. Quasicrystals: no translation symmetry, but
icosahedral symmetry. Ex.:

(a) Al62.5Cu25Fe12.5;
(b) Al70Pd22Mn8;
(c) Al70Pd22Re8;

4. Disordered Media: random atomic positions

(a) Normal metals (with defects or impurities);
(b) Alloys
(c) Doped semiconductors (Si, AsGa, . . .);
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- The icosahedral quasicrystal AlPdMn -
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- The icosahedral quasicrystal HoMgZn-
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II - The Hull as a Dynamical System
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Point Sets
A subset L ⊂ Rd may be:
1. Discrete.

2. Uniformly discrete: ∃r > 0 s.t. each ball of radius r contains at most one point
of L.

3. Relatively dense: ∃R > 0 s.t. each ball of radius R contains at least one points
of L.

4. A Delone set: L is uniformly discrete and relatively dense.

5. Finite Local Complexity (FLC): L −L is discrete and closed.

6. Meyer set: L and L −L are Delone.
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Point Sets and Point Measures
M(Rd) is the set of Radon measures on Rd namely the dual space
toCc(Rd) (continuous functions with compact support), endowed
with the weak∗ topology.

For L a uniformly discrete point set in Rd:

ν := νL =
∑
y∈L

δ(x − y) ∈M(Rd) .
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Point Sets and Tilings
Given a tiling with finitely many tiles (modulo translations), a De-
lone set is obtained by defining a point in the interior of each
(translation equivalence class of) tile.

Conversely, given a Delone set, a tiling is built through the Voronoi
cells

V(x) = {a ∈ Rd ; |a − x| < |a − y| ,∀yL \ {x}}

1. V(x) is an open convex polyhedron containing B(x; r) and contained into B(x; R).

2. Two Voronoi cells touch face-to-face.

3. If L is FLC, then the Voronoi tiling has finitely many tiles modulo transla-
tions.
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- Building a Voronoi cell-
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- A Delone set and its Voronoi Tiling-
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The Hull

A point measure is µ ∈ M(Rd) such that µ(B) ∈ N for any ball
B ⊂ Rd. Its support is
1. Discrete.

2. r-Uniformly discrete: iff ∀B ball of radius r, µ(B) ≤ 1.

3. R-Relatively dense: iff for each ball B of radius R, µ(B) ≥ 1.

Rd acts onM(Rd) by translation.
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Theorem 1 The set of r-uniformly discrete point measures is compact
and Rd-invariant.
Its subset of R-relatively dense measures is compact and Rd-invariant.

Definition 1 Given L a uniformly discrete subset of Rd, the Hull of L
is the closure inM(Rd) of the Rd-orbit of νL.

Hence the Hull is a compact metrizable space on which Rd acts by
homeomorphisms.
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Properties of the Hull
If L ⊂ Rd is r-uniformly discrete with Hull Ω then using com-
pactness
1. each point ω ∈ Ω is an r-uniformly discrete point measure with support Lω.

2. if L is (r,R)-Delone, so are all Lω’s.

3. if, in addition, L is FLC, so are all the Lω’s.
Moreover then L −L = Lω − Lω ∀ω ∈ Ω.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set
is the set of ω ∈ Ω such that 0 ∈ Lω.

Theorem 2 If L is FLC, then its transversal is completely discontinu-
ous.
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Local Isomorphism Classes and Tiling Space

A patch is a finite subset of L of the form

p = (L − x) ∩ B(0, r1) x ∈ L , r1 ≥ 0

Given L a repetitive, FLC, Delone set let W be its set of finite
patches: it is called the the L-dictionary.

A Delone set (or a Tiling) L′ is locally isomorphic to L if it has the
same dictionary. The Tiling Space ofL is the set of Local Isomorphism
Classes of L.

Theorem 3 The Tiling Space of L coincides with its Hull.
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Minimality

L is repetitive if for any finite patch p there is R > 0 such that each
ball of radius R contains an ε-approximant of a translated of p.

Theorem 4 Rd acts minimaly on Ω if and only if L is repetitive.
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Examples

1. Crystals : Ω = Rd/T ' Td with the quotient action of Rd

on itself. (Here T is the translation group leaving the lattice
invariant. T is isomorphic to ZD.)
The transversal is a finite set (number of point per unit cell).

2. Impurities in Si : let L be the lattices sites for Si atoms (it is a
Bravais lattice). Let A be a finite set (alphabet) indexing the
types of impurities.
The transversal is X = AZd with Zd-action given by shifts.
The Hull Ω is the mapping torus of X.
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- The Hull of a Periodic Lattice -
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Quasicrystals
Use the cut-and-project construction:

Rd
' E‖

π‖
←− Rn π⊥

−→ E⊥ ' R
n−d

L
π‖
←− L̃

π⊥
−→W ,

Here

1. L̃ is a lattice in Rn,

2. the window W is a compact polytope.

3.L is the quasilattice in E‖ defined as

L = {π‖(m) ∈ E‖ ; m ∈ L̃ , π⊥(m) ∈W}
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- The transversal of the Octagonal Tiling is completely
disconnected -



Bologna August 30th 2008 40

III - Branched Oriented Flat
Riemannian Manifolds



Bologna August 30th 2008 41

Laminations and Boxes
A lamination is a foliated manifold with C∞-structure along the
leaves but only finite C0-structure transversally. The Hull of a
Delone set is a lamination with Rd-orbits as leaves.

If L is a FLC, repetitive, Delone set, with Hull Ω a box is the home-
omorphic image of

φ : (ω, x) ∈ F ×U 7→ −xω ∈ Ω

if F is a clopen subset of the transversal, U ⊂ Rd is open and 
denotes the Rd-action on Ω.
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A quasi-partition is a family (Bi)n
i=1 of boxes such that

⋃
i Bi = Ω

and Bi ∩ B j = ∅.

Theorem 5 The Hull of a FLC, repetitive, Delone set admits a finite
quasi-partition. It is always possible to choose these boxes as φ(F × U)
with U a d-rectangle.
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Branched Oriented Flat Manifolds
Flattening a box decomposition along the transverse direction
leads to a Branched Oriented Flat manifold. Such manifolds can be
built from the tiling itself as follows

Step 1:

1. X is the disjoint union of all prototiles;

2. glue prototiles T1 and T2 along a face F1 ⊂ T1 and F2 ⊂ T2 if F2
is a translated of F1 and if there are x1, x2 ∈ R

d such that xi + Ti
are tiles of T with (x1 + T1) ∩ (x2 + T2) = x1 + F1 = x2 + F2;

3. after identification of faces, X becomes a branched oriented flat
manifold (BOF) B0.
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- Branching -
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- Vertex branching for the octagonal tiling -
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Step 2:

1. Having defined the patch pn for n ≥ 0, let Ln be the subset of
L of points centered at a translated of pn. By repetitivity this is
a FLC repetitive Delone set too. Its prototiles are tiled by tiles
of L and define a finite family Pn of patches.

2. Each patch in T ∈ Pn will be collared by the patches of Pn−1
touching it from outside along its frontier. Call such a patch
modulo translation a a collared patch and Pc

n their set.

3. Proceed then as in Step 1 by replacing prototiles by collared
patches to get the BOF-manifold Bn.

4. Then choose pn+1 to be the collared patch in Pc
n containing pn.
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- A collared patch -
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Step 3:

1. Define a BOF-submersion fn : Bn+1 7→ Bn by identifying patches
of order n in Bn+1 with the prototiles of Bn. Note that D fn = 1.

2. Call Ω the projective limit of the sequence

· · ·
fn+1
→ Bn+1

fn
→ Bn

fn−1
→ · · ·

3. X1, · · ·Xd are the commuting constant vector fields on Bn gen-
erating local translations and giving rise to a Rd action  on
Ω.

Theorem 6 The dynamical system

(Ω,Rd, ) = lim
←

(Bn, fn)

obtained as inverse limit of branched oriented flat manifolds, is conjugate
to the Hull of the Delone set of the tiling T by an homemorphism.
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IV - Cohomology and K-Theory
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Čech Cohomology of the Hull
LetU be an open covering of the Hull. If U ∈ U, F (U) is the space
of integer valued locally constant function on U.

For n ∈N, the n-chains are the element of Cn(U), namely the free
abelian group generated by the elements of F (U0 ∩ · · · ∩Un) when
the Ui varies inU. A differential is defined by

d : Cn(U) 7→ Cn+1(U)

d f (
n+1⋂
i=0

Ui) =
n∑

j=0

(−1) j f (
⋂
i:i, j

Ui)
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This defines a complex with cohomology Ȟn(U,Z). The Čech
cohomology group of the Hull Ω is defined as

Ȟn(Ω,Z) = lim
→ U

Ȟn(U,Z)

with ordering given by refinement on the set of open covers.
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Longitudinal (co)-Homology

J. B, R. B, J.-. G, Commun. Math. Phys., 261, (2006), 1-41.
J. K, I. P, Michigan Math. J., 51, (2003), 537-546.
M. B, H. O-O, C. R. Math. Acad. Sci. Paris, 334, (2002), 667-670.

The Homology groups are defined by the inverse limit

H∗(Ω,Rd) = lim
←

(H∗(Bn,R), f ∗n)

Theorem 7 (JB, Benedetti, Gambaudo) The homology group Hd(Ω,Rd) ad-
mits a canonical positive cone induced by the orientation ofRd, isomor-
phic to the affine set of positive Rd-invariant measures on Ω.
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The cohomology groups are defined by the direct limit

H∗(Ω,Rd) = lim
→

(H∗(Bn,R), f ∗n)

The following result is known as the Gap labeling Theorem and
was proved simultaneously by K-P, B& O-O,

JB-B-G. It is an extension of the Connes index theorem for
foliations

Theorem 8 If P is an Rd-invariant probability on Ω, then the pairing
with Hd(Ω,Rd) satisfies

〈P|Hd(Ω,Rd)〉 =
∫
Ξ

dPtr C(Ξ,Z)

where Ξ is the transversal, Ptr is the probability on Ξ induced by P and
C(Ξ,Z) is the space of integer valued continuous functions on Ξ.
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Pattern-Equivariant Cohomology
J. K, J. Phys. A36, (2003), 5765-5772.
J. K, I. P, Math. Ann. 334, (2006), 693-711.
L. S, Pattern-Equivariant Cohomology with Integer Cœfficients (2007)

LetL be an FLC, repetitive Delone set inRd. A function f : Rd
7→

X is L-pattern-equivariant if there is r > 0 such that f (x) = f (y)
whenever B(0; r) ∩ (L − x) = B(0; r) ∩ (L − y).

The Voronoi tiling of L can be seen as a chain complex, with tiles
being the d-cells, and their k-faces being the k-cells.
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A k-cochain with integer cœfficients is then a linear map α defined
on the free abelian group of k-chains with values in Z.

Let Ck
P

(L) be the abelian group of L-pattern equivariant k-co-
chains. The usual coboundary operator (de Rham differential)

dn : Cn
P

(L) 7→ Cn+1
P

(L)

defines the L-pattern equivariant cohomology denoted by

Hk
P

(L,Z) = Ker dn/Im dn−1
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The PV-Cohomology
J. B, J.S, arXiv: 0705.2483, (2007).

Each cell of the Voronoi complex is punctured. The set Ls of such
punctures defines the simplicial transversalΞs. An equivalent class,
modulo translation, of n-cell σ defines a compact subset Ξs(σ). χσ
denotes the characteristic function of Ξs(σ).

If σ is such a cell and τ belongs to its boundary, then there is
a unique vector xστ joining the puncture of τ to the one of σ.
Correspondingly the translation xστ in the Hull sends Ξs(τ) into
a part of Ξs(τ), defining the translation operator

θστ = χσ
xστχτ

where χσ denotes the characterictic function of Ξs(σ).
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A PV-n-cochain will be a group homomorphism from the group
of (oriented) n-chains on the BOF manifold B0 into the group
C(Ξs,Z). The Pimsner differential is defined by

d f (σ) =
∑
τ∈∂σ

[σ : τ] f (τ) ◦ θστ

Here [σ : τ] denoted the incidence number of τ relative to σ. The
associate cohomology is Hn

P(B0,C(Ξs,Z)).
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Cohomology and K-theory
The main topological property of the Hull (or tiling psace) is
summarized in the following

Theorem 9 (i) The various cohomologies, Čech, longitudinal, pattern-
equivariant and PV, are isomorphic.
(ii) There is a spectral sequence converging to the K-group of the Hull
with page 2 given by the cohomology of the Hull.
(iii) In dimension d ≤ 3 the K-group coincides with the cohomology.
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Conclusion

1. Tilings can be equivalently be represented by Delone sets or point
measures.

2. The Hull allows to give tilings the structure of a dynamical system
with a transversal.

3. This dynamical system can be seen as a lamination or, equiva-
lently, as the inverse limit of Branched Oriented Flat Riemannian
Manifolds.
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4. The Čech cohomology is equivalent to the longitudinal one,
obtained by inverse limit, to the pattern-equivariant one or to
the Pimsner cohomology are equivalent Cohomology of the Hull.
The K-group of the Hull can be computed through a spectral
sequence with the cohomology in page 2.

5. In maximum degree, the Homology gives the family of invariant
measures and the Gap Labelling Theorem.


