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• Summary
• After a brief prelude concerning my relation to Sandro 

Graffi, I discuss scattering in PT-symmetric one-
dimensional quantum mechanics within the Schrödinger 
and Dirac framework.

• In addition to standard local finite-range potentials also 
non-local separable potentials will be considered.
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• My relation to Graffi may be encapsulated in two dates:
*I met him first in 1966*
*I signed a paper with Caliceti and him in J.Phys.A: 
Math.Gen. in 2006*
The first hint may be that I was assigned by Graffi a 
problem which took me 40 years to solve and finally I got 
the solution helped by Caliceti:
in the following I will give an alternative explanation 
though the crucial role of Caliceti to convert a possibly 
virtual into a real effective collaboration should not be 
underestimated . 
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• As a third year student of quantum theory of matter I met 
Sandro Graffi in the academic year 1966-1967 when he 
was graduating in theoretical physics supervised by 
Prof.F.Selleri, also G.Turchetti and V.Grecchi belonged 
to the same team. The scientific interest of Prof.Selleri 
focused on particle physics phenomenology with a 
prevailing role of creative enthusiasm over sound but 
less exciting analytic accuracy. Anyway 68 was coming 
soon, it already started so to speak in 67 . Prof. Selleri 
was deeply affected and together with many theoretical 
physicsts turned left. In their minds science and political 
ideologies got superposed, slightly more sophisticated 
(involving possible complexity) than mixed up. 
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• Thereby I mean that the emphasis was to show that 
Quantum Mechanics had problems and some very 
essential concepts like entanglement were scrutinized.

• Because of the trend, however ( superposition of 
Quantum Mechanics and ideology ) some consequences 
like quantum information theory which could have been 
grasped at that time were not unveiled. Lost opportunity!
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• One cannot deny that those were exciting days. As a 
student I was confronted with the conundrums of 
Quantum Mechanics and Graffi and Grecchi helped me 
to understand the loopholes of some paradoxes. The 
prevailing revolutionary trend was to consider Quantum 
Mechanics as a kind of idealistic science to be 
superseded by a more materialistic one since Marxism 
was a kind of TOE,Theory Of Everything. 
Correspondingly the interest of Prof.Selleri drifted from 
particle physics phenomenology to the foundations of 
Quantum Mechanics,with the intention to falsify it in the 
spirit of Popper. 
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• Graffi and his team mates Grecchi and Turchetti were 
shrewd enough to grasp that for young physicists it was 
a trap to get involved in such topics, so they tried quickly 
to become independent and master of their scientific 
research. They did not encourage me to graduate with 
Prof.Selleri.
They moved to Mathematical Physics and I moved to 
Theoretical Nuclear Physics with the idea that these 
latter fields might be less exciting
but people knew better what they were talking about. So 
here there is a very good reason why INFN should 
support Graffi's celebration: in Bologna nothing like a 
Sakata school or a Vigier-DeBroglie school was built with 
the associated risks typical of a dogmatic top down 
approach. 
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• At that time Graffi and Grecchi got a job in INFN as 
young researchers:
INFN was a flexible and informal institution promoting 
mainly particle physics but also related fields of 
research; it provided financial support to university 
research(like NSF so to speak)but also gave the 
opportunity to hire full time physicists, engineers and 
technicians. For physicists
these jobs were not intended to become permanent: the 
reason was that in a physicist's career it was thought to 
be effective to work few years in reasearch full time and 
after that to be hired in university. 
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• This precisely occurred to Graffi and Grecchi and as 
soon as they got jobs at university I was ready for INFN 
(where I still keep my job since in later times the INFN 
→University transition became much more cumbersome 
at least for theoretical physicists in Bologna).
Since our scientific interests diverged I was less than 
superficially aware of what Graffi was doing until again in 
1997-98 my research in SUSYQM intersected 
inadvertenly earlier research by Caliceti Graffi and 
Maioli(1980). SUSYQM lead Andrianov, Ioffe, Junker, 
Trost and myself to consider isospectrality between non 
hermitian hamiltonians and hermitian ones, introducing a 
partnership between Schrödinger operators with real 
potentials and spectrum and Schroedinger operators 
with specific complex potentials. 
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• It took however few years before I realized there was a 
connection with Caliceti et al and that occurred only after 
few years of
flourishing PT symmetric Quantum Mechanics, actually it 
was M.Znojil visiting us in 2000 to promote our 
awareness of each other's results.
Graffi is still associated to INFN as an external 
collaborator belonging to the INFN theory group and his 
reputation and his activity is certainly crucial for the 
developments of mathematical physics in Bologna thus 
this is a second very good reason for INFN to support 
the celebration.
Finally let me thank the organizers for providing the 
opportunity to recall Graffi's very early INFN research.
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• I will not touch any fundamental physical interpretation of 
PT symmetric Quantum Mechanics in the sense of 
foundations of Quantum Mechanics.

• In particular I will refer to one dimensional problems, so
the potential will be symmetric under change of sign of 
the coordinate combined with complex conjugation. 

• The conventional wisdom is that these hamiltonians are 
representative of dynamical systems which are not 
isolated, though loss of hermiticity occurs in a very 
peculiar way.
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• There are particular cases when there is a similarity 
transformation between these Hamiltonians and 
hermitian operators ( PT-symmetric Hamiltonians have 
real spectrum in this case) but the hermitian operators 
may not be of Schrödinger type, i.e. kinetic term plus 
local potential.
I will focus attention on scattering properties of PT 
symmetric Hamiltonians. My research in this field has 
been carried out mainly with Alberto Ventura from ENEA. 
Those which will not appreciate non-hermitian 
Hamiltonians may tentatively think that we are dealing 
with problems in optics with a complex index of refraction 
characterized by handedness.
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This interpretation is made possible by the close relation of 
the stationary Schrödinger equation to the classical 
Helmholtz equation.
Later on we will extend our discussion to non local 
potentials enjoying PT symmmetry considering 
separable kernels of the type

                   K(x,y) = g(x)• h(y) •exp(iax) •exp(iby)

     with g and h real even functions of their arguments and 
a and b real constants. PT symmmetry of separable 
K(x,y) appears rather natural.
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• One-dimensional Schrödinger equation for a 
monochromatic wave of energy E = k2 scattered by a 
non-local potential with kernel K in units ħ=2m=1:    

•   -(d2/dx2) Ψ(x)+λ∫K(x,y)Ψ(y)dy = k2 Ψ(x)
• where λ is real and K is separable :

•      K(x,y) = g(x)• h(y) •exp(iax) •exp(iby)
• ( a and b real, g and h real functions vanishing at ±∞)
• Hermiticity: K(x,y)  = K*(y,x)
• P invariance: K(x,y) = K(-x,-y)
• T invariance: K(x,y) = K*(x,y)
• PT invariance: K(x,y) = K*(-x,-y)
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Reality a = b = 0

Simmetry under x ↔ y a = b, g = h

Hermiticity a = - b, g = h

P invariance a = b = 0, g(x) = g(-x),     
  h(y) = h(-y)

T Invariance a = b = 0

PT Invariance g(x) = g(-x), h(y) = h(-y)
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• Finally we provide the PT symmetric scenario for the one 
dimensional Dirac equation. Again those who do not like 
complex potentials in a Dirac equation may think of a 
suitable Dirac-like behaviour of a non relativistic tight 
binding hamiltonian in one dimension for sufficiently
large wave lengths, in this last scenario complex PT 
symmetric interactions may become more palatable.The 
first nearest neighbour approximation and use of the 
LCAO( linear combination of atomic orbitals) wave 
function is a crucial step to obtain Dirac-like behaviour.
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• We will ignore what all this means for the system mapped by 
the similarity transformation when this transformation exists, 
just because crudely speaking the mapped system may not be 
of Schrödinger type and furthermore the finite range or short 
range potential may not be mapped in a potential with the 
same properties. In addition from the point of view of wave 
functions in general there is no reason why wave functions 
which asymptotically behave as e-ax, for x = +∞ and e+ax for x = -
∞, a>0, should be mapped into ones with the same behaviour, 
similar considerations for wave functions behaving 
asymptotically as eikx or e-ikx. In order to be able to have a decent 
framework for scattering for the mapped system one should 
have for the latter continuum eigenfunctions which 
asymptotically can be written as superposition of such plane 
waves.
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• The main point worrying the experts in the field is that 
there is a non-local effect, i. e. that the similarity 
transformation can affect the wave functions very far 
from the potential region even asymptotically when the 
potential is of finite range, or even zero range (Dirac 
delta function). This is a kind of classical prejudice !
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• It would be sufficient somehow to require that the similarity 
maps bound states into bound states and scattering states( 
superposition of progressive and regressive plane waves ) 
into scattering states. To my knowledge such a detailed 
analysis has not been carried through. Let me recall that 
the similarity transformation induced by pseudohermiticity 
depends itself on the potential so the problem is a fully 
dynamical one.
A kind of rather simple similarity transformation (canonical 
transformation ) which is not dynamical and satisfies the 
requirements that plane waves go to plane waves and 
exponentially damped waves go to exponentially damped 
waves is a global "small" coordinate shift. The kinetic 
energy does not change whereas if a real potential is 
originally parity invariant it will now become PT invariant. 
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• L-R Representation
• General time-dependent Schrödinger equation

• -(∂2/∂x2) ψ(x,t)+∫K(x,y) ψ(y,t)dy=i(∂/∂t)ψ(x,t)   (1)
• written in units ħ = 2m = 1. For a monochromatic wave of 

energy ω the time dependence of the wave function is
• ψ(x,t) = Ψ(x)e-i ωt                                                                           (2)

• Unless explicitly stated, we consider local potentials :

• K(x,y) = δ(x-y)V(y)                                               (3)
• If Eqs. (2-3) hold, Eq. (1) reduces to

• HΨ(x) = ( -d2/dx2 + V(x) )Ψ(x)  = k2Ψ(x)              (4)
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• With k = √ω ( > 0 ) the wave number. It is convenient to 
work in a two-dimensional Hilbert space where the basis 
vectors are the kets |R> and |L> (and the corresponding 
bras <R| and <L| ). In configuration space, with the choice 
of the time dependent phase given in Eq. (2) , <x|R,k> ~ 
eikx  represents a plane wave travelling from left to right ( L 
→R ) and  <x|L,k> ~ e-ikx a wave travelling from right to left 
( R → L ).

• In the case of a finite-range local potential, Eq. (4) admits 
the general solution Ψ(x) = αF1(x) + βF2(x), where the 
linearly independent solutions F1(x) and F2(x) are both of 
the asymptotic form
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• limx→±∞ Fm(x) = am±eikx + bm±e-ikx                      ( m = 1, 2 )

• The transmission and reflection coefficients of a 
progressive wave are

• T L → R = ( a2+b1+ - a1+b2+ ) / (a2-b1+ - a1-b2+ )

• R L → R = ( b1+b2- - b1-b2+ ) / (a2-b1+ - a1-b2+ )

• The transmission and reflection coefficients of a 
regressive wave are

• T R → L = ( a2-b1- - a1-b2- ) / (a2-b1+ - a1-b2+ )

• R R → L = ( a1+a2- - a1-a2+ ) / (a2-b1+ - a1-b2+ )
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• Equipped with T and R coefficients we can find two kinds of (linearly 
independent) wave functions Ψ1(x) and Ψ2(x) , whose asymptotic 
forms, neglecting a global normalization factor, are 

• Ψ 1(x) ~ eikx + R L → R e-ikx ,  x → -∞
•          ~ T L → R eikx ,            x → +∞

• and
• Ψ2(x) ~ T R → L e-ikx ,            x → -∞

•  
•          ~ e-ikx + R R → L eikx      x → +∞

• The Wronskian of Ψ1(x) and Ψ2(x) is
• W(x) = Ψ1(x)dΨ2(x)/dx - Ψ2(x)dΨ1(x)/dx
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• We readily obtain W (-∞) = - 2ikT R → L and W (+∞) = 

• - 2ikT L →R . Thus, a necessary condition for the Wronskian 
to be constant on the x axis is T R →L  = T L → R 

• It is easy to check that dW/dx = 0 for any well-behaved 
local potential. Therefore, the equality of the two 
transmission coefficients is satisfied for any such 
potential.
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• P Invariance
– Parity invariance of the Hamiltonian H implies 

• T L → R = T R → L and R L → R = R R → L 

• T invariance
• Time reversal invariance of H implies

• T L → R T *
R → L + | R L → R |2  = 1

• | R L → R | = | R R → L |
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• Introducing the scattering 
matrix







=





=

→→

→→

LRRL

LRRL

LLLR

RLRR

TR

RT

SS

SS
S



  

Scattering in PT-symmetric Quantum Mechanics
27

• Similarity which maps 
plane waves into plane 
waves

• where
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• Transmission and reflection coefficients get linearly 
combined. For small complex shift translation ζ is 
diagonal !

1~ −=⇒
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• PT invariance implies
• S-1 = S*

• This yields for the S-matrix elements :
• SRL + S*

RLdet S = 0

• SLR + S*
LRdet S = 0

• SLL = S*RRdet S

• SRR = S*LLdet S

• This imposes that  |det S| = 1, SRLS*
LR is real and |SRR| = |SLL|, 

or that T L → R and T R → L have the same modulus, while R L → R 
and R R → L have the same phase.
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• For bound states it is well known that exact PT symmetry 
i.e. symmetry of the Hamiltonian + symmetry of the 
eigenwave functions implies reality of 
the corresponding eigenvalues, less well known is what it 
means for scattering states  to have 

•  Asymptotic PT invariance 
• To this aim, it is convenient to start from the 

transformation under PT of a generic wave function Ψ(x)
• PT Ψ(x) = ΨPT(x) = Ψ*(-x)

• And the condition of exact PT symmetry
• ΨPT(x) = Ψ*(-x) = eiθ Ψ(x)

• where θ is real, because (PT)2 = 1.
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• Let  us apply the previous equation to the asymptotic 
wave functions

• ΨPT(±∞) = Ψ*(-(±∞)) = eiθΨ(±∞)  ,

• which implies
• |T| = 1  ,  R = 0

• i. e. the potential is reflectionless.
• The first example we discuss is the regularized one-

dimensional form of the “centrifugal” potential
• V(x) = α/(x+iε)2

• where α is a real strength and ε is a real constant that 
removes the singularity at the origin.
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• The time-independent Schrödinger equation for the 
potential under investigation reads, in units  ħ = 2m = 1

( ) Ψ=Ψ
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+− 2
22
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We introduce the complex variable z = k(x+iε) and 
express the previous equation in terms of z. Then , 
we introduce the new function Φ(z) = z1/2Ψ(z). The 
equation satisfied by Φ(z) is a Bessel equation
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• The square index of the Bessel equation is ν2 = α + ¼. 
• A couple of linearly independent solutions to the above 

equation with the appropriate asymptotic behaviour for Ψ 
to be a scattering solution of the Schrödinger equation is 
provided by the Hankel functions of first and second type
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• lim|z|→∞Hν
(1)(z) = (2/(πz))1/2exp[i(z-πν/2- π/4)]

• lim|z|→∞Hν (2)(z) = (2/(πz))1/2exp[-i(z- πν/2- π/4)]

• valid for Re(ν) > -1/2, |arg z| < π.
• The corresponding asymptotic solutions of the 

Schrödinger equation thus are

• limx→∞Ψ1(x) = exp (ikx-kε-iπν/2-iπ/4)

• limx→∞Ψ2(x) = exp (-ikx+kε+i πν/2+iπ/4)

• If the above asymptotic wave functions are written as

• limx→±∞Ψm(x) = am±eikx + bm± e-ikx

• we immediately obtain
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• a1+ = a1- = exp(-kε -iπν/2 -iπ/4) ,  b1+ = b1- = 0, 

• a2+ = a2- = 0, b2+ = b2- = exp(kε +i πν/2 +i π/4) .

• The resulting transmission and reflection coefficients are 
evaluated from their definitions

• TL→ R  = ( a2+ b1+  - a1+ b2+ ) / ( a2- b1+ - a1- b2+ ) = 1,

• RL→ R  = ( b1+ b2- - b1- b2+ ) / ( a2- b1+ - a1- b2+ ) = 0,

• TR → L  = ( a2- b1- - a1- b2- ) / (a2- b1+  - a1- b2+ ) = 0,

• RR → L = (a1+ a2- - a1- a2+ ) / (a2- b1+  - a1- b2+ ) = 1.
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• The presence of these Hankel functions suggest that it is 
not an accident that this potential which can be thought 
as obtained by some kind of dimensional reduction from 
the kinetic term (centrifugal barrier) in three dimensions

    (a kind of Kaluza-Klein dynamics in a reduced space 
obtained from free propagation in higher dimensions ) is 

reflectionless. 
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• Finally, I would like to remark that similar ideas may 
apply in the framework of cosmological models( Ahmed 
Bender Berry, Andrianov ...,t'Hooft). 

• The interesting remark is that by the change
 x → ix  
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• one goes to a problem of wrong sign of kinetic energy 
and if one starts from a complex PT-symmetric potential 
like  ix3 one ends up with a real potential. 

• Now this type of dynamical system is
called phantom in cosmological model building.

• The discovery of the cosmic acceleration and the search 
for dark energy responsible for its origin have stimulated 
the study of field models driving the cosmological 
evolution. Such a study usually is called the 
potential reconstruction , because the most typical 
examples of these models are those with a scalar field, 
whose potential should be found to provide a given 
dynamics of the universe. 
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• In the flat Friedmann models with a single scalar field, 
the form of the potential and the time dependence 
of the scalar field are uniquely determined by the 
evolution of the Hubble variable (up to a shift of the 
scalar field). 
Models with two scalar fields are more flexible. This is 
connected with the fact that experimental data may be 
interpreted consistently with the fact that
the relation between the pressure and the energy density 
could be less than -1.
Such equation of state arises if the matter is represented 
by a scalar field with a negative kinetic term. This field is 
called ``phantom'' .
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• Also in condensed matter physics one may wish to 
describe some effective particle as a negative mass 
particle ( according to the sign of d2E(P)/dP2 ) ,

•  then again it is useful perhaps to map this problem in a 
PT symmetric problem.
                         Non-local potentials

• Let us turn now to non-local potentials: we go back to the 
Schrödinger equation for a wave of energy E = k2

 -(d2/dx2)Ψ(x)+ ∫λ K(x,y)Ψ(y)dy = k2Ψ(x)

• where the potential strength λ is a real number.
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• In order to deal with a solvable potential, we consider 
only separable kernels of the kind

• K(x,y) = g(x)eiαxh(y)eiβy ,
• where α and β are real numbers and g(x) and h(y) are 

real functions of their arguments, vanishing at ±∞.
• PT invariance ( K(x,y) = K*(-x,-y) ) does not impose 

conditions on α and β, but requires g(x) = g(-x) and h(y) 
= h(-y) . As an important consequence, their Fourier 
transforms are even real functions too.

• The Schrödinger equation for the problem is solved by 
the Green function method.
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• The Green function for the problem satisfies the equation

• (d2/dx2) G±(x,y) + ( k2± iε) G±(x,y) = δ(x-y)

• The infinitesimal positive number ε shifts upwards, or 
downwards in the complex momentum plane the 
singularities of the Fourier transform of G±(x,y) lying on 
the real axis.

• The solutions are

• G+(x,y) = -i/(2k)[ eik(x-y)θ(x-y) + e-ik(x-y) θ(y-x) ]

• G-(x,y) = (G+(x,y))*
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• Let us call Ψ±(x) two linearly independent solutions of the 
Schrödinger equation and define the integrals

• I±(β,k) = ∫ eiβy h(y)Ψ±(y) dy .

• It is easy to show that I±(β,k) can be written as a 
convolution of the Fourier transforms of h(y) and Ψ±(y). 

• The general solutions Ψ±(x) are implicitly written as

• Ψ±((x) = c±eikx + d± e-ikx +λ I±(β,k) ∫ G±(x-y)g(y)eiαydy

• The above equation allows us to express I±(β,k) in terms 
of c± and d± as well as of Fourier transforms of known 
functions.
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• By multiplying both sides of the previous equation by 
h(x)eikx and integrating over x one obtains

( ) ( ) ( ) ( ) ( )
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• Therefore:
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• Let us examine now the asymptotic behaviour of the two 
independent solutions and map them to

• Ψ1(x) ~ eikx + RL →R e-ikx ,      x → -∞

•  Ψ1(x) ~ TL → R eikx ,               x → +∞

• Ψ2(x) ~ TR →L e-ikx ,              x → -∞

• Ψ2(x) ~ e-ikx + RR → L eikx ,      x → +∞

• By a suitable choice of c± and d± one obtains the 
expressions of the transmission and reflection 
coefficients.
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• where we have put ω = λ/(2k), D+(α,β,k) has been 
defined previously and the new function  E-(α,β,k) on the 
right-hand-side of TR → L and RR → L is
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• Detailed calculations have been performed for the one-
dimensional Yamaguchi potential, where

• g(x) = e-γ|x| , h(y) = e-δ|y| ,

• with γ and δ positive numbers. Defining φ(Ta,b) the phase of 
the complex number Ta,b , where a = L → R, b = R → L,

• and φ(Ra,b) the phase of Ra,b , one obtains, for different 
choices of α and β, corresponding to real, hermitian, 
symmetric, PT-symmetric kernels
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α = β  = 
0

|Ta|= |Tb| φ(Ta) = 
φ(Tb)

|Ra|=|Rb| φ(Ra) = 
φ(Rb)

α = - β , 
γ = δ

|Ta|= |Tb| φ(Ta) ≠ 
φ(Tb)

|Ra|=|Rb| φ(Ra) = 
φ(Rb)

α = β ≠ 
0, γ = δ

|Ta|= |Tb| φ(Ta) = 
φ(Tb)

|Ra| ≠ |
Rb|

φ(Ra) = 
φ(Rb)

α ≠ β, 
γ≠ δ

|Ta|= |Tb| φ(Ta) ≠ 
φ(Tb)

|Ra| ≠ |
Rb|

φ(Ra) = 
φ(Rb)
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• Relativistic problems
1. Local potentials

We introduce the Dirac equation in (1+1) dimensions (units  
ħ = c = 1 )

i(∂/∂t)ψ(x,t) = HD ψ(x,t) ,

where the Dirac Hamiltonian with the time component of a 
local vector potential  V(x) = V*(-x) reads

HD = V(x) - iαx ∂/∂x + βm .

αx and β are 2 x 2 Dirac matrices, which we choose in the 
standard Dirac representation
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• The solution ψ to the Dirac equation in (1+1) dimensions can 
be written as a spinor with two components. The parity operator 
P and the time reversal operator T are to be defined in a 
consistent way. In the adopted representation, we find

• P = ei θ P0σz  ,

• where θ is an arbitrary real constant and P0 changes x into –x.
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• With the above definition of P, it is immediate to check 
that ψP(x,t) = Pψ(x,t) satisfies the Dirac equation with 
potential PV(x)P-1 = V(-x).

• For the time reversal operator we consistently adopt the 
form

• T = eiφKσz   ,

• where φ is an arbitrary real constant and K performs 
complex conjugation. ψT(x,t) = Tψ(x,t) satisfies the 
equation

• -i(∂/∂t) ψT(x,t) = (V*(x) - iσx ∂/∂x + mσz) ψT(x,t) .

• If we assume φ = -θ, then PT = P0K, like in the non-
relativistic case.



  

Scattering in PT-symmetric Quantum Mechanics
53

• We study the PT-symmetric square well potential
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• In each of the four regions defined by the 
previous formula we search for particular 
solutions

• Ф(x,t) = Ф0(x)e-iEt

• whose spatial part can be written in the following 
compact form
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• The upper components, uu
± ,, turn out to be arbitrary non-

zero constants.

• The general stationary solution, ΨJ(x), to the Dirac 
equation in the J-th region of the x axis ( J = I, …, IV ) 
can be written in the form

( ) ( ) ,

constant. are  and  where JJ

xik
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xik
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xik
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xik
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eBeA
x
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JJ
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−
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• It is easy to express the coefficients of the general 
solution in region IV ( x→ +∞ ) as linear functions of 
those in region I ( x→ -∞ ). Thus we can construct two 
spinor wave functions Ψ+(x), representing a progressive 
wave ( L → R ), and Ψ-(x), representing a regressive 
wave ( R → L ), such that ( )

( )

( )

( ) ,
11

lim
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lim
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11
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• The transmission and reflection coefficients in the 
previous formulae are expressed in terms of the AJ and BJ 
constants

• TL→ R = AIV / AI ,

•  RL→R = BI / AI ,

• TR → L = BI / BIV ,

• RR → L = AIV / BIV .
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• 2. Non-local potentials
• The (1+1)-dimensional Dirac equation with a non-local 

vector-plus-scalar potential reads

• ( -iαx ∂/∂x + βm – E)Ψ(x)+( cS β+cV )∫ dyK(x,y)Ψ(y)=0

• where K(x,y) = g(x)eiaxh(y)eiby, a and b are real numbers, the 
real functions g and h are even functions of their argument, 
g(x) = g(-x), h(y) = h(-y), so as to assure PT invariance.

• The solution is obtained via the Green function

• ( -iαx ∂/∂x + βm – (E ± iε ) )G±(x-x’) = δ(x-x’)
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• whose solution is 

• G±(x-x’) = ±i/(2k)e±ik|x-x’|( ±kαx sgn(x-x’) + βm + E ) .

• We obtain the transmission and reflection coefficients
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• where
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• Moreover
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• and
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• The Dirac equation satisfied by the spinor Ψ reduces to 
two coupled equations for the spinor components Ψ1 and 
Ψ2, which decouple when cV = ± cS. 

• Let us consider the case cV = cS = c first. The two 
equations are
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• The previous system is suited to the study of the non-
relativistic limit ( E → m + k2/(2m), with k2/(2m) << m ): the 
first equation in Ψ1 becomes a Schrödinger equation with a 
non-local potential of strength s = 2c and kernel K.

• Ψ2, proportional to (∂/∂x)Ψ1,, does not obey a Schrödinger 
equation . The transmission and reflection coefficients 
simplify considerably
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• and
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• In the case cV = - cS = c’ ,Ψ1 and Ψ2 interchange their role, 
since the two decoupled equations now are
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• In the non-relativistic limit the equation for Ψ2 becomes a 
Schrödinger equation with an energy dependent coupling 
strength s(k) = c’k2/(2m2), while Ψ1 is proportional to 
(∂/∂x)Ψ2 . The transmission and reflection coefficients 
now are

( ) ( )

( ) ( )
+

→
+→

+

→
+→

′
+

++′
=

′
+

+−′
−=

S
m
kc

i

bkhakg

m

kc
iR

S
m
kc

i

bkhakg

m

kc
iT

RL

m

k
mE

RL

m

k
mE

2
1

~~

2
lim

2
1

~~

2
1lim

2

2

2

2



  

Scattering in PT-symmetric Quantum Mechanics
70

( ) ( )
( ) ( ) ( ) ( )[ ]
( ) ( )

( ) ( ) ( ) ( )[ ]bkhakgbkhakgS
m
kc

i

bkhakg

m

kc
iR

bkhakgbkhakgS
m
kc

i

bkhakg

m

kc
iT

LR

m

k
mE

LR

m

k
mE

−+++−+−
′

+

−−′
=

−+++−+−
′

+

−+′
−=

−

→
+→

−

→
+→

~~~~
2

1

~~

2
lim

~~~~
2

1

~~

2
1lim

2

2

2

2

• As expected, the above formulae have the same 
structure as those in the case cV = cS, with the constant 
strength s = 2c replaced with the energy-dependent 
strength s(k) = c’k2/(2m2).
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• Conclusions
• I hope to have attracted attention on the short-range PT-

symmetric potentials, which allow a discussion of 
scattering (continuum spectrum). For non-local 
separable kernels the specific choice of form factors,

• g(x) = exp(-c|x|) and h(y) = exp(-d|y|), with a cusp at the 
origin yields in the non-relativistic case transmission and 
reflection coefficients that can be written as ratios of 
polynomials in k.  In the relativistic case the functional 
dependence is more involved due to the square root 
dependency on k of energy E.
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• Nevertheless, it is interesting to remark that in addition to 
the study of properties of T and R for given cV and cS one 
can study specific properties like absence of reflection or 
of transmission for a given k as a function of cV and cS : this 
can be easily done since T and R are, respectively, 2nd 
order polynomial in cV (cS) over 2nd order polynomial and 1st 
order over 2nd order.

•  Analysis of the denominator of the transmission 
coefficient in the –m < E < +m suggests that real zeros 
turn to complex by changing a and b. This means that for 
a generic PT-symmetric kernel with a cusp at the origin 
one does not have a purely real spectrum.
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